MULTIRRESÍDUO DE ORGANOCLORADOS EM PESCADO EMPREGANDO EXTRAÇÃO QUECHERS

LUCIANA C.S. RIBEIRO¹; VERA L.FERRACINI ²; SÔNIA C.N QUEIROZ ³;

MARIA A. ROSA ⁴; JÚLIO F.QUEIROZ ⁵.

N° 0902009

RESUMO

Os compostos organoclorados causam grande impacto na natureza devido a três características básicas: persistência ambiental, bioacumulação e alta toxicidade. Foi otimizado e validado um método multirresíduo para analisar 12 pesticidas organoclorados em tilápia: hexaclorobenzeno, lindano, DDE, DDT, clorpirifós, endosulfan sulfato, endosulfan beta, endosulfan alfa, heptacloro, aldrin, endrin and dieldrin, mediante cromatografia a gás equipado com detector de captura de elétrons (CG-µECD). O limite de detecção para todos os compostos foi de 0,0005 µg.mL-1. O limite de quantificação do método foi estabelecido em 0,005 µg.g-1. Os ensaios preliminares de recuperação utilizando fortificação no limite de quantificação do método resultaram em valores de recuperação que variaram entre 70 a 120 %.

ABSTRACT

Organochlorine compounds cause impact on the nature, as a consequence of three basic characteristics: environmental persistence, bioaccumulation, and high toxicity.

It was optimized and validated a method multiresidue to analyse 12 pesticides organochlorine in fish (tilápia): hexachlorobenzeno, lindano, DDE, DDT, chloropyrifos, endosulfan sulfate, endosulfan beta , endosulfan alpha, heptachlor, aldrin, endrin and dieldrin, by gas chromatography, electron capture detector (CG-µECD). The limit detection for all the compounds was 0,0005µg/mL. The limit quantification of the method was established in 0,005µg/g. The preliminary tests using fortification in the limit quantification resulted in recuperation value between 70 to 120%.

- 1. Bolsista PIBIC /CNPq: Graduação em Ciências Biológicas, UNIARARAS, Araras -SP,
- Orientadora: Pesquisadora, Laboratório de Resíduos e Contaminantes Jaguariúna SP
- 3. Orientadora: Pesquisadora, Laboratório de Resíduos e Contaminantse Jaguariúna SP
- 4. Colaboradora: Analista, Laboratório de Resíduos e Contaminantes Jaguariúna SP
- 5. Colaborador: Pesquisador, Laboratório de Ecossistemas Aquáticos Jagurariúna -SP

INTRODUÇÃO

Os organoclorados são compostos de carbono de cadeia acíclica contendo cloro, podendo conter um anel aromático. Devido a sua ação cancerígena inúmeros de seus compostos foram banidos e outros tiveram suas estruturas modificadas.

Em diversos países, a fabricação destes compostos foi proibida na década dos anos 70, sendo retirados do mercado dos EUA, o DDT em 1972, o Dieldrin em 1974, o BHC (Hexaclobenzeno) em 1978, o Aldrin em 1987. (Bowler, R.M., Cone, J.E., 2001).

Muitos compostos organoclorados, oriundos tanto de fontes agrícolas como industriais, apresentam alta resistência à degradação química e biológica e alta solubilidade em lipídios. A combinação entre a baixa solubilidade em água e a alta capacidade de adsorção na matéria orgânica leva ao acúmulo desses compostos ao longo da cadeia alimentar, especialmente nos tecidos ricos em gorduras de organismos vivos (TORRES, 1998).

O equilíbrio ecológico pode sofrer alterações pelo uso inadequado de pesticidas organoclorados, com o desaparecimento, principalmente, da fauna de invertebrados aquáticos, de peixes, e algumas espécies de aves (ALMEIDA, 1974).

Entre os pesticidas organoclorados mais estudados destacam-se: DDT, DDE, lindano, aldrin, dieldrin, endrin, hexaclorobenzeno, heptacloro, clorpirifós e endosulfan.

Precisamos acumular sistematicamente maiores e melhores informações sobre o destino dos pesticidas após sua aplicação, o que viria facilitar uma tomada de posição efetiva frente ao problema, com vistas a minimizá-lo.

OBJETIVOS

Otimizar e validar um método multirresíduo simples, rápido, eficiente e de baixo custo, método QuEChERS, para a determinação de 12 pesticidas organoclorados em tilápia:hexaclorobenzeno, lindan, DDE, DDT, clorpirifós, endosulfan sulfato, endosulfan beta, endosulfan alfa, heptacloro, aldrin, endrin e dieldrin (ANASTASSIADES et al., 2003).

METODOLOGIA

SOLVENTE

O solvente utilizado foi acetonitrila, grau resíduo (99,5%).

EQUIPAMENTO

Cromatografo gasoso - AGILENT - 6890 Series com detector µ-ECD.

MÉTODO ANALÍTICO

A amostra de tilápia congelada foi processada utilizando um cutter de mesa (robot coupe) por 1 minuto. Pesou - se 10 g de amostra em tubo de centrifuga de 50 mL e para cada amostra foram adicionados 10 mL de acetonitrila e agitação por 30 segundos. Adicionou-se 4,0g de MgSO₄, 1,0g de NaCl, 1,0g de Na₃citrato dihidratado e 0,5g de Na₂Hcitrato sesquihidratado sempre sob agitação de 1 minuto após a adição de cada reagente. Após a sonificação por 20 minutos no ultrassom, as amostras foram centrifugadas por 5 minutos com temperatura controlada a 10°C e rotação de 3000 rpm. Em seguida uma alíquota de 7 mL do sobrenadante foi transferida para o tubo concentrador de 10mL, deixando sob refrigeração por 2 horas. Após esse tempo uma alíquota de 5mL foi transferida para outro tubo de centrifuga de 50 mL contendo 125mg de PSA e 750mg de MgSO₄. Agitou-se vigorosamente por 30 segundos no agitador Vortex e repetiu-se o processo de centrifugação por 5 minutos. Uma alíquota de 2 mL do sobrenadante foi filtrada em papel de filtro de 0,45μm diretamente para o vial e injetou- se no cromatógrafo a gás equipado com detector de captura de elétrons (CG-μECD).

Para a validação do método foram utilizadas amostras testemunha e fortificadas com os padrões dos pesticidas. As fortificações das amostras foram feitas aplicando uma certa quantidade do pesticida, com auxílio de uma micropipeta calibrada, espalhando sobre a amostra. Amostras não fortificadas foram analisadas como testemunhas.

RESULTADOS E DISCUSSÃO

O limite de detecção encontrado para todos os pesticidas foi de 0,0005 µg.mL-1. O limite de quantificação do método foi estabelecido em 0,005 µg.g-1. Os ensaios preliminares de recuperação (exatidão) utilizando fortificação no limite de quantificação do método resultaram em valores que variaram entre 70 e 120 %.

A precisão do método foi verificada com repetibilidade no mesmo dia (intra-dia) pelo mesmo analista e em três dias diferentes (inter-dias) com dois níveis de fortificação em triplicata.

	Média triplicada (% recuperação - LOQ 1x)			
PADRÕES	1º dia	2º dia	3º dia	Média final
Hexaclorobenzeno	90,38	75,80	75,04	80,41
Lindano	88,63	74,90	80,95	81,49
Heptacloro	86,16	78,52	82,90	82,53
clorpirifós	98,99	76,17	85,13	86,76
Aldrin	90,71	79,92	75,82	82,15
Endosulfan alfa	89,38	75,92	86,63	83,98
DDE	98,76	76,79	75,37	83,64
Dieldrin	93,23	74,31	87,17	84,91
Endrin	110,91	86,59	97,55	98,35
Endosulfan beta	88,88	75,04	87,01	83,64
DDT	82,73	85,55	95,95	88,08
Endosulfan sulfato	121,26	99,22	105,46	108,65
	Média triplicada (% re	ecuperação -		
	LOQ 2x)			
PADRÕES	1º dia	2º dia	3º dia	Média final
Hexaclorobenzeno	87,30	85,18	85,46	85,98
Lindano	86,88	94,40	112,47	97,92
Heptacloro	92,23	108,99	109,56	103,59
clorpirifós	83,93	92,56	104,90	93,80
Aldrin	95,58	100,93	99,43	98,65
Endosulfan alfa	88,63	103,17	99,19	97,00
DDE	102,43	101,91	92,60	98,98
Dieldrin	96,02	99,57	100,80	98,80
Endrin	112,18	126,17	123,83	120,73
Endosulfan beta	92,93	95,95	98,71	95,86
DDT	90,78	119,20	119,71	109,90
Endosulfan sulfato	118,87	102,39	111,88	111,04

CONCLUSÕES

A extração foi realizada utilizando-se o método QuEChERS modificado que mostrou por meio dos parâmetros de validação, ser simples, rápido e eficiente na extração dos 12 pesticidas organoclorados. A recuperação encontra-se na faixa aceitável de 70 a 120%.

AGRADECIMENTOS

Agradeço ao PIBIC / CNPq pela bolsa e a Embrapa Meio Ambiente pela oportunidade

BIBLIOGRAFIA

ALMEIDA,W.F. Acúmulo de inseticidas no homem e sua significação epidemiológica. Biológico. São Paulo, 40p, 1974.

ANASTASSIADES, M.; LEHOTAY, S.; STAJNBAHER, D.; SCHENCK, F. J. Journal of the Association of Official Analytical Chemists International, v. 83, p.412-431, 2003.

BOWLER, R. M, and Cone ,J.E. "Segredos em Medicina do Trabalho". E.U.A, RTMED, 2001.

TORRES, J.P.M. Ocorrência de micropoluentes orgânicos (organoclorados e hidrocarbonetos policíclicos aromáticos) em sedimentos fluviais e solos tropicais. Tese de Doutorado, Rio de Janeiro: Universidade Federal do Rio de Janeiro,1998.