ADAPTABILIDADE E ESTABILIDADE DE HÍBRIDOS DE MILHO NO NORDESTE BRASILEIRO NO ANO AGRÍCOLA DE 2008

<u>Ivênio Rubens de Oliveira</u>¹, Hélio Wilson Lemos de Carvalho¹, Milton José Cardoso², Cleso Antônio Patto Pacheco³, Leonardo Melo Pereira Rocha³, José Nildo Tabosa⁴, Marcelo Abdon Lira⁵ e Alba Freitas Menezes⁶

Resumo

O objetivo deste trabalho foi avaliar a adaptabilidade e a estabilidade de híbridos de milho quando submetidos a 15 ambientes do nordeste brasileiro, na safra 2008, para fins de recomendação. Utilizouse o delineamento experimental em blocos ao acaso, com duas repetições e os parâmetros de adaptabilidade e estabilidade foram estimados conforme CRUZ *et al.*, (1989). Os híbridos P 30 F 35, ASR 152, DKB 390, DAS 8460, P 30 P 70 e P 3041 justificam suas recomendações para os ambientes favoráveis. Os híbridos que expressam adaptabilidade ampla, a exemplo dos 2 B 710, AG 7088, DKB 390, DKB 177, 2 B 688, dentre outros, têm larga importância nos diferentes sistemas de produção regionais.

Introdução

A diversidade de ambientes para cultivo do milho no Nordeste brasileiro leva a mudanças no comportamento de genótipos de milho em diferentes áreas produtoras, as quais se localizam em ambientes de cerrados, agreste, sertão e tabuleiros costeiros, esperando-se, portanto, ausência de comportamento consistente de genótipos nessas diferentes condições ambientais. A seleção de genótipos com maior estabilidade fenotípica é uma das estratégias para amenizar o efeito da interação genótipos versus ambientes (RAMALHO *et al.*, 1993).

Métodos estatísticos têm sido propostos para avaliar a estabilidade e a adaptabilidade de cultivar, contornando, em parte, os inconvenientes da interação genótipo versus ambientes (EBERHART; RUSSELL, 1966), (LIN; BINNS, 1988) e (CRUZ *et al.*, 1989).

O objetivo deste trabalho foi avaliar a adaptabilidade e a estabilidade de híbridos de milho quando submetidos a diferentes condições ambientais do nordeste brasileiro, para fins de recomendação.

Material e Métodos

Foram utilizados dados de produtividade de grãos obtidos em ensaios de avaliação de híbridos de milho realizados no Nordeste brasileiro, na safra 2007/2008, nos estados do Maranhão (cinco ambientes), Piauí (quatro ambientes), Pernambuco (um ambiente), Sergipe (quatro ambientes e Bahia (um ambiente). Utilizou-se o delineamento experimental em blocos ao acaso, com duas repetições dos quarenta e dois híbridos. As parcelas foram formadas por quatro fileiras de 5,0m de comprimento, espaçadas de 0,80m e com 0,20m entre covas, dentro das fileiras. Manteve-se uma planta por cova após o desbaste. As adubações realizadas nesses ensaios obedeceram aos resultados das análises de solo de cada área experimental.

Depois das análises de variância individual, foi verificada a homogeneidade das variâncias residuais pelo teste de F máximo, que considera as variâncias residuais homogêneas quando a relação entre os quadrados médios residuais não ultrapassa a sete. Constatada a homogeneidade das variâncias residuais, procedeu-se à análise de variância conjunta considerando-se os efeitos de blocos e

^{1.}Pesquisador da Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mail: ivenio@cpatc.embrapa.br; helio@cpatc.embrapa.br

^{2.}Pesquisador da Embrapa Meio-Norte, Av. Duque de Caxias, 5650, Buenos Aires, Teresina, PI, CEP: 64006-220, E-mail: milton@cpamn.embrapa.br

^{3.}Pesquisador da Embrapa Milho e Sorgo, Rod. MG 424, Km 45, Sete Lagoas, MG, CEP: 35701-970, E-mail: cleso@cnpms.embrapa.br, leonardo@cnpms.embrapa.br

^{4.}Pesquisador do IPA, Caixa Postal 1022, Recife-PE, e-mail: tabosa@ipa.br

 $^{5.} Pesquisador\ da\ EMPARN,\ Av.\ Jaguarari,\ 2192,\ Lagoa\ Nova\ ,\ Natal,\ RN,\ CEP:\ 59062-500.\ E-mail:\ marcelo-emparn@rn.gov.br$

^{6.}Estagiária Embrapa Tabuleiros Costeiros/UFS, Av. Beira Mar, 3250, Jardins, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mail: albitafm@hotmail.com

ambientes aleatórios e, fixo o efeito de híbridos e foi processada conforme VENCOVSKY, BARRIGA (1992). Os parâmetros de adaptabilidade e estabilidade foram estimados utilizando-se o método proposto por CRUZ *et al.*, (1989).

Resultados e Discussão

As análises de variâncias individuais em relação ao peso de grãos revelaram que os efeitos de híbridos apresentaram variâncias significativas, evidenciando variações genéticas entre eles. Os coeficientes de variação obtidos nessas análises individuais conferiram boa precisão aos ensaios Scapim *et al.*, (1995). Uma vez verificada a homogeneidade das variâncias residuais realizou-se a análise de variância conjunta dos experimentos. Pelo teste F foi possível verificar efeito significativo de híbridos e de ambientes e também da interação híbridos versus ambientes. O coeficiente de variação para essa análise também proporcionou boa confiabilidade aos dados. A significância da interação híbridos versus ambientes evidencia que os híbridos apresentaram respostas diferenciadas, quando submetidos a ambientes distintos.

Os parâmetros de adaptabilidade e estabilidade constam na Tabela 1, verificando-se que os rendimentos médios de grãos (b₀) oscilaram de 6.912kg/ha a 9.351kg/ha, destacando-se com melhor adaptação os híbridos com rendimentos médios de grãos acima da média geral (b₀>média geral), destacando-se, entre eles, o híbrido AG 7088.

Considerando os 19 híbridos que evidenciaram melhor adaptação (b₀>média geral), 3 apresentaram estimativas de b₁ significativamente diferentes da unidade e 16 mostraram estimativas de b₁ não significativas (b₁=1), o que evidencia comportamento diferenciado desses híbridos em ambientes desfavoráveis (Tabela 1). Os híbridos P 30 F 35, DKB 390, DAS 8480, P 30 P 70 e P 3041 responderam à melhoria ambiental (b₁+b₂>1). Grande parte dos híbridos avaliados mostrou os desvios da regressão estatisticamente diferentes de zero, evidenciando baixa estabilidade nos ambientes considerados. Entretanto, estimativas de R² iguais ou superiores a 80%, não comprometem os graus de previsibilidade de quaisquer materiais.

Observando-se os resultados apresentados (Tabela 1) infere-se que os híbridos P 30 F 35 e ASR 152 por serem exigentes nas condições desfavoráveis (b₁>1) e mostrarem boa adaptação (b₀>média geral) devem ser recomendados para os ambientes favoráveis. Também, os híbridos DKB 390, DAS 8480, P 30 P 70 e P 3041, por responderem à melhoria ambiental (b₁+b₂>1) e mostrarem boa adaptação, devem também ser recomendados para essas condições de ambiente. O híbrido 2 C 520 por ser pouco exigente nas condições desfavoráveis (b₁<1) e apresentar boa adaptação justifica sua recomendação para os ambientes desfavoráveis. Ressalta-se que os híbridos AG 7088, 2 B 710, P 30 F 35 e DKB 390, DKB 177, 2 B 688 e DAS 8480, por mostrarem altos rendimentos nos ambientes desfavoráveis, devem ser também sugeridos para essas condições de ambiente. Os híbridos que expressaram adaptabilidade ampla (b₀>média e b₁=1) têm importância expressiva para a agricultura regional.

Conclusões

Os híbridos P 30 F 35, ASR 152, DKB 390, DAS 8460, P 30 P 70 e P 3041 justificam suas recomendações para os ambientes favoráveis.

Os híbridos que expressam adaptabilidade ampla, a exemplo dos 2 B 710, AG 7088, DKB 390, DKB 177, 2 B 688, dentre outros, têm larga importância nos diferentes sistemas de produção regionais.

Referências

CRUZ, C. D.; TORRES, R. A. de.; VENCOVSKY,R. An alternative approach to the stability analisis by Silva and Barreto. *Revista Brasileira de Genética*, v. 12, p.567 a 580, 1989.

EBERHART, S. A.; RUSSELL, W. A. Stability parameters for comparing varieties . *Crop Science, Madison*, v. 6, n.1, p. 36-40, 1966.

LIN, C. S.; BINNS, M. R. A superiority measure of cultivar performance for cultivar x location data. *Canadian Journal of Plant Science*, Ottawa, v. 68, n. 1, p. 193-198, 1988.

RAMALHO, M A. P.; SANTOS, J. B. dos.; ZIMMERMANN, M. J de O. *Genética quantitativa em plantas autógamas*: aplicação no melhoramento do feijoeiro. Goiânia, Editora UFG, 1993. cap. 6, p.131-169. (Publicação, 120).

SCAPIM, C. A.; CARVALHO, C. G. P. de; CRUZ, C. D. Uma proposta de classificação dos coeficientes de variação para a cultura do milho. *Pesquisa Agropecuária Brasileira*, Brasília, v. 30, n. 5, p. 683-686, 1995.

VENCOVSKY. R.; BARRIGA, P. *Genética biométrica no fitomelhoramento*. Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.

Tabela 1. Estimativas dos parâmetros de adaptabilidade e estabilidade de 42 híbridos de milho em 15 ambientes da Região Nordeste do Brasil, no ano agrícola de 2008.

Híbridos	Medias de grãos (kg/ha)							
	Geral	Desfavorável	Favorável	$\mathbf{b_1}$	$\mathbf{b_2}$	b_1+b_2	s^2_d	$R^2(\%)$
AG 7088	9351 a	8118	10760	1,21ns	-0,23ns	0,98ns	1189095*	83
P 30 F 35	8940 b	7376	10728	1,57**	0,27ns	1,84**	2159592**	84
2 B 710	8870 b	8177	9662	0,87ns	0,09ns	0,96ns	1598134**	68
2 C 520	8775 b	8242	9384	0,63**	0,00ns	0,63ns	1761538**	49
DKB 390	8763 b	7479	10232	1,15ns	0,51ns	1,66*	1288449*	84
DKB 177	8756 b	7898	9738	0,91ns	-0,27ns	0,64ns	629411ns	84
2 B 688	8730 b	7596	10027	1,17ns	0,08ns	1,25ns	1463941**	81
DAS 8480	8506 b	7694	9433	0,95ns	0,69*	1,64*	2680552**	66
ASR 152	8361 c	6926	10001	1,42**	-0,09ns	1,33ns	1273013*	87
AG 8088	8352 c	6989	9911	1,21ns	0,10ns	1,31ns	1188184*	85
P 30 P 70	8343 с	7406	9414	1,09ns	0,78**	1,87*	2158056**	76
AG 7000	8098 c	7020	9331	1,04ns	0,37ns	1,40ns	1202815*	81
2 B 587	8040 c	7039	9184	0,84ns	-0,35ns	0,48ns	890710ns	75
AGN 30 A	8035 c	6928	9302	1,08ns	-0,63*	0,44*	1802444**	70
AG 8060	8024 c	7043	9146	0,99ns	0,28ns	1,27ns	1395048**	77
P 3041	8015 c	6908	9280	1,17ns	0,67*	1,83*	711962ns	91
DKB 455	7979 c	6956	9148	0,94ns	-0,14ns	0,80ns	798541ns	82
AGN 31 A	7979 c	6985	9115	0,94ns	-0,18ns	0,76ns	1337246*	73
P 30 K 73	7860 d	6590	9313	1,19ns	-0,14ns	1,05ns	706538ns	89
AG 5020	7851 d	6844	9002	0,99ns	-0,52ns	0,47ns	615471ns	86
P 30 F 87	7783 d	6569	9172	1,16ns	0,26ns	1,42ns	845082ns	88
P 30 F 44	7701 d	6534	9034	1,07ns	-0,87**	0,20**	1062264ns	80
AS 1635	7675 d	6849	8620	0,90ns	-0,03ns	0,88ns	1149601*	75
AGN 20 A	7643 d	6646	8782	0,93ns	-0,27ns	0,66ns	784850ns	81
P 30 F 98	7596 d	6168	9229	1,31*	-0,14ns	1,17ns	971042ns	88
DKB 350	7592 d	6719	8591	0,89ns	-0,36ns	0,52ns	613658ns	83
AGN 2012	7557 d	6807	8415	0,75*	-0,25ns	0,49ns	784392ns	73
DKB 499	7534 d	6802	8370	0,83ns	-0,08ns	0,75ns	1422622**	67
P 30 S 40	7509 d	6533	8625	1,05ns	1,29ns	2,34**	1348162*	86
P 30 F 80	7498 d	6481	8662	0,94ns	0,26ns	1,20ns	1040938ns	80
DKB 330	7483 d	6143	9013	1,19ns	-0,42ns	0,78ns	2004194**	73
AS 1567	7467 d	6282	8822	1,06ns	-0,15ns	0,91ns	847944ns	85
AGN 4210	7348 e	6550	8260	0,78ns	0,13ns	0,91ns	656622ns	81
AGN 3150	7346 e	6283	8562	1,05ns	0,03ns	1,07ns	462913ns	91
AGN 35 A	7210 e	6227	8334	0,88ns	-0,19ns	0,69ns	1088927ns	74
2 C 599	7155 e	6013	8461	0,94ns	-0,22ns	0,73ns	1294997*	73
AGN 25 A	7134 e	6339	8043	0,82ns	0,33ns	1,15ns	1242152*	73
AG 9010	7112 e	6270	8045	0,83ns	-0,39ns	0,44ns	900334ns	74
AS 3466	7055 e	6147	8094	0,90ns	-0,20ns	0,70ns	357835ns	90
AG 2060	7024 e	6100	8080	0,89ns	0,42ns	1,31ns	914226ns	82
AG 6040	7004 e	6207	7914	0,78ns	-0,48ns	0,30ns	517185ns	81
AG 6020	6912 e	6177	7753	0,70*	0,08ns	0,78ns	1448853**	60

^{*}e** significativamente diferente da unidade, para b_1 e b_1+b_2 , e de zero, para b_2 . Significativamente diferentes de zero, pelo teste F, para s_d^2 . As médias seguidas pela mesma letra não diferem entre si pelo teste de Scott-Nott, a 5% de probabilidade.