Biomassa Microbiana em Solo Manejado com e sem Queima de

Resíduos Orgânicos

NAGIB JORGE MELÉM JÚNIOR¹, OSMAR RODRIGUES BRITO², JÚLIO CEZAR FRANCHINI³, NELSON DA SILVA FONSECA JÚNIOR⁴ & MARCELINO CARNEIRO GUEDES¹

RESUMO - O uso do fogo, embora necessário em algumas atividades, é uma prática condenável, uma vez que causa impactos ambientais negativos. O carbono da biomassa microbiana é um indicador sensível às mudanças determinadas pelo manejo do solo, como o uso do fogo. Para avaliar as alterações ocorridas na biomassa microbiana do solo no decorrer dos cultivos, foram conduzidos dois experimentos: I -Com queima dos resíduos orgânicos, e II - sem queima dos resíduos orgânicos. Os tratamentos foram compostos por quatro doses de resíduos orgânicos (0, 15, 30 e 45 Mg ha⁻¹); dois tipos de adubação (adubação exclusiva com resíduos de poda e adubação com resíduos de poda acrescida da adubação mineral da cultura) e seis épocas de amostragem de solo (floração e colheita de duas safras de milho e uma safra de feijão). Para cada época foi avaliado o conteúdo de carbono da biomassa microbiana do solo da camada de 0-10 cm. Os resultados permitiram concluir que o carbono da biomassa microbiana diminuiu quando se empregou a queima dos resíduos e aumentou com as doses independentemente do tipo de adubação utilizada, nos experimentos com e sem queima de resíduos.

Palavras-Chave: (indicadores da qualidade do solo, adubação orgânica, fogo)

Introdução

O uso do fogo, embora necessário em algumas atividades, é uma prática condenável, uma vez que causa impactos negativos como o aumento da concentração de gases de efeito na atmosfera, redução da atividade biológica e alteração das propriedades físicas, químicas dos solos.

Embora a biomassa microbiana represente pequena parte do carbono orgânico total do solo (COT), o seu conteúdo de carbono (C-bio) é um indicador sensível às mudanças determinadas pelo manejo, uma vez que é influenciado pelas variações na disponibilidade de carbono, nutrientes, umidade, aeração, acidez e textura do solo (Moreira & Siqueira [1]). Jenkinson & Ladd [2] definem a biomassa microbiana como a parte viva da matéria orgânica, que é composta por bactérias, actinomicetos, fungos, protozoários, algas e microfauna, excluindo-se raízes de plantas e animais maiores que 5 x 10³ μm³. Os efeitos do fogo na

biomassa microbiana do solo já foram estudados por muitos autores que de modo geral constataram uma brusca redução, devido a falta temporária de substrato para fornecimento de carbono a microbiota do solo (Moreira & Malavolta [3]; Pomianoski et al. [4]; Galdos [5]).

O objetivo deste trabalho foi avaliar os efeitos de doses, da queima de resíduos orgânicos e dos tipos de adubação no conteúdo de carbono da biomassa microbiana do solo, em áreas cultivadas com a sucessão das culturas do milho e do feijão.

Material e Métodos

Os experimentos com as culturas de milho e de feijão em sucessão, foram instalados nas safras agrícolas de 2006/2007 e 2007/2008 na Fazenda Escola da Universidade Estadual de Londrina – (Londrina/PR - 23° 19' S; 51°11' W) em área de Nitossolo Vermelho eutroférrico latossólico (Gonçalves [6]).

Para avaliar as alterações ocorridas no conteúdo de carbono da biomassa microbiana do solo (C-bio) no decorrer cultivos, foram conduzidos dois experimentos: I – Com queima dos resíduos orgânicos, e II - sem queima dos resíduos orgânicos. Em cada experimento o delineamento experimental adotado foi de blocos inteiramente casualizados no esquema de parcelas subsubdivididas, com três repetições. As parcelas foram constituídas por quatro doses (0, 15, 30 e 45 Mg ha⁻¹) de resíduos orgânicos; as subparcelas foram constituídas por dois tipos de adubação (adubação exclusiva com resíduos de poda, denominada de adubação orgânica exclusiva (AOE) e adubação com resíduos de poda acrescida da adubação mineral da cultura, denominada de adubação organomineral (AOM)); as subsubparcelas constituídas por seis épocas de amostragem de solo, correspondendo aos períodos de floração e colheita das culturas (FM/07: floração do milho/2007; CM/07: colheita do milho/2007; FF/07: floração do feijoeiro/07; CF/07: colheita do feijoeiro/07; FM/08: floração do milho/2008 e CM/08: colheita do milho/2008).

A adubação mineral empregada na semeadura do milho nas duas safras correspondeu à aplicação de 160, 26 e 33 kg ha⁻¹ de N, P e K, respectivamente, enquanto para o feijoeiro foi de 80, 22 e 25 kg ha⁻¹ de N, P e K, respectivamente.

O resíduo orgânico empregado foi obtido da trituração de folhas e ramos resultantes da poda de árvores da cidade de Londrina, e apresentava as características químicas

Pesquisador da EMBRAPA AMAPÁ, Rodovia Juscelino Kubitschek, km 5, N°2600 CEP 68903-419 Caixa Postal 10 - Macapá, AP - Brasil - 68906-970l. E-mail:nagib@cpafap.embrapa.br, mcguedes@cpafap.embrapa.br

² Professor do Departamento de Agronomia da Universidade Estadual de Londrina. UEL. Londrina, PR. Brasil. E-mail: osmar@uel.br

³ Pesquisador da EMBRAPA SOJA, Londrina, PR. Brasil. E-mail: franchin@cnpso.embrapa.br

⁴ Pesquisador do Instituto Agronômico do Paraná - IAPAR. Londrina, PR. Brasil. E-mail: nsfjr@iapar.br

indicadas na Tabela 1.

Em outubro de 2006, realizou-se a única aplicação dos resíduos distribuindo-os superficialmente nas parcelas experimentais (4,0 x 3,0 m) nas doses previamente estabelecidas. No Experimento I, em que se empregou o manejo com fogo, os resíduos foram queimados logo após a sua distribuição nas parcelas. Neste caso, antes de atear fogo e para facilitar a queima, os resíduos foram aspergidos com álcool combustível não aditivado, na dose de 3,0 litros por parcela. Cinco dias após a distribuição e queima dos resíduos, procedeu-se a semeadura manual da cultura do milho (cultivar IPR 114). Ao final do ciclo, foram realizados a colheita manual das espigas e o dobramento dos colmos à altura aproximada de 1,5 m, que assim permaneceram na área. Em março de 2007, cada parcela foi dividida em duas partes iguais para instalação das culturas de feijoeiro, semeando-se manualmente as cultivares IPR Colibri e IPR Eldorado. Após a colheita do feijoeiro os colmos de milho foram arrancados, triturados e o resíduo obtido foi espalhado superficialmente na área de cada parcela experimental, antes de implantar a nova cultura de milho, que foi semeada em outubro/2007 e cultivada do mesmo modo da primeira safra.

Em cada época, a amostragem foi realizada coletando-se a terra da camada superficial de 0-10 cm, que em seguida foi passada em peneira de 4 mm de abertura e conservada na temperatura de 4,0°C para análise do carbono da biomassa microbiana do solo (C-bio) mediante emprego da metodologia da fumigação-extração modificada de Vance et al. [7]. Os dados obtidos foram submetidos a análises de variância, comparando-se as médias pelo teste de Tukey a 5% ou ajustados a equações de regressão, mediante emprego do programa SISVAR 5.0 (Ferreira [8]).

Resultados

Experimento I: Com a queima dos resíduos

As diferenças observadas entre os tipos de adubação (AOE e AOM), em relação aos valores do Cbio, variaram com as doses de resíduo e épocas de amostragem, mas não indicaram uma tendência definida. Entre de as épocas amostragem (subsubparcelas) as variações do C-bio foram mais evidentes indicando mudanças da atividade biológica do solo com o passar do tempo. Para a dose zero de resíduo, nas subparcelas com adubação mineral, o aumento médio do C-bio entre a primeira e última amostragem foi de 199% enquanto nas subparcelas sem adubação mineral (SA) o aumento foi de 58%, mas não foi significativo (Tabela 2).

Nas parcelas correspondentes às doses de 15 e 30 Mg ha⁻¹ as subparcelas que receberam adubação mineral (AOM) (Tabela 2), apresentaram os maiores valores de C-bio na floração do feijoeiro (FF/07). Estes valores corresponderam a aumentos de 180% e de

293% respectivamente, em relação à primeira amostragem (FM/07). Entretanto para a dose de 45 Mg ha: 1, os maiores valores de C-bio foram observados na colheita do feijoeiro (Tabela 2) e representaram aumentos de 34,8% em relação à primeira avaliação.

Nas subparcelas com adubação orgânica exclusiva (AOE) os maiores valores para o C-bio também foram observados na época de floração do feijoeiro com aumentos de 68% e 158% para a dose de 15 Mg ha⁻¹ 30 Mg ha⁻¹, respectivamente. Para a dose de 45 Mg ha⁻¹ o maior valor de C-bio foi observado na colheita do feijoeiro e representou um aumento de 128% em relação à primeira avaliação. Foram ainda observadas nas supparcelas com AOE reduções do C-bio ao longo do período experimental. Os menores valores obtidos na última amostragem (CM/08), corresponderam a reduções de 60% e 51 % respectivamente, para as doses de resíduo de 15 e 30 Mg ha⁻¹, em relação aos valores da primeira época de amostragem (FM/07).

Os resultados obtidos neste estudo estão de acordo com diversos autores que verificaram que a utilização do fogo causa prejuízos principalmente à microbiota da camada superficial do solo (Cerri et al. [9]; Pfenning et al. [10]). Estes autores observaram que o desmatamento e a queima da vegetação natural diminuem respectivamente em 66% e 87% o conteúdo do carbono da biomassa microbiana do solo, na região amazônica. Em outra pesquisa, Moreira & Malavolta [3], observaram redução do C-bio de 708 mg kg⁻¹ na floresta primária para 473 mg kg⁻¹ em áreas de cultivos com fruteiras, 3 anos após a derrubada e queima dos resíduos. O fogo de maneira geral, como observado neste trabalho, inibe a biomassa microbiana do solo, pois segundo Skjemstad et al. [11] a queima dos resíduos, além de reduzir imediatamente as fontes de carbono, reduz também a atividade biológica e a formação de matéria orgânica no solo. As menores variações do C-bio, observadas nas subparcelas com adubação organomineral (AOM), permitem inferir que este tipo de adubação fornece as quantidades de nutrientes suficientes para o desenvolvimento das culturas e microfauna do solo.

De forma resumida pode-se afirmar que independentemente do tipo de adubação ocorreram aumentos para o carbono da biomassa, microbiana e em função das doses de resíduos orgânicos, principalmente nas amostragens realizadas nas épocas de floração das culturas. Reduções para estas variáveis ocorreram somente nas épocas de colheita do milho. (Tabela 4).

Experimento II: Sem a queima dos resíduos

A variação do conteúdo de carbono da biomassa microbiana em função do tipo de adubação (AOE ou AOM) não apresentou efeito claramente definido, provavelmente devido às variações climáticas ocorridas durante a fase experimental.

Entre as épocas de amostragem as variações do C-bio indicaram uma tendência geral de crescimento da atividade microbiológica do solo ao longo do período experimental, somente no tratamento controle (0 Mg ha⁻¹ de resíduo) com adubação mineral (AM). Neste caso, os

maiores valores de C-bio foram observados nas épocas de colheita do milho e do feijão (CM/07, CF/07 e CM/O8), com aumentos de 123%, 186% e 199%, respectivamente, em relação aos teores obtidos na primeira época de amostragem (FM/07). Nas parcelas sem adubação (SA), não foram observados efeitos significativos (Tabela 3). Com a dose de 15 Mg ha⁻¹ de resíduos (Tabela 3), para as subparcelas com adubação organomineral (AOM) os maiores valores de C-bio foram observados na colheita do milho e floração do feijoeiro em 2007 (CM/07 e FF/07), com aumentos de 90% e 58%, em relação aos teores obtidos na primeira época de amostragem (FM/07). Enquanto que nas subparcelas que receberam adubação exclusiva (AOE) os maiores valores foram obtidos na época da floração do feijoeiro (FF/07) que diferiu das demais avaliações e o aumento foi de 137 % em relação à primeira época de amostragem (FM/07).

Para a dose de 30 Mg ha⁻¹, foram observados os maiores valores de C-bio na floração das culturas, independentemente do tipo de adubação. Nas subparcelas com adubação organomineral (AOM) os aumentos observados em relação à primeira época de amostragem (FM/07) corresponderam a 142% e 99% na floração das culturas de milho e do feijão, respectivamente. O mesmo efeito foi observado para a dose de 45 Mg ha⁻¹ (Tabela 3), mas somente na época de floração da cultura de feijão e correspondeu a um aumento de 89%.

Nas subparcelas com adubação orgânica exclusiva (AOE) e para a dose de 30 Mg ha⁻¹, os aumentos do C-bio, foram de 107% e 132% respectivamente para épocas de floração das culturas do milho e do feijão. Nesta mesma situação foi observado aumento de 59% com a dose de 45 Mg ha⁻¹ somente na floração da cultura do feijão.

A ocorrência dos aumentos na época de floração das culturas pode ser justificada por uma maior liberação de substâncias orgânicas radiculares que favorecem o crescimento e a atividade da microbiota do solo. Resultados semelhantes a estes já foram obtidos por pesquisadores como Tu et al. [12] e Cattelan & Vidor [13] que verificaram que a maior disponibilidade de nutrientes no independentemente da fonte ser orgânica ou mineral, contribui para o crescimento da microbiota do solo. Na Tabela 4 são apresentadas as equações de ajuste para as variações da C-bio em função das doses de resíduo para cada época de amostragem e tipo de adubação. observar que tanto para adubação organomineral (AOM) como para adubação orgânica exclusiva (AOE) na maioria dos casos houve efeitos significativos das doses de resíduos e que os aumentos observados se ajustaram a modelos quadráticos, indicando funções de crescimento com pontos de máximos, variáveis com os tratamentos considerados.

Conclusões

O carbono da biomassa microbiana diminuiu com a seqüência de cultivos quando se empregou a queima dos resíduos:

O carbono da biomassa microbiana aumentou com as doses de resíduo, independentemente do tipo de adubação utilizada. O emprego do fogo como técnica de manejo, promoveu reduções na biomassa microbiana do solo.

Referências

- [1] MOREIRA, F. M. S. & SIQUEIRA, J. O. 2006. Microbiologia e bioquímica do solo. 2ed. Lavras: UFLA 729p.
- [2] JENKINSON, D. S. & LADD, 1981. J. N. Microbial biomass in soil: measurement and turnover. In: PAUL, E. A.; LADD, J. N., (Eds). *Soil Biochemistry*, New York: Marcel Dekker, p.415-471.
- [3] MOREIRA, A. & MALAVOLTA, E. 2004. Dinâmica da matéria orgânica e da biomassa microbiana em solo submetido a diferentes sistemas de manejo na Amazônia Ocidental. Pesquisa Agropecuária Brasileira, 39:1103-1110.
- [4] POMIANOSKI, D. J. W.; DEDECEK, R.A. & VILCAHUAMAN L. J. M. 2006. Efeito do fogo nas características químicas e biológicas do solo no sistema agroflorestal da bracatinga. *Boletim de Pesquisa Florestal*, 52:93-118,
- [5] GALDOS, M.V. 2007. Dinâmica do carbono do solo no agroecossistema cana-de-açúcar. Tese de Doutorado em Agronomia, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP.
- [6] GONÇALVES, M.A. 2007. Mapeamento de solos e diagnóstico de alterações físicas e morfológicas em área da fazenda escola – UEL. Trabalho de Conclusão de Curso, Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, PR.
- [7] VANCE, E.D.; BROOKES, P.C. & JENKINSON, D.S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19:703-707.
- [8] FERREIRA, D. F. 2000. Análises estatísticas por meio do Sisvar para Windows versão 4.0. In: Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria, 45, São Carlos. Anais. São Carlos: UFSCAR, p.255-258.
- [9] CERRI, C.C.; VOLKOFF, B. & EDUARDO, B.P. 1985. Efeito do desmatamento sobre a biomassa microbiana em Latossolo Amarelo da Amazônia. Revista Brasileira de Ciência do Solo, 0-1.4
- [10] PFENNING, L.; EDUARDO, B. P. & CERRI, C. C. 1992. Os métodos de fumigação-incubação e fumigação-extração na estimativa da biomassa microbiana em solos da Amazônia. Revista Brasileira de Ciência do Solo, 16:31-37.
- [11] SKJEMSTAD, J.O.; TAYLOR, J.A. & SMERNIK, R. J. 1999. Estimation of charcoal (char) in soils. Communications in Soil Science and Plant Analysis, 30:2283-2298.
- [12] TU, C.; RISTAINO, J. B. & HU, S. 2006. Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching. *Soil Biology & Biochemistry*, 38:247-255.
- [13] CATTELAN, A. J. & VIDOR, C. 1990. Flutuações na biomassa, atividade e população microbiana do solo em função de variações ambientais. Revista Brasileira de Ciência do Solo, 14:133-142.

Tabela 1. Teores totais de macronutrientes, relação C:N, composição da parede celular e matéria seca (MS) do resíduo de poda utilizado no experimento

N	P	K	Ca	Mg	С	C:N	Lignina	Celulose	Hemicelulose	MS		
	g kg ⁻¹											
8,1	0,98	3,8	6,9	1,2	420,0	52:1	40,2	52,9	6,0	91,0		

Tabela 2 Carbono da biomassa microbiana do solo (C-bio) para cada dose de resíduos, em função do tipo de adubação e épocas de amostragem, após queima dos resíduos

	Épocas de amostragem										
Tipo de adubação	FM/07	CM/07	FF/07	CF/07	FM/08	CM/08					
			C-bio (m	g kg ⁻¹)							
	0 Mg ha ⁻¹ de resíduos orgânicos										
AM	174,20 b C	388,70 a AB	261,77 b BC	499,33 a A	450,83 a A	520,70 a A					
SA	297,17 a AB	440,37 a A	442,97 a A	354,07 b AB	261,60 bB	471,63 a A					
	15 Mg ha ⁻¹ de resíduos orgânicos										
AOM	310,80 bBC	317,60 a BC	870,03 a A	424,26 a B	347,03 a B	161,60 a C					
AOE	472,70 a B	386,73 a B	792,83 a A	324,53 a BC	414,47 a B	187,80 a C					
	30 Mg ha ⁻¹ de resíduos orgânicos										
AOM	290,73 a C	404,60 a C	1141,57 a A	445,20 a C	898,23 a B	381,50 a C					
AOE	313,50 a AB	394,43 a B	937,93 b A	444,13 a B	891,73 a A	177,43 b C					
45 Mg ha ⁻¹ de resíduos orgânicos											
AOM	334,80 a AB	373,50 a AB	306,47 a AB	451,53 b A	269,20 a B	372,63 a AB					
AOE	290,67 a B	230,87 bB	280,07 a B	663,53 a A	267,10 a B	209,97 bB					

Para cada dose, médias seguidas da mesma letra minúscula nas colunas e maiúscula nas linhas não diferem entre si pelo teste Tukey a 5%. FM e CM = Floração e Colheita do milho. FF e CF= Floração e Colheita do feijoeiro. 07 e 08= Anos 2007 e 2008. AM = adubação mineral; SA = sem adubação; AOM = adubação orgânica+ adubação mineral; AOE = adubação orgânica exclusiva; (CV₁= 18,44%; CV₂= 17,70%; CV₃= 17,59%; DMS entre adubação = 121,10 mg kg⁻¹; DMS entre épocas de amostragem = 177,69 mg kg⁻¹)

Tabela 3 Carbono da biomassa microbiana do solo (C-bio), para cada dose de resíduos, em função do tipo de adubação e épocas de amostragem, sem queima dos resíduos

	Épocas de amostragem											
Tipo de adubação	FM/07		CM/07		FF/07	7	CF/07		FM/08		CM/08	
					C	C-bio (mg kg ⁻¹)					•	
0 Mg ha ⁻¹ de resíduos orgânicos												
AM	174,20	aC	388,70	a ABC	261,77	b BC	499,33	a A	450,83	a AB	520,70	a A
SA	297,17	a A	440,37	a A	442,97	а А	354,07	b A	261,60	b A	471,63	a A
15 Mg ha ⁻¹ de resíduos orgânicos												
AOM	480,13	a CD	912,20	a A	760,60	aAB	638,87	a BC	449,40	a CD	265,57	b D
AOE	326,53	bВ	328,70	b B	775,27	a A	405,60	bВ	533,43	аВ	411,63	а В
30 Mg ha ⁻¹ de resíduos orgânicos												
AOM	420,57	а В	435,73	а В	839,27	b A	334,53	bВ	1016,23	а А	333,07	а В
AOE	423,50	a BC	240,07	b C	984,70	a A	544,17	аВ	872,53	a A	388,40	a BC
45 Mg ha ⁻¹ de resíduos orgânicos												
AOM	420,70	bВ	298,00	a BC	794,87	b A	429,20	а В	310,17	a BC	176,03	3 b C
AOE	630,13	a B	326,20	a C	1004,47	a A	339,37	a C	214,67	a C	349,23	3 a C

Para cada dose, médias seguidas da mesma letra minúscula nas colunas e maiúscula nas linhas não diferem entre si pelo teste Tukey a 5%. FM e CM = Floração e Colheita do milho. FF e CF= Floração e Colheita do feijoeiro. 07 e 08= Anos 2007 e 2008. AM = adubação mineral; SA = sem adubação; AOM = adubação orgânica+ adubação mineral; AOE = adubação orgânica; (CV₁= 9,61%; $CV_2 = 16,60\%$; $CV_3 = 19,32\%$; DMS entre adubação = 150,21 mg kg⁻¹; DMS entre épocas de amostragem = 220,39 mg kg⁻¹

Tabela 4 Equações de regressão para o conteúdo do carbono da biomassa microbiana (C-bio) para cada tipo de

Épocas	Equações	r^2	Equações	r ²	
Epocas	Com a queima de resíduos		Sem a queima de resíduos		
		AOM		-	
FM/07	n.s.		$\hat{y} = 195,460 + 19,823x - 0,339x^2$	0,84	
CM/07	n.s.		$\hat{y} = 455,635 + 28,071x - 0,735x^2$	0,60	
FF/07	$\hat{y} = 223,33 + 74,849x - 1,6033x^2$	0,95	$\hat{y} = 439,63 + 28,253x - 0,3473x^2$	0,99	
CF/07	n.s.		n.s.		
FM/08	$\hat{y} = 359,070 + 26,304x - 0,583x^2$	0,29	$\hat{y} = 358,775 + 36,197x - 0,783x^2$	0,42	
CM/08	$\hat{y} = 480,311 - 19,007x + 0,389x^2$	0,50	$\hat{y} = 468,817 - 6,443x$	0,73	
		AOE			
FM/07	n.s.		$\hat{y} = 254,950 + 7,306x$	0,88	
CM/07	$\hat{y} = 456,220 - 4,138x$	0,77	n.s.		
FF/07	$\hat{y} = 413,1 + 48,072x - 1,1188x^2$	0,94	$\hat{y} = 276,62 + 38,348x - 0,6036x^2$	0,98	
CF/07	$\hat{y} = 289,366 + 6,986x$	0,78	$\hat{y} = 332,546 + 13,446x - 0,285x^2$	0,65	
FM/08	$\hat{y} = 190,317 + 42,164x - 0,864x^2$	0,62	$\hat{y} = 208,390 + 47,807x - 1,033x^2$	0,79	
CM/08	$\hat{y} = 460,105 - 21,121x + 0,352x^2$	0,96	n.s.		

FM e CM = Floração e Colheita do milho. FF e CF= Floração e Colheita do feijoeiro. 07 e 08= Anos 2007 e 2008. AOM = adubação orgânica+ adubação mineral; AOE = adubação orgânica exclusiva