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Abstract

Background
Heterologous protein expression in microorganisms may contribute to identify and demonstrate 
antifungal activity of novel proteins. The Solanum nigrum osmotin-like protein (SnOLP) gene 
encodes a member of pathogenesis-related (PR) proteins, from the PR-5 sub-group, the last 
comprising several proteins with different functions, including antifungal activity. Based on 
deduced amino acid sequence of SnOLP, computer modeling produced a tertiary structure which 
is indicative of antifungal activity.

Results
To validate the potential antifungal activity of SnOLP, a hexahistidine-tagged mature SnOLP form 
was overexpressed in Escherichia coli M15 strain carried out by a pQE30 vector construction. 
The urea solubilized His6-tagged mature SnOLP protein was affinity-purified by immobilized-
metal (Ni2+) affinity column chromatography. As SnOLP requires the correct formation of eight 
disulfide bonds, not correctly formed in bacterial cells, we adapted an in vitro method to refold 
the E. coli expressed SnOLP by using reduced:oxidized gluthatione redox buffer. This method 
generated biologically active conformations of the recombinant mature SnOLP, which exerted 
antifungal action towards plant pathogenic fungi (Fusarium solani f. sp.glycines, Colletotrichum 
spp., Macrophomina phaseolina) and oomycete (Phytophthora nicotiana var. parasitica) under in 
vitro conditions.

Conclusion
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Since SnOLP displays activity against economically important plant pathogenic fungi and 
oomycete, it represents a novel PR-5 protein with promising utility for biotechnological 
applications.

Background

Plants have evolved a complex array of chemical and enzymatic defenses, both constitutive and 
inducible, which are not involved in pathogen detection but whose effectiveness influences 
pathogenesis and disease resistance [1]. Plants protect themselves from pathogen invasion 
through the local expression of a variety of cysteine-rich antimicrobial peptides and a set of 
pathogenesis-related (PR) proteins [2,3]. Interestingly, most of the components belonging to 
these two classes of defense proteins are antifungal proteins, even though they are highly 
divergent in primary structure, in length and exhibit different direct antimicrobial activity.

The family of PR-5 proteins (also known as permatins, thaumatins or osmotins) is part of a 
larger group of proteins so-called PR-proteins, the last being classified into 17 families (PR-1 to 
PR-17) [3-5]. Neutral, basic and acid isoforms of PR-5 proteins have been found in plants, all of 
them consisting of cysteine-rich proteins involved in plant defense responses to several 
pathogens and abiotic stresses. Many PR-5 genes are activated by different signals such as 
abscisic acid, ethylene, auxin, salinity, lack of water, cold, UV light, wounding, virus and 
fungal/oomycete infection, that result in PR-5 protein accumulation in plant cells [6-8].

Different activities have been ascribed to the members of this family [9-13], especially 
antifungal/antioomycetal in vitro and in planta activity for most of them [14,15]. It is not known 
how PR-5 proteins exert the antifungal activity demonstrated through in vitro inhibition of hyphal 
growth and spore germination, spore lysis and reduction in viability of germinated spores. It has 
been proposed that they may act by permeabilization of fungal membranes or interaction with 
fungal membrane receptors [13,15-19]. In addition, it has been demonstrated that a number of 
PR-5 proteins bind β-1,3-glucan and have detectable in vitro β-1,3-glucanase activity [20,21]. 

Moreover, a tobacco osmotin induces apoptosis in Saccharomyces cerevisiae [22]. Nevertheless, 
the molecular mechanisms of membrane permeabilization, interaction with fungal receptor or 
apoptosis remain not completely understood.

Intensive efforts have been undertaken to find PR-5 genes encoding for novel putative antifungal 
proteins, which could be used in agricultural and/or pharmaceutical biotechnological approaches 
to control fungal diseases. In this context and based on previously published evidences, wild 
Solanum plant species represent a valuable source of natural plant resistance against many 
fungi and oomycetes, in which PR-5 proteins might be involved [23-26]. However, in order to 
evaluate the potential of these proteins as source of plant resistance, their ability to display 
antifungal activity needs to be proven experimentally. In order to test and characterize the in 
vitro activity of a particular protein, the first step is to purify the functional protein in large scale 
[27,28].

Supporting these claims, the majority of PR-5 proteins have been purified from plant native 
conditions. The demonstration of the antifungal activity of a PR-5 protein predicted from gene 
sequence requires its in vivo (cell system or in planta) expression by and purification from a 
heterologous systems [13,29-31]. In a previous work, we have described the isolation and 
cloning of a gene (SnOLP) coding for a neutral osmotin-like protein from Solanum nigrum var. 
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americanum [32]. Based on deduced amino acid sequence of the SnOLP protein, a computer 
modeling produced a structure that is indicative of antifungal activity. Herein, it is described the 
validation of SnOLP activity against plant pathogenic fungi and oomycete. This validation was 
performed by expression of the SnOLP gene in Escherichia coli, followed by purification of 
mature SnOLP and subsequent in vitro refolding, what generated biologically active 
conformations of the protein.

Results

Expression and purification of His6-tagged mature SnOLP
The hexahistidine (His6)-tagged mature form of a neutral osmotin-like protein from Solanun 
nigrum L. var. americanum (SnOLP) was overexpressed in E. coli heterologous system by using 
pQE30 expression vector and purified by using immobilized-metal (Ni2+) affinity chromatography 
(IMAC). Since bacterial expression systems do not perform certain post-translational processing, 
deletion mutations were generated by PCR amplification from the previously cloned SnOLP gene 
[32] to produce a mature SnOLP form lacking its signal peptide and its carboxy-terminal peptide. 
This PCR product was cloned into the pQE30 vector, which contains an inbuilt His6-tag sequence, 
what resulted into a His6-tagged mature SnOLP coding sequence (pQE30-SnOLP construct, Fig. 
1). The expected His6-tagged mature SnOLP protein is 225 amino acids in length with a 
theoretical Mr of 24,363 KDa, calculated from deduced amino acid sequence (ExPASY Protein 
Parameters Tools Analysis).

Figure 1. Schematic description of the construct designed to express His6-
tagged mature SnOLP in E. coli. The regions of the preproprotein SnOLP are shown. The positions 
of the primers used to generate fragments coding for mature SnOLP form are shown. The orientations 
of the primers PPM1 and PPM2, including the respective restriction cloning sites, are indicated by 
arrows. The His6-tag encoded by the pQE30 vector is indicated. SP, Signal Peptide; CT, Carboxy-
Terminal propeptide; M, Methionine; *, Stop codon.

In order to obtain information on the solubility of bacterially produced His6-tagged mature 
SnOLP, this protein was expressed in IPTG-induced M15 E. coli cells carrying the pQE30-SnOLP 
construct. Total cell protein fraction was obtained from non-induced and induced bacterial cells 
lysed under native conditions. Then soluble and insoluble protein fractions from induced protein 
fractions were separated by centrifugation. Equal amounts of total, soluble and insoluble protein 
fractions were analyzed on 12% SDS-PAGE (Fig. 2A). A protein presenting a mass around the 
predicted Mr of the His6-tagged mature SnOLP was present in high amounts within the induced 
total protein fraction as compared to the non-induced total protein fraction (Fig. 2A, lanes 2 and 
3). The majority of the probable His6-tagged mature SnOLP is present within the insoluble 
protein fraction, as compared to the soluble protein fraction (Fig. 2A, lanes 4 and 5), and 
represents around a third of the total protein fraction contents. As confirmed by Western 
blotting, low quantity of the His6-tagged mature SnOLP is present within the soluble fraction 
whereas high quantity is detected within the insoluble fraction (Fig. 2B, lanes 6 and 7). 
Curiously, an extra band, higher than the putative His6-tagged mature SnOLP, is present within 
the insoluble fraction though absent in the soluble fraction (Fig. 2B, lanes 6 and 7). This extra 
band may be due to dimeric forms of the His6-tagged mature SnOLP.
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Figure 2. Expression of His6-tagged mature SnOLP in E. coli, solubilization 
and purification. A. SDS-PAGE analysis of the expression of His6-tagged mature SnOLP in E. coli 
cultures incubated at 37°C for 3 h and induced by 0.4 mM IPTG (when indicated). 1. Molecular mass 
marker (LMW, Amersham Pharmacia Biotech); 2. Total protein fraction from non-induced E. coli 
culture; 3. Total protein fraction from IPTG-induced E. coli culture; 4. Soluble protein fraction from 
IPTG-induced E. coli culture; 5. Insoluble protein fraction from IPTG-induced E. coli culture. B. 
Western blot analysis of expressed His6-tagged mature SnOLP probed with His6-monoclonal antibody. 
6. Soluble protein fraction from IPTG-induced E. coli culture; 7. Insoluble protein fraction from IPTG-
induced E. coli culture. C. SDS-PAGE analysis of insoluble His6-tagged mature SnOLP which was urea 
solubilized and subsequently purified by immobilized-metal (Ni2+) affinity chromatography (IMAC). 8 
and 9. Eluates from IMAC. In A. and C. the gels were stained with Coomassie brilliant blue. His6-
tagged mature SnOLP protein is indicated by arrow heads.

Supported by these findings, an expression in a larger scale, in order to purify His6-tagged 
mature SnOLP, was performed by E. coli culture incubated at 37°C for 2 h after expression 
induction by IPTG 0.4 mM. This larger scale expression protocol produced high quantities of 
insoluble His6-tagged mature SnOLP, which was subsequently urea-solubilized and purified by 
IMAC under denaturing conditions. SDS-PAGE analysis of IMAC eluates revealed that purification 
of the bacterially expressed and solubilized His6-tagged mature SnOLP provided virtually 100% 
pure protein, as evident by the single band detected in two representative IMAC eluates (Fig. 
2C, lanes 8 and 9). These procedures led to elevated yields of high quality pure and soluble, 
though denatured, His6-tagged mature SnOLP (~1 mg/mL) from 500 mL of induced E. coli 
culture. In order to promote the recovery of steric structures and biological activity of the pure 
soluble denatured His6-tagged mature SnOLP, the fusion protein was slowly renatured in buffer 
containing a redox state maintained by reduced-glutathione:oxidized-glutathione pair, followed 
by dialysis against water. No significant precipitation was observed during or after refolding.

In vitro antifungal activity studies using His6-tagged mature SnOLP
The activity of the refolded His6-tagged mature SnOLP was determined by in vitro inhibition of 
mycelial growth of one plant oomycete (Phytophthora nicotiana var. parasitica) and four plant 
fungi (Fusarium solani f. sp. glycines, Macrophomina phaseolina, Colletotrichum 
gloesporioides,Colletotrichum gossypii var. cephalosporioides). The tested concentrations of 
refolded His6-tagged mature SnOLP were 0,1 μg/μL, 0,2 μg/μL and 0,3 μg/μL, corresponding to 
total doses of 1, 2 and 3 μg of SnOLP, respectively (Fig. 3). A dose of 10 μg BSA (negative 
control) at the concentration of 1 μg/μL had no effect on mycelial growth of any fungi (Fig. 3B 

and data not shown) or oomycete (Fig. 3A), as expected. On the other hand, a dose of 2000 U 
of the pharmaceutical fungicide Nistatin (positive control), at the concentration of 200 U/μL, 

inhibited the mycelial growth of all four fungi (Fig. 3B and data not shown) tested but not of the 
oomycete (Fig. 3A), also as expected. The highest concentration tested to achieve the maximum 
inhibitory activity of SnOLP against the four fungi and the oomycete was 0,3 μg/μL (Fig. 3). The 

sensitivity of almost all pathogens to SnOLP increased at growing concentrations of the protein 
(Fig. 3C, D, E, G), except for Colletotrichum gossypii var. cephalosporioides, which was equally 
sensitive to SnOLP at both 0,2 and 0,3 μg/μL concentrations (Fig. 3F). Macrophomina phaseolina 
was the only pathogen tested which was not sensitive to SnOLP at the concentration 0,1 μg/μL 

(Fig. 3B, D). In summary, these results prove that SnOLP directly inhibits growth of the 
pathogens tested, in a dose and concentration dependent manner.
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Figure 3. Bioassays of the mycelial growth inhibition activity of purified and 
renatured His6-tagged mature SnOLP. A-B. Representative bioassay Petri dishes. Filter paper discs 
containing 10 μL of test proteins were placed on plates 3 days after inoculation with fungal mycelia 
(plugs). Petri dishes were incubated at 29°C during the entire bioassay. Inhibitory effects of purified 
and renatured His6-tagged mature SnOLP upon the fungi are observed as areas lacking mycelial 
growth. A. Phytophthora nicotiana var. parasitica; 1 day after adding protein (a.a.p.); B. 
Macrophomina phaseolina, 5 days a.a.p. 1–3. Corresponds to the doses of 1 μg, 2 μg and 3 μg of 
purified and renatured His6-tagged mature SnOLP, or to the concentrations of 0,1 μg/μL, 0,2 μg/μL 
and 0,3 μg/μL, respectively; 4. Corresponds to the dose of 10 μg of Bovine Serum Albumin (BSA), or 
to the concentration of 1 μg/μL; 5. Corresponds to the dose of 2000 U Nistatin, or to the concentration 
of 200 U/μL. C-F. Average area (mm2) of mycelial growth inhibition caused by renatured His6-tagged 
mature SnOLP, as measured (software UTHSCSA Image Tool, Version 3.00 [57]) in three replicates, 
similar to the bioassay Petri dishes shown in A and B, for each fungus/oomycete and for each 
dose/concentration of SnOLP separately. Standard deviation bars are shown for each average column. 
The averages were statistically compared by using ANOVA and Tukey Test at the probability level of 
1% (software Genes [58]). Different letters above the average columns (i.e. a, b and c), indicate that 
the average values were considered to be statistically different among each other, whereas 
statistically identical average values are indicated by the same letter. C. Phytophthora nicotiana var. 
parasitica; 1 day after adding protein (a.a.p.); D. Macrophomina phaseolina, 5 days a.a.p. ; E. 
Colletotrichum gloeosporioides, 12 days a.a.p.; F. Colletotrichum gossypii var. cephalosporioides, 5 
days a.a.p.; G. Fusarium solani f. sp. glycines, 5 days a.a.p.

Discussion

In this work, we report the successful expression, purification, refolding and antimicrobial 
activity of the neutral His6-tagged mature SnOLP, a Solanum nigrum var. americanum osmotin 
belonging to the antimicrobial PR-5 protein family. The results demonstrated that SnOLP is 
effective against several agronomically important plant pathogens. SnOLP, as well as other 
neutral and basic members of the PR-5 protein family, require the formation of eight disulfide 
bonds for its biological activity and are synthesized in plants as an inactive precursor (i.e. 
preproprotein). In general, the preproprotein precursor contains an N-terminal signal peptide, 
which mediates the transport of the protein through the secretory pathway [33,34], and an 
additional carboxy-terminal extension, which may be removed during or after transport to the 
plant vacuole [29,34,35]. Although bacterial expression systems neither perform certain post-
translational modifications (such as removal of signal peptides) nor form all disulfide bonds of 
eukaryotic proteins correctly, it is still a faster and cheaper system for heterologous expression 
than other eukaryotic cell systems, such a yeast, insect or mammalian cells. Therefore, we 
chose to adapt an E. coli expressing system coupled with in vitro post-expression refolding to 
successfully produce high amounts of active forms of SnOLP.

In order to express mature SnOLP in E. coli, the signal peptide and the carboxy-terminal 
extension from the prepro SnOLP ORF [32] was deleted by PCR-engineering, and the resulting 
PCR-fragment was cloned into the bacterial expression vector pQE30, which encodes a His6-
fusion tag. The resulting pQE30-SnOLP construct was introduced into E. coli for the expression of 
His6-tagged mature SnOLP. The conditions herein established to overexpress His6-tagged mature 
SnOLP in E. coli (induction with 0.4 mM IPTG and incubation at 37°C for 3 h) led to formation of 
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protein inclusion bodies, abundantly present within the insoluble protein fraction. This appears to 
be frequently observed when proteins are overexpressed and exceed around 30% of the total 
host cell protein contents. Inclusion bodies, amyloids and protein precipitation are common 
manifestations of protein aggregation, in which misfolded protein molecules may be present 
[36]. However, the probable misfolding of the insoluble His6-tagged mature SnOLP 
overexpressed in E. coli was successfully repaired by denaturing and subsequent refolding 
procedures. These corrective procedures resulted in biologically active conformations of the 
recovered mature SnOLP that, according to results herein shown, exerted antimicrobial action 
towards plant pathogenic fungi and oomycete. Despite the amount of correctly refolded mature 
SnOLP was not quantified, the use of reduced:oxidized gluthatione redox buffer, which can 
produce a mixture of correctly refolded and misfolded protein, folding intermediates and kinetic 
traps [37], yielded biologically functional SnOLP.

A small number of PR5-like proteins have also been successfully expressed in E. coli in a 
biologically active form [31,13]. Hu and Reddy [31] demonstrated that an Arabidopsis 
thaumatin-like protein (ATLP3) could be expressed in E. coli in form of inclusion bodies, purified 
and that the refolded mature form displayed activity against some pathogenic fungi. Newton and 
Duman [13] found that an osmotin-like cryoprotective protein from Solanum dulcamara, when 
expressed in E. coli and directed to periplasmic localization, resulted in high concentrations of 
the soluble protein with cryoprotective activity, whereas when it was expressed in the bacterial 
cytoplasm, high amounts of insoluble and aggregated proteins were produced.

Here, we demonstrated that the SnOLP protein, in a refolded fusion-mature form, displays 
activity against a spectrum of four fungi and one oomycete, which were chosen due to their 
economical importance as plant pathogens. Sudden death syndrome of soybean (Glycine max 
(L.) Merr.), caused by several species of Fusarium belonging to the taxonomic section Martiella, 
among them F. solani f. sp. glycines, is a disease of increasing economic importance in soybean 
producing countries, such as Brazil [38-40]. Moreover, Macrophomina phaseolina, which causes 
the charcoal rot disease in soybean root and stem, has been considered one of the most 
prevalent soybean pathogens in Brazil [41,42]. Furthermore, Colletotrichum gossypii var. 
cephalosporioides is cited as the etiological agent of ramulose, one of the most impacting fungal 
diseases occurring on cotton (Gossypium hirsutum L. var. latifolium Hutch) in Brazil, which 
provokes super budding of the plant flushing tissues [43]. Phytophthora nicotiana var. parasitica 
causes root rot and gummosis in citrus (Citrus spp.) worldwide, especially in rootstock plants, 
leading to serious damage and losses in citrus seedbeds, nurseries, as well as young and mature 
groves [44-46]. Finally, Colletotrichum gloesporioides causes anthracnoses, a relevant disease 
occurring on a wide range of plants, including Stylosanthes guianensis, an important tropical 
forage plant [47,48]. Therefore, the discovery of a protein, such as SnOLP, that affects the 
growth of these pathogens could be of uppermost relevance for the transgenic control of these 
diseases in economically important crops.

As shown in Figure 3, the sensitivity of the pathogens to SnOLP appears to be species specific, 
since different levels of sensitivity were observed among unrelated pathogen species. 
Nevertheless, all the tested pathogens were sensitive to 2 and 3 μg of refolded His6-tagged 
mature SnOLP. Abad et al. [15] demonstrated that 30, 60 e 100 μg of a native tobacco osmotin 
had no effect against Macrophomina phaseolina. Likewise, in the presence of 100 μg of the 

referred tobacco protein, the mycelial growth of Colletotrichum gloesporioides was slightly 
inhibited. The mycelial growth of Fusarium spp. was considered only weakly inhibited, and also 
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the inhibition of Phytophthora spp. was visible as a discrete zone beyond the protein disc [15]. 
Our results demonstrate that SnOLP exerts in vitro inhibitory effect upon mycelial growth of the 
tested pathogens, though some of these pathogens are not sensitive to the before mentioned 
tobacco osmotin [15].

Another osmotin isolated from Solanum nigrum, denoted as SniOLP and which is 99% identical 
to SnOLP, when expressed in E. coli and subsequently refolded, exerted antifungal activity 
against Rhizoctonia batiticola and Sclerotinia sclerotiorum [49]. Therefore, it is very likely that 
SnOLP also presents activity against these fungi. Some osmotins present endo-β-1,3-glucanase 

activity, which is speculated to be involved in the antifungal mechanism of action of osmotins 
[50,51]. Similarly to SniOLP, which does not present endo-β-1,3-glucanase activity, SnOLP most 

like does not have glucanase activity as well.

Our results are relevant from a biological point of view, since the SnOLP gene was isolated from 
a solanaceous weed, Solanum nigrum var. americanum, common in the Americas. It was 
reported that a quite similar species, an European S. nigrum variety, is a nonhost plant 
possessing resistance to Phytophthora infestans, a destructive oomycete causing late blight 
disease in potato [24]. In addition, it was demonstrated that the penetration of S. nigrum leaf 
epidermis by P. infestans was accompanied by rapid Hypersensitive Response of plant cells, 
within 22 h after inoculation, what resulted in abortion of the infection [52,53]. Evidences 
pointed out that the constitutive expression of PR genes, including PR-5, may contribute to non-
specific host resistance to P. infestans [26] and that PR-5 proteins are induced in potato in 
response to infection by this pathogen [7,54]. However, no indication for a participation of PR-5 
proteins in nonhost resistance response was given so far. Here we provided one more evidence 
for the specific antioomycetal effect of PR-5 proteins targeted to Phytophthora spp. Despite of 
the lack of ultimate evidence, we hypothesize that the SnOLP gene might also be involved in 
basal defense responses to oomycetes and/or fungi in Solanum nigrum. Further analysis will 
contribute to elucidate a possible biological function or involvement of the SnOLP gene in 
defense responses of S. nigrum to pathogens.

Conclusion

We report here the successful overexpression in E. coli, purification, refolding and antifungal 
activity of the SnOLP osmotin from S. nigrum. The herein demonstrated inhibition of in vitro 
mycelial growth of economically important pathogens of soybean, cotton and citrus by SnOLP 
reveals promising features for biotechnological applications, being this is a subject of our current 
researches.

Methods

Construction of expression vector, cloning and transformation of E. coli
The isolation of SnOLP gene and used primers were described previously by Campos et al. [32]. 
The complete open reading frame (ORF) sequence coding for the wild type preproprotein SnOLP 
(GenBank accession no AF450276) was amplified by PCR from black nightshade(Solanum 
nigrum var. americanum) genomic DNA [32]. This ORF was used as template to prepare the 
prepro-truncated form (Figure 1). The prepro-truncated form, coding for mature SnOLP protein, 
was obtained by usage of the primers PPM1 (CGCGGATCCGCTGCGACTATCGAGGTACGC), 
containing a suitable BamH I cloning site (underlined within the primer sequence), and PPM2 
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(CCCAAGCTTACCCTTAGGACAAAAGACAACCC), containing a Hind III site (underlined within the 
primer sequence), and high fidelity Pfu DNA polymerase (Invitrogen).

The PCR amplified fragments were eluted from agarose gel, cloned into pGEM-T Easy vector 
(Promega) and subcloned into the BamH I and Hind III sites of the expression vector pQE30 
(QiaExpressionist-QiaGen), which contains a N-terminal His6-tag extension, resulting in the 
pQE30-SnOLP construct. The recombinant clones were selected by using 5-bromo-4-chloro-3-
indolyl-β-D galatopyranoside (X-Gal)/Isopropyl-β-D-thiogalactopyranoside (IPTG) blue/white 

colony screening system and digested with appropriated restriction enzymes. Thereafter, the 
presence of correct deletion mutations and the correct frame were verified by sequencing 
entirely both strands of the coding region of His6-tagged mature SnOLP, by using an automated 
ABI sequencer with BigDye terminator cycle sequencing kit (Perkim-Elmer). Sequences were 
analyzed by using the UWGCG software Package (Version 9.1 Genetics Computer Group, 
Wisconsin, Madison, Wisc.). The pQE30-SnOLP expression construct containing inserts coding for 
His6-tagged mature SnOLP was introduced into E. coli M15 strain (QiaGen) competent cells using 
standard transformation techniques.

Overexpression of His6-tagged mature SnOLP in E. coli
Preliminary experiments with the pQE30-SnOLP expression construct were performed to 
determine the solubility of the SnOLP, according to the instructions of manufactures 
(QiaEXpressionist-QiaGen), and to establish the expression levels of the mature protein. Cells of 
E. coli M15 strain carrying out the construct were cultured overnight at 37°C in 5 mL of Luria-
Bertani (LB) medium containing 100 μg/mL ampicillin and 25 μg/mL kanamycin (i.e. LB selective 

medium) under vigorous agitation (200 rpm). This pre-inoculum suspension was then used to 
inoculate 500 mL fresh LB selection medium, which was agitated until an O.D. 600 of 0.6 was 
reached. Thereafter, an aliquot of non induced control cells was colleted and reserved, and the 
expression of His6-tagged mature SnOLP protein was induced in the left cells by addition of IPTG 
to a final concentration of 0.4 mM. The cells were cultivated at 37°C for 3 h in the induction 
medium (i.e. LB selective medium plus IPTG) and afterwards collected by centrifugation at 4.000 
g at 4°C for 20 min.

Purification of the His6-tagged mature SnOLP protein
As an attempt to determine the solubility of the protein, an aliquot of soluble fraction was 
recovered after centrifugation of cellular lysate, obtained from an aliquot of induced pelleted 
cells by using lysis buffer (50 mM potassium phosphate buffer pH 7.8, 400 mM NaCl, 100 mM 
KCl, 0.5% Triton X-100, 10% glycerol, 10 mM Imidazole), under native conditions.

For a larger scale experiment, the pelleted cells were resuspended in denaturing lysis buffer (0.1 
M Tris.HCl, 6 M Urea, pH 8.0) and the cellular suspension was maintained under gentle shaking 
for 1 hour at room temperature. Cellular debris were removed by centrifugation at 10.000 g for 
25 min at 4°C in order to obtain the solubilized fraction from the supernatant. Final purification 
of His6-tagged mature SnOLP was performed by high-performance immobilized-metal ion affinity 
chromatography (IMAC) on 10 mL batches of 50% Nickel-nitrilotriacetic-acid (Ni-NTA) resins 
(QiaEXpressionist-QiaGen), under constant shaking for 1 hour. In order to eliminate proteins 
nonspecifically bound to the column, the resin was submitted to the washing solution (0.1 M 
Tris.HCl, 6 M Urea, 20 mM Imidazol, pH 8.0) and afterwards the recombinant protein was eluted 
in two steps by using 10 mL of 0.1 M Tris.HCl, 6 M Urea, 200 mM Imidazol, pH 8.0. The eluted 
fractions were collected and reserved until use.



Protein gel and Western blotting analysis
Protein expression and purification were monitored by sodium dodecyl sulfate-polyacrilamide gel 
electrophoresis (SDS-PAGE) [55]. Typically, an aliquot of 50 μl of soluble and insoluble fractions 

were mixed with loading buffer (1:1) consisting of 250 mM Tris-HCl pH 6.8, 150 mM 
dithiothreitol, 35% (w/v) glycerol, 7% SDS and 0.2% (w/v) bromophenol blue, and boiled for 5 
min. Protein samples were electrophoresed on 12% SDS-PAGE gels and visualized by Comassie 
Blue staining (10% (v/v) methanol, 10% (v/v) acetic acid and 0.0125% (w/v) Comassie G-250). 
The distaining solution was 10% (v/v) methanol and 10% (v/v) acetic acid in water.

For Western blotting, following SDS-PAGE, the protein samples were transferred onto 
nitrocellulose Hybond membranes (Amersham Pharmacia) using a semi-dry blotting cell 
(BioRad). The membranes were blocked and incubated with His6 monoclonal antibody (Clontech), 
according to the instructions of manufacturer (1:5000 dilutions) for 60 min. After washing the 
membranes, the blot was incubated with anti-mouse IgG secondary antibody conjugated to 
alkaline phosphatase (Sigma) (1:5000 dilution) for 60 min. Immunoreactive bands were 
detected colorimetrically by immersing the blot into alkaline phosphatase substrate solution (0.3 
mg/ml nitro blue tetrazolium (NBT) and 0.15 mg/ml 5-bromo-4-chloro-3-inodolyl phosphate 
(BCIP) in 0.1 M Tris pH 9.5, 0.1 M NaCl, 50 mM MgCl2).

Refolding of recombinant SnOLP
Renaturation of solubilized mature His6-SnOLP was performed by dropwise mixing purified SnOLP 
protein under denaturing conditions into refolding buffer (20 mM Tris.HCl pH 7.5, 500 mM NaCl, 
10 mM reduced glutathione, 1 mM oxidized glutathione, and 20% (w/v) glycerol), at 4°C, under 
stirring, in a protein:buffer ratio of 1:10. After repeated dialysis processes, at 4°C, performed 
with deionized water to slowly remove denaturants, the recombinant protein was concentrated 
by lyophilization. Lyophilized recombinant SnOLP was resuspended in water for use in in vitro 
bioassays. Protein concentration was determined spectrophotometrically by the method of the 
Bradford [56], using Bio Rad Protein Assay with Bovine Serum Albumin (BSA) as the standard.

Fungal growth inhibition bioassays
The purified and refolded recombinant SnOLP protein was assayed for its ability to inhibit the in 
vitro mycelial growth of plant pathogenic oomycete and fungi, essentially as described by Abad 
et al. [15]. The pathogens used for the tests were Macrophomina phaseolina (Tassi) Goidanich 
and Fusarium solani (Mart.) f. sp.glycines isolates from Glycine max (soybean), Colletotrichum 
gloesporioides (Penz.) Penz & Sacc. isolate from Stylosanthes guianensis,Colletotrichum gossypii 
South. var.cephalosporioides Costa isolate from Gossypium hirsutum (cotton), and Phytophthora 
nicotiana (Breda de Haan) var.parasitica (Dast.) Waterh isolate from Citrus sp. All fungi were 
cultivated in PDA (potato dextrose agar, Sigma) and the oomycete P. nicotiana var. parasitica 
was grown in CA (carrot agar) from mycelial disc placed at the center of agar plates, for up to 
three days. Then, sterile paper discs were positioned adjacent to the growing colony margin and 
saturated with 10 μL of either BSA 10 μg (Sigma) as a negative control, or Nistatin (Micostatin 

2000 U; generic pharmaceutical) as a positive control, or of recombinant refolded SnOLP protein 
to different doses (1, 2 or 3 μg). The plates were further incubated and daily monitored for up to 

twelve days. Experiments were conducted with three replicates, digitally photographed and the 
area of mycelial growth inhibition was measured (Free software: UTHSCSA Image Tool, Version 
3.00) [57] for each pathogen and for each concentration of SnOLP separately. Statistical 
analyses were performed to compare the average areas of mycelial growth inhibition by using 
ANOVA and Tukey Test at the probability level of 1% (Software: Genes) [58].
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