V Seminário da Inovação Tecnológica no Nordeste

Caderno do Participante

Carta de Apresentação

Senhores Participantes,

Bem-vindos ao INOVA 2009

Esta quinta edição do Seminário da Inovação Tecnológica no Nordeste - Inova 2009 integra a Mobilização Empresarial pela Inovação – MEI, movimento concebido pela Confederação Nacional da Indústria – CNI. O MEI resultou do reconhecimento que a defasagem tecnológica do Brasil depende em grande parte dos empresários que precisam inserir a inovação em sua agenda de prioridades.

No recente 3º Congresso da Inovação da Indústria, a CNI lançou o manifesto "Inovação:

A Construção do Futuro", onde os industriais brasileiros se comprometem em vencer o desafio da inovação. Objetivamente o manifesto estabeleceu uma meta: duplicar o número de empresas inovadoras nos próximos quatro anos. Os números atuais são pequenos diante do potencial da economia do país: 6 mil empresas brasileiras fazem pesquisa e cerca de 30 mil declaram inovar em produtos e processos.

O INOVA 2009 está diretamente alinhado com esse posicionamento estratégico da CNI. Em suas várias vertentes – seminário, exposição de trabalhos técnicos, rodadas de negócios e Troféu Inova – busca estimular o empresariado a conhecer o potencial das entidades que se propõem a apoiar a inovação nas empresas, os casos de sucesso, bem como, a criatividade e a competência de nossos "inovadores".

A programação do Seminário está composta por cinco painéis onde serão debatidos temas relevantes da inovação, como: A Mobilização Empresarial pela Inovação – MEI, Casos de Sucesso de Empresas Inovadoras, Estratégias para Projetos de Inovação, Programas de Financiamento à Inovação e Programas e Instrumentos de Apoio à Inovação para Empresas.

Para as Conferências Magnas das solenidades de abertura e encerramento teremos os executivos de duas empresas reconhecidamente inovadoras, a Siemens no contexto mundial e a Natura, no nacional. São respectivamente o Presidente da Siemens do Brasil, Adilson Primo e o Diretor de P&D da Natura, Daniel Gonzaga.

Esperamos que todos os participantes saiam mais motivados a contribuir para a ampliação do número de empresas inovadoras. Assim o INOVA 2009 terá alcançado seu objetivo.

INSTITUTO DE DESENVOLVIMENTO INDUSTRIAL DO CEARÁ - INDI

Gula Oficial Inova 2009 Volume 10°11 Setembro 2009

Trabalhos Selecionados

20	PLÁSTICOS BIODEGRADÁVEIS REFORÇADOS COM FIBRAS DE COCO IMATURO	MORSYLEIDE DE FREITAS ROSA	EMBRAPA AGROINDÚSTRIA TROPICAL
		LUIZ HENRIQUE C MATTOSO	EMBRAPA INSTRUMENTAÇÃO AGROPECUÁRIA
		MARIA CLÉA B FIGUEIRÊDO	EMBRAPA AGROINDÚSTRIA TROPICAL
		DIEGO M NASCIMENTO AMANDA K MONTEIRO	UNIVERSIDADE FEDERAL DO CEARÁ – UFC
21	POTENCIAL DA ÁGUA DE COCO EM PÓ (ACP) COMO SUPLEMENTO NUTRICIONAL NO DESEMPENHO DE ATLETAS PROFISSIONAIS	CRISTIANE C. DE MELLO SALGUEIRO JOSÉ FERREIRA NUNES JEAN ARAUJO PETICACIS MÔNICA ALINE PARENTE MELO MÁRCIA HELENA NIZA R. SOBRAL RICARDO MÁRCIO C. DE MELLO	ACP BIOTECNOLOGIA
22	PROCESSO E EQUIPAMENTOS DE EVAPORAÇÃO POR DISTRIBUIÇÃO UNIFORME DE TEMPERATURA E CONVECÇÃO FORÇADA, COM RECUPERAÇÃO DE FLUÍDOS VOLÁTEIS POR CONDENSAÇÃO.	CLODENIR PONCIANO LIMA JOSÉ AILTON LEÃO BARBOZA	INDÚSTRIA E COMÉRCIO DE TECNOLOGIA DE DESIDRATAÇÃO LTDA.
23	RELATÓRIO DESCRITIVO DO EFEITO LARVICIDA DO ÁCIDO SULFÔNICO COMO ALTERNATIVA AO COMBATE À DENGUE	NADINE TELES BARRETO	TAPELINE IND. DE EQUIP. ELÉTRICOS LTDA
24	SINALIZADOR DE DEFEITOS PARA ESTRUTURAS DE 72.5KV	ANDRÉ LUIZ C. DE ARAÚJO ANTÔNIO THEMÓTEO VARELA PAULO RÉGIS CARNEIRO DE ARAÚJO	INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ – IFCE
25	SISDEP- SISTEMA DE VISÃO COMPUTACIONAL PARA DETECÇÃO E QUANTIFICAÇÃO DE ENFISEMA PULMONAR EM IMAGENS DE TOMOGRAFIA COMPUTADORIZADA DO TÓRAX	PAULO CÉSAR CORTEZ JOHN HEBERT DA SILVA FELIX MARCELO ALCANTARA HOLANDA AUZUIR RIPARDO DE ALEXANDRIA PEDRO PEDROSA REBOUSAS FILHO TARIQUE DA SILVEIRA CAVALCANTE	UNIVERSIDADE FEDERAL DO CEARÁ - UFC
26	SISTEMA DE DETCÇÃO DE FUGA DC A TERRA EM SUBESTAÇÕES	ANDRÉ LUIZ C. DE ARAÚJO PAULO RÉGIS CARNEIRO DE ARAÚJO REGINALDO LEITÃO	INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ – IFCE
27	SISTEMA DE MONITORAMENTO DE ARRANJOS PRODUTIVOS	DMONTIER PINHEIRO ARAGÃO JUNIOR MARCOS RONALDO ALBERTIN NADJA GLHEUCA DA SILVA M. BRENO BARROS TELLES DO CARMO	UNIVERSIDADE FEDERAL DO CEARÁ - UFC
28	SISTEMAS FLUTUANTES DE BOMBEAMENTO	RICARDO CASTRO ALVES FERNANDO CASTRO ALVES	SK BOMBAS
29	SOFTWARE DE AUTOMAÇÃO INDUSTRIAL WEB 2.0 COM ARQUITETURA SOA	ALEXEI BASTOS MORAIS	RCN CONSULTORIA E SISTEMAS LTDA

20. PLÁSTICOS BIODEGRADÁVEIS REFORCADOS COM FIBRAS DE COCO **IMATURO**

PROBLEMA:

O esgotamento dos recursos naturais, as novas diretrizes ambientais e uma série de considerações econômicas são os principais vetores que impulsionam o interesse crescente por fontes renováveis. Paralelamente, o aumento crescente de residuos das atividades produtivas, incluindo as atividades do agronegócio, tem chamado a atenção não só de cientistas, mas de toda sociedade no sentido de estabelecer novos usos de produtos, subprodutos e resíduos agropecuários em substituição aos recursos fósseis. As cascas geradas pelo agronegócio do coco verde são correntemente designadas aos aterros e vazadouros sendo, como toda matéria orgânica, potenciais emissoras de gases estufa (metano), e, ainda, contribuindo para que a vida útil desses depósitos seja diminuída, proliferando focos de vetores transmissores de doenças, mau cheiro, possíveis contaminação do solo e corpos d'água, além da inevitável destruição da palsagem urbana. As cascas de coco verde são consideradas resíduos agroindustriais importantes, dado o volume produzido e o crescente consumo. Seu aproveitamento como fonte de fibras para a formulação de materiais compósitos ambientalmente corretos oferece oportunidades extremamente promissoras.

SOLUÇÃO PROPOSTA:

A utilização de fibras sintéticas para o reforço de plásticos e polímeros é uma técnica extensivamente empregada na indústria para a obtenção de materiais (compósitos) com melhor desempenho mecânico. Nos últimos anos, atenção especial tem sido voltada à minimização ou reuso de resíduos sólidos e ao estabelecimento de novos usos de produtos e subprodutos agropecuários em substituição aos recursos fósseis. Dentre os componentes da planta, destacam-se os lignocelulósicos que possuem propriedades extremamente promissoras para substituição de vários materiais sintéticos. Produtos naturais blodegradáveis, tais como polímeros vindos da agricultura para confecção de plásticos e fibras vegetais como agentes de reforço, conferem interessantes propriedades a novos materiais compósitos (plásticos reforçados com fibras), como aumento na rigidez, resistência mecânica, melhoria nas propriedades térmicas, dentre outras. Neste contexto. a solução proposta foi desenvolver um bioplástico a partir do amido de trigo, reforçado com fibras de casca de coco imaturo.

DIFERENCIAIS / BENEFÍCIOS:

As fibras de coco verde possuem composição, propriedades e estrutura que as tornam apropriadas para uso como enchimento ou reforço de novos materiais. As vantagens de seu uso estão relacionadas à sua baixa densidade, baixo custo, características renováveis e completa biodegradabilidade. Além disso, fibras naturais conferem dureza e resistência aos materiais, são facilmente recicláveis e, por não serem quebradiças como as fibras de vidro, não se quebram facilmente durante o processamento. Além da ampliação do mercado, pela disponibilização e valorização de novos produtos, o desenvolvimento de usos para a fibra da casca de coco verde reverte o conceito

de residuo para o de matéria-prima, gera uma alternativa que promove a biodegradabilidade dos novos materiais, ofimiza a eficiência do agronegócio coco verde, além de reduzir o impacto ambiental. Fibras de coco representam uma fonte adicional de biomassa renovável com propriedades atraentes. Adicionalmente, apresentam baixo custo, são disponíveis em abundância e ainda permanecem pouco explorada. Sua incorporação em biocompósitos representa uma economia substancial e ainda melhora as propriedades dos mesmos.

POTENCIAL DE MERCADO / PRINCIPAIS CONCORRENTES:

O bioplástico obtido a partir de amido e fibras de coco imaturo poderá ser empregado principalmente na elaboração de embalagens e também na confecção de alguns artefatos onde plásticos sintéticos geralmente são utiliza-

SOBRE A TECNOLOGIA:

A preparação dos compósitos se deu por extrusão da mistura contendo amido (50%; p/p), Poly(ethylene-co-vinyl alcohol) copolymer EVOH (30%; p/p), água (10%, p/p) e glicerol (10%; p/p), como plastificante. O conteúdo das fibras adicionadas foi de 15% do peso total do polímero (amido e EVOH). Tensão na ruptura, módulo elástico e elongação a quebra foram determinados de acordo com ASTM D3039, em Máguina Universal de Testes Instron 5500R. A morfologia foi caracterizada usando microscopia eletrônica de varredura (MEV) e a estabilidade térmica foi investigada por análise termogravimétrica, realizada sob fluxo de nitrogênio (60 mL/min) e taxa de aquecimento de 10°C/ min, sendo a falxa da temperatura empregada de 25°C a 600°C. Plásticos de amido/EVOH reforcados com fibras de coco imaturo apresentam características superiores à blenda amido/EVOH pura.

ESTADO DE DESENVOLVIMENTO

Idéia Laboratório Protótipo Scale-up Mercado

SETOR DE APLICAÇÃO

Indústria Agroindústria Serviços

CONTATO:

EMBRAPA AGROINDÚSTRIA TROPICAL Nome: Morsyleide de Freitas Rosa E-mail: morsy@cnpat.embrapa.br Fone: (85) 3391-7218