Natal / RN 02 a 05 de agosto

02 a 05 de agosto

2009

Secagem de Conídios de *Trichoderma harzianum* LCB47 por Atomização: Efeito da Temperatura de Entrada e de Saída do Ar

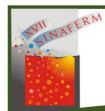
Virna Luiza de Farias^{1,2}, Tatiane Cavalcante Maciel^{1,3}, Fabiano André Narciso Fernandes², Gustavo Adolfo Saavedra Pinto¹.

¹Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2270, Pici, CEP: 60511-110 Fortaleza, CE, Brasil – e-mail: gustavo@cnpat.embrapa.br

²Universidade Federal do Ceará - Departamento de Engenharia Química

³Universidade Federal do Ceará - Departamento de Tecnologia de Alimentos

RESUMO


O controle biológico consiste no emprego de um organismo que ataca outro que esteja causando danos econômicos às lavouras. A espécie Trichoderma harzianum é uma das mais utilizadas no controle biológico de fungos fitopatogênicos. A desidratação dos esporos permite sua preservação por um longo período de tempo, e um dos métodos utilizados para a secagem é a atomização. Este trabalho teve como objetivo avaliar o efeito da temperatura de entrada e de saída do ar no nível de sobrevivência de conídios de T. harzianum LCB47, e na umidade do material em pó obtido da secagem em "spray dryer". A temperatura de saída de 55°C foi a melhor para a obtenção de alto nível de sobrevivência dos esporos de Trichoderma harzianum LCB47.

Palavras-chave: Controle biológico, "spray dryer", maltodextrina

INTRODUÇÃO

O controle biológico consiste no emprego de um organismo (predador, parasita ou patógeno) que ataca outro que esteja causando danos econômicos às lavouras (PLANETA, 2007). Fungos do gênero *Trichoderma* são reconhecidos como agentes de controle biológico por serem antagonistas a vários fungos fitopatogênicos, podendo exercer o controle indiretamente, por meio de indução de resistência e de tolerância ao estresse às plantas ou, diretamente, competindo por espaço e nutrientes, produzindo substâncias antimicrobianas, inativando as enzimas do patógeno e mediante o micoparasitismo, sendo a ação das enzimas hidrolíticas sobre os fitopatógenos considerado o principal mecanismo envolvendo o processo desse antagonista (SILVA; MELLO, 2007). *T. harzianum* vem sendo aceito como um dos agentes de biocontrole mais potentes contra doenças de plantas, e vem sendo usado com um antagonista contra vários fungos fitopatogênicos do solo nos últimos anos (TSENG *et al.*, 2008).

Para o controle biológico, é importante guardar a unidade ativa em um estágio infeccioso, contudo dormente, seguro e fácil para aplicação. A chave para prolongar sua sobrevivência é

Natal / RN 02 a 05 de gaosto

02 a 05 de agosto

2009

parar a germinação e reduzir o metabolismo ao máximo, o que é possível através da desidratação (HORACZEK; VIERNSTEIN, 2004). O benefício da secagem de conídios é a redução da sua atividade metabólica, o que minimiza a perda das reservas de armazenamento e a produção de metabólitos tóxicos (GUIJARRO *et al*, 2006).

A secagem por atomização ou "spray drying" tem sido reportada como eficiente para secagem de conídios, uma vez que diminui a perda durante o processo de secagem e melhora a estabilidade do fungo durante seu armazenamento (GAVA, 2006). A atomização é a técnica mais comum e barata para a produção de produtos microencapsulados (GHARSALLAOUI *et al.*, 2007), sendo a maltodextrina um dos encapsulantes mais freqüentemente utilizados nesse processo (COLLARES, 2001).

O objetivo deste trabalho foi avaliar o efeito da temperatura de entrada e de saída do ar no nível de sobrevivência de conídios de *Trichoderma harzianum* LCB47, e na umidade do material em pó obtido da secagem em "spray dryer".

MATERIAL E MÉTODOS

<u>Microrganismo</u>: Foi utilizada uma linhagem de *Trichoderma harzianum* LCB47, transferido do Laboratório de Controle Biológico da Embrapa Semi-Árido, Petrolina/PE.

<u>Produção de inóculo</u>: Utilizou-se erlenmeyers de 125 mL contendo meio de cultura, constituído de 4,6 g de farelo de trigo e 6 mL de solução de peptona 5,6%, previamente autoclavado a 121°C/15min. O inoculo foi removido do meio através de extração com 50 mL de solução 0,3% (v/v) de Tween 80.

Produção dos esporos em maior escala: Utilizou-se meio farelo de trigo, constituído de farelo e água na proporção de 1:2, que segundo Cavalcante *et al.* (2008) é adequado para a produção de esporos de fungo do gênero *Trichoderma*. 40g do meio farelo de trigo foram pesados em erlenmeyers de 500 mL, autoclavados a 121°C/15 min e após resfriados, foram inoculados. Os meios inoculados foram incubados em estufa biológica a 30°C por 120 a 168 horas.

Obtenção e preparo da suspensão de esporos: A partir do meio farelo de trigo foram realizadas duas extrações sucessivas com 50mL de água destilada estéril, para cada erlenmeyer, obtendo-se então a suspensão de esporos. Às suspensões recuperadas, adicionouse maltodextrina dextrose equivalente 10 (DE 10) em quantidade correspondente a 4 vezes o teor de sólidos solúveis totais da suspensão, que foi utilizada como agente encapsulante, e em seguida, a solução foi homogeneizada em homogeneizador de tecidos Ação Científica, modelo AC 620/2, até completa dissolução da maltodextrina.

Condições de secagem no spray dryer: A secagem da suspensão foi conduzida em Mini Spray Dryer Büchi B-290, com fluxo de secagem concorrente, capacidade máxima de secagem de 1,0 L de água por hora e bico atomizador de duplo fluido de 0,7 mm de diâmetro (BÜCHI, 2005). A temperatura de entrada foi fixada manualmente, enquanto a temperatura de saída do produto foi ajustada através da vazão de alimentação da suspensão e da velocidade de aspiração.

<u>Sólidos solúveis totais</u>: Determinados na suspensão recém-extraída do meio farelo de trigo em refratômetro digital Atago, modelo PR-101.

XVII SIMPÓSIO NACIONAL DE BIOPROCESSOS Natal / RN 02 a 05 de gaosto

02 a 05 de agosto

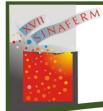
2009

<u>Viabilidade</u>: Determinada pela quantidade de esporos germinados e não germinados em placas de Petri contendo meio ágar água (WA) com suspensão comercial concentrada de thiabendazole (485 g.L⁻¹) fornecido por Novartis Biociências S.A (Tecto SC), após 24 horas de incubação a 21°C no escuro. 0,1 mL da suspensão foram semeadas nas placas, e após o tempo de incubação, aproximadamente 1mL de solução lacto-glicérica de azul de anilina foram adicionadas e espalhadas delicadamente por toda a superfície das placas. Foram considerados germinados, os esporos com hifas iguais ou maiores que seu tamanho (HORACZEK e VIERNSTEIN, 2004).

<u>Nível de sobrevivência</u>: Expresso como o quociente dos conídios germinados antes (N_0) e após (N_1) o processo de secagem. Nível de sobrevivência = (N_1/N_0) x 100 (HORACZEK e VIERNSTEIN, 2004).

<u>Umidade</u>: Determinado no pó obtido da secagem, segundo metodologia 012/IV (IAL, 2004).

Fixou-se a temperatura de entrada e variou-se a de saída para avaliação do efeito isolado da temperatura de saída, tanto na viabilidade dos esporos quanto no teor de umidade no pó obtido (Tabela 1).


Tabela 1 - Condições de secagem dos experimentos para avaliação do efeito da temperatura de saída do ar no nível de sobrevivência dos esporos e na umidade do pó.

Temperatura (°C)		Vazão de alimentação	Aspiração (%)	Vazão de ar
Entrada	Saída	da suspensão (%)	Aspii açao (70)	comprimido (L.h ⁻¹)
120	55	40	100	742
120	60	25	100	742
120	65	20	100	742

Para avaliação do efeito isolado da temperatura de entrada na viabilidade dos esporos e no teor de umidade do material seco resultante, fixou-se a temperatura de saída do ar e variou-se a temperatura de entrada (Tabela 2).

Tabela 2 - Condições de secagem dos experimentos para avaliação do efeito da temperatura de entrada do ar no nível de sobrevivência dos esporos e na umidade do pó.

Temperatura (°C)		Vazão de alimentação da	Aspiração (%)	Vazão de ar
Entrada	Saída	suspensão (%)	Aspiração (70)	comprimido (L.h ⁻¹)
100	55	20	100	742
110	55	27	100	742
120	55	40	100	742
140	55	55	100	742
160	55	60	95	742

XVII SIMPÓSIO NACIONAL DE BIOPROCESSOS Natal / RN 02 a 05 de gaosto

02 a 05 de agosto

2009

RESULTADOS E DISCUSSÃO

Farias *et al.*, (2008), observaram que experimentos utilizando-se diferentes temperaturas de entrada e mesma temperatura de saída (140/70°C e 170/70°C) originaram pós com umidade semelhante e mesmo nível de sobrevivência dos esporos, sugerindo uma relação entre a temperatura de saída do produto com o nível de sobrevivência dos esporos. Desta forma, foram conduzidos experimentos com a temperatura de entrada do ar fixa em 120°C, variandose as temperaturas de saída (Tabela 3), a fim de avaliar o efeito da temperatura de saída na umidade do produto final e no nível de sobrevivência dos esporos.

Tabela 3 - Nível de sobrevivência dos esporos e umidade do pó resultante dos experimentos para avaliação do efeito da temperatura de saída do ar.

Temperatura (°C)		Viabilidade (%)		Umidade	Nível de
Entrada	Saída	Antes*	Depois*	(%)*	sobrevivência(%)
120	55	28,2	26,2	7,70	93
120	60	33,0	19,7	6,82	60
120	65	42,6	18,1	6,62	42

^{*} Média dos experimentos conduzidos em triplicata

Tanto a umidade dos produtos da secagem quanto a viabilidade dos esporos apresentaram uma relação inversa com a temperatura de saída. Este fato está de acordo com Horaczek e Viernstein (2004), que em seu trabalho também relataram que a temperatura de saída foi fundamental para a obtenção de esporos viáveis de *Beauveria brongniartii* e *Metarhizium anisopliae*.

O melhor resultado com relação ao nível de sobrevivência foi o do teste conduzido com temperatura de saída do ar de 55°C, a qual foi escolhida para os experimentos seguintes.

Para a avaliação do efeito da temperatura de entrada na umidade do pó obtido após a secagem e no nível de sobrevivência dos esporos, realizaram-se experimentos variando-se a temperatura de entrada do ar de secagem e mantendo a temperatura de saída do ar fixa em 55°C, para todos os testes (Tabela 4).

Tabela 4 - Nível de sobrevivência dos esporos e umidade do pó resultante dos experimentos para avaliação do efeito da temperatura de entrada do ar.

Temperatura (°C)		Viabilidade (%)		Umidade	Nível de
Entrada	Saída	Antes*	Depois*	(%)*	sobrevivência(%)
100	55	29,4	23,2	7,18	79
110	55	59,7	48,0	7,42	80
120	55	28,2	26,2	7,70	93
140	55	22,8	21,8	9,04	96
160	55	52,0	33,1	11,31	64

^{*} Média dos experimentos conduzidos em triplicata

Natal / RN 02 a 05 de gaosto

02 a 05 de agosto

2009

Com a elevação da temperatura de entrada do ar de 100 a 160°C, observou-se aumento do teor de umidade dos pós resultantes. A vazão de alimentação da suspensão foi um parâmetro determinante na umidade do pó. Isso ocorreu devido à necessidade de se aumentar a vazão, com a elevação da temperatura de entrada, para a manutenção da temperatura de saída em 55°C. Büchi (2007) explica que quanto maior a alimentação de solução, maior é a energia necessária para evaporar a água das gotas transformando-as em partículas..

Do experimento com temperatura de entrada de 100 até o de 140°C, observou-se relação direta entre a umidade do material final da secagem e o nível de sobrevivência dos esporos, enquanto no de 160°C, apesar da umidade elevada do pó, o nível de sobrevivência foi menor. Provavelmente, para essa temperatura de entrada, a quantidade de encapsulante adicionada não foi suficiente para proteger os esporos do ar quente durante a secagem.

CONCLUSÕES

O aumento da diferença entre a temperatura de entrada e a de saída implicou aumento da umidade do material em pó obtido após a secagem. A temperatura de saída de 55°C foi a melhor para a obtenção de alto nível de sobrevivência dos esporos de *Trichoderma harzianum* LCB47. A condição de secagem que resultou em maior nível de sobrevivência dos esporos foi a 140/55°C de temperatura de entrada e de saída, respectivamente.

REFERÊNCIAS BIBLIOGRÁFICAS

Büchi. (2005), Manuel d'instructions atomisateur de séchage B-290.

Büchi Labortechnik Ag. Training papers - Spray drying. Disponível em: http://www.buchi.com/Spray-Drying.69.0.html?&no_cache=1&file=308&uid=2283. Acesso em: 15. jan. 2007.

Cavalcante, R. S.; Lima, H. L. S.; Pinto, G. A. S.; Gava, C. A. T. e Rodrigues, S. (2008), Effect of moisture on *Trichoderma* conidia production on corn and wheat bran by solid state fermentation. *Food Bioprocess Technology*, v.1, p.100–104.

Collares, F. P. (2001), Desprendimento de filmes de pastas alimentícias durante a secagem sobre superfícies de sólidos e sua relação com a transição vítrea. *Tese de doutorado*, Universidade Estadual de Campinas, Campinas, Brasil.

Farias, V. L.; Maciel, T. C.; Fernandes, F. A. N. e Pinto, G. A. S. (2008), Avaliação do efeito da temperatura na secagem por "spray dryer" de conídios de *Trichoderma harzianum*. Anais do XX Congresso Brasileiro de Fruticultura.

Gava, C. A. T. (2006), Projeto de pesquisa: Desenvolvimento de formulações de biofungidades com alta estabilidade para o manejo integrado de doenças de fruteiras tropicais. Petrolina-PE.

Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A. e Saurel, R. (2007), Applications of spray-drying in microencapsulation of food ingredients: An overview. *Food Research International*, v.40, p. 1107–1121.

Guijarro, B.; Larena, I.; Melgarejo, P. e De Cal, A. (2006), Effect of drying on conidial viability of *Penicillium frequentans*, a biological control agent against peach Brown rot disease caused by *Monilinia* spp. *Biocontrol Science and Technology*, v.16, p.257-269.

XVII SIMPÓSIO NACIONAL DE BIOPROCESSOS Natal / RN

02 a 05 de agosto

Horaczek, A. e Viernstein, H. (2004), Comparison of three commonly used drying technologies with respect to activity and longevity of aerial conidia of Beauveria brongniartii and Metarhizium anisopliae, Biological Control, v.31, p.65-71.

Instituto Adolfo Lutz. Normas Analíticas: Métodos físico-químicos para análise de alimentos. IAL: São Paulo, 2004. 4. ed. 1004 p.

Planeta Orgânico. Controle biológico. Disponível em: http://www.planetaorganico.com.br/controle.htm>. Acesso em: 30. jan. 2007.

Silva, J. B. T. e Mello, S. C. M. (2007), Utilização de Trichoderma no controle de fungos fitopatogênicos. Documentos: Embrapa Recursos Genéticos e Biotecnologia. Brasília-DF.

Tseng, S. C.; Liu, S. Y.; Yang, H. H.; Lo, C. T. e Peng, K. C. (2008), Proteomic study of biocontrol mechanisms of Trichoderma harzianum ETS 323 in response to Rhizoctonia solani. Journal of Agricultural and Food Chemistry, v.56, p.6914-6922.