INFLUÊNCIA DA ADUBAÇÃO N, P, K, NA CONCENTRAÇÃO FOLIAR DA LARANJEIRA-PÊRA EM LATOSSOLO AMARELO DO NORDESTE PARAENSE

<u>C. A. C. Veloso¹</u>; T.E. Rodrigues¹; E. J. M. Carvalho¹; J.R.N.F. Gama¹; L.S.Freitas².

¹ Eng. Agrôn. Dr. Embrapa Amazônia Oriental, Caixa Postal 48, CEP 66.095-100. Belém, PA, e-mail: veloso@cpatu.embrapa.br; Eng. Agrôn. M.Sc. Estudante de Pós-Graduação da FCAP, Caixa Postal 917, CEP 66077-530. Belém, PA.

No Estado do Pará, a produção de citros concentra-se, principalmente, na microrregião do Guamá, onde os Municípios de Capitão Poço, Garrafão do Norte, Irituia e Ourém constituem o chamado pólo citrícola, que juntos contribuíram com aproximadamente 68% do total produzido no ano em questão. Neste Estado, as lavouras caracterizam-se pelo pouco uso de insumos (adubos, corretivos, defensivos, mudas de boa qualidade, tratamentos fitossanitários) e adoção de práticas culturais inadequadas (Veloso et al. 1999).

A definição de doses adequadas de fertilizantes e corretivos deve ser fundamentada no conhecimento das exigências das culturas e, primordialmente, na identificação da capacidade dos solos em fornecer esses nutrientes às plantas.

A absorção de elementos minerais pelos citros se dá durante o ano todo, sendo mais intensa no florescimento, que é quando estão sendo formados ramos e folhas novas, isto é, março/abril e julho/setembro no hemisfério sul (Kampfer & Uexkull, 1966). As baixas temperaturas afetam negativamente a absorção de nutrientes do solo, sendo menos acentuada nos casos do nitrogênio e do cálcio e mais pronunciado nos do potássio e do magnésio (Reitz & Stiles, 1968). Malavolta & Violante Netto (1989) verificaram que a composição mineral da parte vegetativa da laranjeira segue a seguinte ordem decrescente: Ca > N > K > Mg > S > P.

Assim sendo, estudos envolvendo aspectos relacionados com a nutrição, adubação e calagem podem contribuir para o aumento da produtividade e sustentabilidade dos pomares, pois proporcionam aumento de rendimentos, reduzem o emprego de defensivos agrícolas e amenizam as agressões ao meio ambiente.

O objetivo deste trabalho foi estudar o efeito das aplicações de N, P e K nos teores foliares da laranjeira-pêra, em Latossolo Amarelo da mesorregião do nordeste paraense.

O experimento foi conduzido na área da fazenda da Citropar - Cítricos do Pará S.A., situada na mesorregião do nordeste paraense, no Município de Capitão Poço, no período compreendido entre fevereiro de 1999 e dezembro de 2003, em solo classificado como Latossolo Amarelo distrófico, textura franco-arenosa, cuja amostragem, antes da instalação do experimento, foi efetuada na camada de 0-20 cm de profundidade, e que apresentou os seguintes resultados: pH (H₂O) = 4,9; M.O.= 16,9 g/kg; P= 1,3 mg dm⁻³; e os cátions trocáveis, em mmol_c dm⁻³, K = 1,5; Ca²⁺ =5,0; Mg²⁺=2,0; Al³⁺ =19,0; H + Al= 54,0.

Utilizou-se o delineamento em blocos ao acaso, com os tratamentos dispostos num esquema fatorial fracionado do tipo (4x4x4) 1/2, correspondendo a quatro doses de nitrogênio, quatro doses de fósforo e quatro doses de potássio. Cada parcela foi composta de seis plantas da variedade "Pêra" (*Citrus sinensis L. Osbeck*) sobre limão "Cravo" (*Citrus limonia L. Osbeck*), espaçadas 6,8 m entre fileiras e 4,3 m entre plantas. Os tratamentos no primeiro ano corresponderam a quatro doses de nitrogênio (75; 150; 225 e 300 g/planta de N) na forma de uréia, quatro doses de fósforo (70; 110; 150 e 190 g/planta de P₂O₅) na forma de superfosfato simples e quatro doses de potássio (75; 150; 225 e 300 g/planta de K₂O) na forma de cloreto de potássio. A partir do segundo ano agrícola, quando as plantas completaram 3 anos de idade, elevaram-se as doses de N, para (100; 200; 300 e 400 g/planta de N), as doses de fósforo para (80; 130; 180 e 230 g/planta de P₂O₅) e as doses de potássio para (100; 200; 300 e 400 g/planta de K₂O). A adubação fosfatada foi realizada anualmente de uma única vez. As adubações nitrogenada e potássica foram aplicadas parceladamente de três vezes, em intervalos de 45 dias, em cobertura.

A amostragem de folhas foi efetuada no início de março de 2003, ocasião em que as plantas apresentaram frutos com 2 a 4 cm de diâmetro. A coleta de amostra consistiu em coletar quatro folhas recém-maduras por planta, sendo uma em cada quadrante, do terço médio da copa da laranjeira, retirando-se a 3 ou 4 folha a partir do fruto.

As análises químicas de macro e micronutrientes foram realizadas segundo metodologia descrita por Malavolta et al. (1989), as amostras do material colhido foram digeridas em ácido nítrico e perclórico concentrados, e, em seguida, os extratos foram utilizados para a determinação dos teores totais dos seguintes nutrientes: P, por colorimetria de molibdato-vanadato; K, por fotometria de chama; Ca e Mg, por espectrofotometria de absorção atômica. A determinação do N foi feita utilizando-se a digestão sulfúrica de 200 mg de matéria seca, com destilação em aparelho microkjeldahl e titulação com H₂SO₄ 0,01 N. Cu, Fe, Mn e Zn por espectrofotometria de absorção atômica.

Os dados obtidos foram submetidos à análise estatística utilizando-se o programa estatístico SAS (Statistical Analysis System). Efetuou-se análise de correlação e regressão para a produção de frutos/planta, produção de frutos, teor de suco, acidez total titulável, sólidos solúveis totais, relação sólidos solúveis totais/acidez total e espessura da casca em função das doses de N, P₂O₅ e K₂O.

Com relação aos teores de nitrogênio, fósforo e potássio encontrados no tecido foliar, a laranjeira "Pera" (Tabela 1), revelaram que a adubação nitrogenada foi adequada, para as

doses 3 e 4, encontrando-se dentro da faixa ótima de nutrição da laranjeira "Pera", ou seja, 23 a 27 g kg⁻¹ de N indicada pelo Grupo Paulista de Adubação e Calagem (1994).

Tabela 1. Influência das doses de nitrogênio, fósforo e potássio sobre os teores foliares de N, P, K, Ca, Mg, Cu, Fe, Mn e Zn em laranjeira "pera".

Tratamentos	N	P	K	Ca	Mg	Cu	Fe	Mn	Zn
	g/kg				mg/kg				
N1	19,3	1,3	15,2	14,9	2,8	8,0	99	26	18
N2	21,6	1,3	15,6	19,8	2,5	9,5	98	29	28
N3	23,4	1,4	15,9	20,2	2,6	13,1	86	32	24
N4	24,5	1,3	14,8	22,4	2,7	15,8	85	28	22
P1	20,6	1,4	15,8	22,6	2,4	11,8	106	28	22
P2	21,4	1,4	15,2	23,4	2,6	10,9	102	27	20
Р3	21,8	1,5	14,6	24,2	2,6	8,9	110	29	21
P4	22,6	1,8	14,2	26,2	2,7	9,2	105	28	18
K1	21,5	1,4	10,8	28,4	2,7	9,3	103	34	19
K2	21,8	1,4	17,6	26,6	2,8	8,4	110	35	21
К3	20,9	1,5	18,4	25,8	2,8	11,5	112	28	23
K4	21,8	1,3	19,2	24,6	2,9	10,8	120	38	21
CV (%)	12	14	18	40	25	36	12	32	19

A aplicação de doses crescentes de N correspondeu ao maior teor na matéria seca do tecido foliar, os tratamentos em que foram utilizadas as doses 1 e 2 mostraram teores foliares baixos, como consequência de baixo suprimento no solo, revelado pela matéria orgânica 16,9 g/kg.

Os teores de fósforo e de potássio se mantiveram dentro de uma concentração estreita, porém dentro da faixa ótima considerada pelo Grupo Paulista de Adubação e Calagem (1994). Com a aplicação de doses crescentes de fósforo e de potássio no solo, houve aumento na concentração destes nutrientes no tecido foliar, isto também foi comprovado por Magalhães (1987) e Dechen et al. (1981). Para os demais nutrientes, verificaram algumas modificações, como, para o Ca, os teores encontrados são considerados baixo, enquanto os teores de Mg na faixa de suficiência adequada segundo o Grupo Paulista de Adubação e Calagem (1994). O balanceamento entre K, Ca e Mg é de fundamental importância na nutrição de plantas e, para

citros, é um caso especial, em razão da absorção preferencial de Ca, diferente do que ocorre em outras espécies.

Com relação à influência dos fertilizantes N, P e K, encontrados nos teores dos micronutrientes, na Tabela 1, verifica-se que os teores de Cu e Fe estão dentro da faixa de suficiência adequada, enquanto os teores de Mn e Zn estão abaixo da faixa de suficiência, de acordo com o Grupo Paulista de Adubação e Calagem (1994), talvez tenha influência das doses de adubos fosfatados utilizados. Segundo Smith (1969), aplicações elevadas de P podem ocasionar deficiência de Fe, Zn e Cu.

Os teores de N, P e K nas folhas aumentam com aplicação dos fertilizantes nitrogenados, fosfatados e potássicos. Enquanto os teores de Ca no tecido foliar, diminuem com o aumento das doses de potássio.

Literatura Citada

DECHEN, A.R.; RODRIGUEZ, O. HIROCE, R.; RAIJ, B. van; TEÓFILO SOBRINHO, J. Efeito de 27 anos de adubação de laranjeira baianinha com NPK, nos teores de K, Ca e Mg no solo e nas folhas e na produção de frutos. In: CONGRESSO BRASILEIRO DE FRUTICULTURA, 6, Recife, 1981. **Anais**. Recife, Sociedade Brasileira de fruticultura, 1981. P. 607 – 617.

GRUPO PAULISTA DE ADUBAÇÃO E CALAGEM PARA CITROS. Recomendações de adubação e calagem para citros no Estado de São Paulo, **Laranja**, 1994. 27p.(edição especial).

KAMPFER, M.; UEXKULL, H.R. von. **Nuevos conocimientos sobre la fertilizacion de los citricos.** 3. ed. Hanover: Verlag Gesselschaft fur Ackerbau, 1966. 104p.

MAGALHÃES, A.F. de J. Influência da adubação na composição mineral do solo, nas folhas e produção da laranja 'Pêra'. **Revista Brasileira de Fruticultura**, Cruz das Almas (BA). v.9, n.3, p.31-37, 1987.

MALAVOLTA, E.; VIOLANTE NETTO, A. Nutrição mineral, calagem, gessagem e adubação dos citros. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato, 1989. p.153.

MALAVOLTA, E.; VITTI, G.C.; OLIVEIRA, S.A. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: POTAFOS. 201p. 1989.

REITZ, H.J.; STILES, W.C. Fertilization of high producing orchards. In: DINAUER, R.C., ed. Changing patterns of fertilizer use. Madison, **Soil Science Society of America**, 1968. p.353-78.

SMITH, P.F. Effects of nitrogen rates on tining of application on Marsh grapefruit in Flórida. In: INTERNATIONAL CITRUS SYMPOSIUM, 3., Califórnia, 1969. **Proceedings.** Universidade Califórnia, 1969. p.1559.

VELOSO, C.A.C.; BRASIL, E. C.; MENDES, F.A.T.; SILVA, A.de.B.; TRINDADE, D.R. **Diagnóstico da citricultura na microrregião do Guamá, PA**. Belém: Embrapa Amazônia Oriental, 1999. 26p. (Documentos, 24).