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ABSTRACT 
 
Expected progeny differences (EPD) of Nellore cattle estimated by random regression model (RRM) and 
multiple trait model (MTM) were compared. Genetic evaluation data included 3,819,895 records of up 
nine sequential weights of 963,227 animals measured at ages ranging from one day (birth weight) to 733 
days. Traits considered were weights at birth, ten to 110-day old, 102 to 202-day old, 193 to 293-day old, 
283 to 383-day old, 376 to 476-day old, 551 to 651-day old, and 633 to 733-day old. Seven data samples 
were created. Because the parameters estimates biologically were better, two of them were chosen: one 
with 84,426 records and another with 72,040. Records preadjusted to a fixed age were analyzed by a MTM, 
which included the effects of contemporary group, age of dam class, additive direct, additive maternal, and 
maternal permanent environment. Analyses were carried out by REML, with five traits at a time. The RRM 
included the effects of age of animal, contemporary group, age of dam class, additive direct, permanent 
environment, additive maternal, and maternal permanent environment. Different degree of Legendre 
polynomials were used to describe random effects. MTM estimated covariance components and genetic 
parameters for weight at birth and sequential weights and RRM for all ages. Due to the fact that correlation 
among the estimates EPD from MTM and all the tested RM were not equal to 1.0, it is not possible to 
recommend RRM to genetic evaluation to large data sets. 
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RESUMO 

 
Compararam-se as diferenças esperadas nas progênies (DEPs) de gado Nelore, estimadas por meio de um 
modelo de características múltiplas (MTM), com um modelo de regressão aleatória (RRM). Foram utilizados 
3.819.895 dados de peso corporal sequenciais para a avaliação genética de 963.227 animais, coletados do 
nascer aos 733 dias de idade. As características consideradas foram: peso ao nascer e pesos dos 10 aos 110, 
dos 102 aos 202, dos 193 aos 293, dos 283 aos 383, dos 376 aos 476, dos 467 aos 567, dos 551 aos 651, e dos 
633 aos 733 dias. Sete amostras foram geradas. Duas amostras resultaram em estimativas de parâmetros mais 
consistentes do ponto de vista biológico, sendo, portanto consideradas representativas da população em 
estudo. A primeira amostra constituiu-se de 84.426 medidas, e a segunda, de 72.040. Os pesos pré-ajustados 
para as idades fixas foram analisados por meio de um MTM, com cinco características por processamento, no 
qual se incluíram efeito de grupo contemporâneo, classe de idade da vaca, aditivo direto, aditivo materno e 
ambiente materno permanente, utilizando-se a metodologia de máxima verossimilhança restrita (REML). 
Diferentes graus dos polinômios de Legendre foram utilizados em um RRM, para os efeitos aleatórios. As 
correlações entre as DEPs estimadas por meio do modelo para características múltiplas e de regressão 
aleatória não foram iguais a 1,0, portanto, não se recomenda a utilização dos modelos de regressão 
aleatória para avaliação genética para grande massa de dados.  
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INTRODUCTION 
 
 
Recently, there has been an increased interest in 
so-called random regression model (RRM) for 
traits which are recorded repeatedly per animal, 
such as longitudinal data. RRM are similar to 
multiple trait model (MTM) in that a number of 
correlated additive genetic effects, namely 
coefficients, are estimated for each individual. 
Estimates of genetic RR coefficients provide a 
complete trajectory of genetic merit and expected 
progeny differences (EPDs) for any point on the 
longitudinal scale can be obtained by evaluating 
the regression equations at that point (Tier and 
Meyer, 2004). However, more memory 
requirement in RRM is demanded as the number 
of covariates in the model is increased (Nobre et 
al., 2003c). 
 
A complete MTM with the number of traits equal 
to the number of ages would result in a highly 
overparameterised analysis. As a consequence, 
this would be likely to impose unnecessary 
computational demands. RRM could be useful in 
beef cattle genetic evaluation because weights at 
any age can be used, and EPD can be estimated 
for any age. In contrast, MTM provide estimates 
only for given points (Albuquerque and Meyer, 
2001). 
 
The analyses of weights as a longitudinal trait 
may result in increased accuracy of evaluation by 
eliminating the need for preadjustment by its 
ability to incorporate all weights with appropriate 
covariances. Meyer (2002) estimated that RRM 
increased accuracy of EPD up to 6% using 
simulated data. However, actual gains with field 
data sets are unknown; RRM may result in lower 
accuracy than MTM if parameters for RRM are 
poor or computations are inaccurate. 
 
Models in beef cattle may be more complicated 
than in dairy because of correlated direct and 
maternal effects. Tsuruta et al. (2001) developed 
a computer program that supports large data sets 
by using an iteration on data technique with the 
preconditioned conjugate gradient (PCG) 
algorithm. That program has sufficient memory 
requirements to support national genetic 
evaluations.  

Robbins et al. (2005) indicated that longitudinal 
models can be implemented effectively in beef 
cattle growth evaluations. According to these 
authors, RRM give practical and more flexible 
evaluations, while providing a more theoretically 
sound alternative to the MTM with relatively small 
cost of implementation. 
 
The objectives of this study were to implement 
the genetic evaluation of weights for a large 
population of beef cattle using RRM and to 
compare EPD from reduced RRM. 

 
MATERIALS AND METHODS 
 

Data were collected by the Brazilian Zebu 
Breeders Association (ABCZ) and provided by the 
Brazilian Agricultural Research Corporation 
(EMBRAPA). The data consisted of records on 
963,227 Nellore animals, progeny of 15,446 sires, 
and 376,818 dams raised under Brazilian pasture 
conditions. The records were collected from 1975 
to 2001. 
 
Traits considered were weight at birth (WB), 
weight at ten to 110-day old (W1 or weight at 60-
day old), weight at 102 to 202-day old (W2 or 
weight at 152-day old), weight at 193 to 293-day 
old (W3 or weight at 243-day old), weight at 283 
to 383-day old (W4 or weight at 333-day old), 
weight at 376 to 476-day old (W5 or weight at 
426-day old), weight at 467 to 567-day old (W6 or 
weight at 517-day old), weight at 551 to 651-day 
old (W7 or weight at 601-day old), and weight at 
633 to 733-day old (W8 or weight at 683-day old).  
 
Edits included eliminating records of animals 
outside the range of three standard deviations 
from the overall mean for each weight, and 
eliminating records outside of the range in age 
classes provided above. Table 1 summarizes 
characteristics of the data. 

 
Dams in the data were 2.0 through 20 years of 
age at calving. Classes of age of dam were 
defined every two years. The season of 
measurement was defined every three months, 
i.e., October to December; January to March; 
April to June; and July to September.  
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Table 1. Characteristics of the data set by traits of Nellore cattle 
Trait1 N2 Sires3 Dams3 Herds3 Mean (kg) SD (kg) 

WB (  1 ) 963,227 15,446 376,818 5,192 29.9 2.6 
W1 ( 60 ) 725,182 13,088 307,266 4,830 74.5 22.6 
W2 (152) 568,517 11,654 263,358 4,542 133.5 29.0 
W3 (243) 475,370 10,864 234,660 4,275 180.8 33.8 
W4 (333) 345,660 9,563 185,682 3,820 207.0 38.3 
W5 (426) 284,962 8,563 158,735 3,530 236.6 45.3 
W6 (517) 239,086 7,785 137,946 3,290 272.7 52.8 
W7 (601) 175,793 6,657 109,203 2,949 301.0 57.3 
W8 (683) 42,098 3,743 35,714 1,769 331.2 62.3 
Records 3,819,895      

1Numbers within parenthesis refer to the mean age (days). WB: birth at weight; W1= weight at ten to 110-day old; 
W2= weight at 102 to 202-day old; W3= weight at 193 to 293-day old; W4= weight at 283 to 383-day old; W5= weight at 
376 to 476-day old; W6= weight at 467 to 567-day old; W7= weight at 551 to 651-day old; and W8= weight at 633 to 
733-day old.  
2Number of records. 3With progeny in the data set. 
 
Seven sample data sets were formed by 
randomly sampling herds; however, two were 
chosen mainly because the biological parameters 
were better than the others. The samples data sets 
were obtained from herds with more than 500 
birth weight records, an average contemporary 
size group greater than ten within each herd and 

at least five records by contemporary group, and 
then 3.0% and 1.5% of the herds that remained 
were sampled from both samples, respectively. 
The number of animals in the pedigree file was 
26,087 and 20,413 for the samples, respectively. 
Both samples are described in Table 2. 

 
Table 2. Characteristics of the samples by traits of Nellore cattle 

Sample 1 Sample 2 

Trait1 N2 CG3 Mean 
(Kg) 

SD 
(Kg) N2 CG3 Mean 

(Kg) 
SD 

(Kg) 

WB (  1 ) 20,094 794 29.3 2.5 15,581 702 29.3 2.0 

W1 ( 60 ) 15,113 726 73.5 22.8 12,137 661 73.0 21.9 
W2 (152) 12,446 674 132.4 29.6 10,507 608 134.0 27.8 

W3 (243) 10,660 642 179.1 33.0 9,649 611 182.5 31.7 

W4 (333) 7,953 564 202.9 37.8 7,509 555 209.5 34.4 

W5 (426) 6,793 495 229.7 44.1 6,252 498 239.0 39.2 

W6 (517) 6,029 451 267.1 52.7 5,291 449 278.5 46.4 

W7 (601) 3,962 353 295.7 58.4 3,829 395 312.0 52.1 

W8 (683) 1,373 134 334.1 60.0 1,285 185 337.6 53.8 

1Numbers within parenthesis refer to the mean age (days). WB: birth at weight; W1= weight at ten to 110-day old; 
W2= weight at 102 to 202-day old; W3= weight at 193 to 293-day old; W4= weight at 283 to 383-day old; W5= weight at 
376 to 476-day old; W6= weight at 467 to 567-day old; W7= weight at 551 to 651-day old; and W8= weight at 633 to 
733-day old.  
2Number of observations. 
3Contemporary group (herd, year, season of the measurement, and gender of the calf). 
 
Two models (MTM and RRM) were used for 
analyses. The multiple trait model (MTM) was:  

y = Xβ + Z1 d + Z2 m + Z3 mp + e 
 
in which y was a vector of records preadjusted to 
fixed age; β was a vector of fixed effects 
(contemporary group and age of dam class); d 
was a vector of additive direct genetic random 

effects of the animal; m was a vector of additive 
maternal genetic random effects; mp was a vector 
of maternal permanent environment random 
effects; X was the incidence matrix for fixed 
effects; Z1 , Z2 , and Z3  were incidence matrices 
for animal, maternal, and maternal permanent 
environmental effects, respectively; and e was the 
vector of residual random effects. 
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The variances and covariances were defined as 
follows: 
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In which G0 was a covariance matrix of random 
genetic effects; MP0 was a covariance matrix of 
maternal permanent environmental random effects; 
R0 was a covariance matrix of random residual 

effects; A was the additive genetic relationship 
matrix; Ic was an identity matrix whose order was 
the number of dams; In was an identity matrix 
whose order was the number of animals. 
 
(Co)variance components were estimated for five 
traits at a time. Parameters presented here were 
based on average from analyses of models that 
contained that particular parameter. 
 
The random regression model (RRM) was defined 
as follows: 

∑ ∑ ∑ ∑++++∑=
= = = ==

3

0

3

0

3

0

3

0

3

1 d d d d dkdkdkdkdjdjdididd dijklm zpzdzcadzcgzβy  

∑ ∑ ∑ ++++
= = =

3

0

3

0

3

0d d d ijklmdmdmdldldldl zrzmpzm ε  

 
where yijklm was the observation in contemporary 
group i, age of dam class j, animal k, dam l, and 
record m; βd  was the fixed regression coefficient 
d for age of animal; cgdi was the fixed regression 
coefficient d for contemporary group i; caddj was 
the fixed regression coefficient d for age of dam 
class j; ddk and pdk  were random regression 
coefficients d for additive direct and permanent 
environmental effects of animal k; mdl  and mpdl  
were random regression coefficients d for additive 
maternal and maternal permanent environmental 
effects of dam l; rdm was the random regression 
coefficient d for residual effect of record m; zd , zdi , 
zdj , zdk , zdl , and zdm  were Legendre polynomials; and 
εijklm was residual effect. The purpose of the error 
effect was to indirectly model heterogeneous 
residual variance (Van der Werf and Schaeffer, 
1997); the available software did not allow 
modelling this directly.  
 

The random regression model could be written in 
matrix notation as: 
y = Xβ + Z1 d + Z2 p + Z3 m + Z4 mp + Z5 r + e 
 
in which y was the vector of records; β was the 
vector of fixed regressions; d, p, m, mp, and r 
were vectors for additive direct genetic, 
permanent environment, additive maternal 
genetic, maternal permanent environment, and 
residual effects, respectively; X was the 
incidence matrix for fixed effects; and Z1, Z2, Z3, 
Z4, and Z5  were incidence covariate matrices for 
additive direct genetic, permanent environment, 
additive maternal genetic, maternal permanent 
environment, and error effects, respectively; and 
e was a vector of constant residual effects. 
 
The variances and covariances were defined as 
follows: 
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In which G0 was an 8 x 8 covariance matrix of 
random regression for genetic effects; P0, MP0, and R0 
were 4 x 4 covariance matrices of random regression 
for permanent environment, maternal permanent 
environment, and residual effects, respectively; 2

eσ  

was assumed constant residual variance; A was 
additive genetic relationship matrix; Ik was an 
identity matrix whose order is the number of 
animals; Il was an identity matrix whose order was 
the number of dams; Im was an identity matrix 
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whose order was the number of records; In  was the 
number of records. 
 
For observation m containing trait t and with 
Legendre polynomials corresponding to age for trait 
t, the residual effect in MTM are approximately 
equivalent to the sum of residual, permanent 
environment and error effects in RRM (Nobre et al., 
2003a). 
 
For better numerical properties of mixed model 
equations, the coefficients can be orthogonalized 
and their variances diagonalized as described by 
Nobre et al. (2003b). In the transformation, some 
eigenvalues may be very close to zero. Regression 
coefficients corresponding to those covariables 
have values close to zero. Consequently, these 
coefficients can be dropped from the model with a 
negligible decrease in accuracy but at noticeable 
savings in computations.  
 
In the RRM, the error was modeled as a fixed 
residual as described by Nobre et al. (2003b). Then, 
when BLUP software supports weights, as in the 
case of this study, the effect r can be eliminated at a 
considerable saving in computations. 
 
Covariance components for MTM and RRM were 
estimated by program REMLF90 (Misztal, 2005). 
 
The EPD were obtained by program BLUPF90 
(Misztal, 1999), with solutions obtained by the 
sparse-matrix factorization package FSPAK90 
(Misztal and Perez-Enciso, 1998) and by 
BLUP90IOD, which uses an iteration on data with 

the PCG solver (Tsuruta et al., 2001). The first 
program computed exact solutions in the absence of 
numerical errors, but it required much higher 
computing resources. The second program was 
iterative and computed increasingly more accurate 
solutions as the iteration progressed. The 
convergence criterion for that program was defined 
as the relative average squared differences between 
consecutive solutions; two criteria were used: 10

−10 

(called lower accuracy) and 10
−12 

(called higher 
accuracy).  
 
Initially, EPD were obtained by programs 
BLUPF90 via FSPAK90 and BLUP90IOD via 
PCG with MTM and RRM using a sample of the 
data as mentioned above. Due to computing 
limitations, the MTM was a five-trait model using 
W1, W2, W3, W5, and W7. The RRM used all 
weights available. Solutions by RRM were 
calculated before and after diagonalization and with 
lower and higher accuracy for BLUP90IOD. 
Subsequently, the computations were repeated for 
the complete data set, but only with program 
BLUP90IOD because the computing requirements 
for BLUPF90 were excessive. Correlations between 
solutions from various runs were separately 
computed for five traits and direct and maternal 
effects. 
  

RESULTS AND DISCUSSION 
 
Table 3 shows a summary of the mean covariance 
components estimated at different ages for both 
samples with a MTM analyses.  

 
 

Table 3. Mean covariance components for additive direct (D), additive maternal (M), direct and maternal additive 
(AM), maternal permanent environment (MPe), and residual (R) effects with multiple trait model of Nellore cattle1 

Trait Sample 1 Sample 2 
(days)2 D M AM MPe R D M AM MPe R 

WB (  1 ) 0.7 0.4 -0.4 0.0 1.3 0.9 0.7 -0.6 0.1 2.4 
W1 ( 60 ) 21.1 8.8 -7.6 14.6 66.1 18.5 8.6 -6.3 12.9 69.5 
W2 (152) 50.2 24.0 -12.1 51.7 168.5 51.5 22.5 -10.9 47.4 151.2 
W3 (243) 70.3 29.4 -14.4 84.3 295.3 76.6 33.2 -15.3 62.4 265.8 
W4 (333) 74.9 23.5 -15.5 71.9 395.0 81.7 24.2 -16.1 75.8 391.4 
W5 (426) 139.8 18.4 -14.9 70.6 455.2 105.1 21.5 -17.1 69.4 432.1 
W6 (517) 160.3 14.9 -14.0 57.8 567.2 156.6 18.2 -16.9 68.5 549.4 
W7 (601) 300.1 12.1 -10.2 62.1 591.6 289.2 15.8 -13.5 66.9 593.4 
W8 (683) 157.5 10.5 -9.8 35.2 600.1 212.5 13.2 -5.1 39.5 653.2 

1Units are kg2 

2Numbers within parenthesis refer to the mean age (days). WB: birth at weight; W1= weight at ten to 110-day old; W2= 
weight at 102 to 202-day old; W3= weight at 193 to 293-day old; W4= weight at 283 to 383-day old; W5= weight at 376 
to 476-day old; W6= weight at 467 to 567-day old; W7= weight at 551 to 651-day old; and W8= weight at 633 to 733-day 
old.  
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Table 4 shows a summary of the mean covariance 
components estimated at different ages for both 
samples with a reduced RRM analyses, which 
included additive direct, permanent environment, 
additive maternal, and maternal permanent 
environment effects adjusted for cubic, cubic, 
quadratic, and linear polynomials, respectively. 
 
Three others models were studied. The first 
included cubic additive direct genetic, cubic 
permanent environment, cubic additive maternal 

genetic, and cubic maternal permanent 
environment polynomials effects. The second, 
included cubic additive direct genetic, cubic 
permanent environment, cubic additive maternal 
genetic, and quadratic maternal permanent 
environment polynomials effects, and the last 
included cubic additive direct genetic, cubic 
permanent environment, quadratic additive 
maternal genetic, and quadratic maternal 
permanent environment polynomials effects. 

 
Table 4. Mean covariance components for additive direct (D), additive maternal (M), direct and maternal 
additive (DM), permanent environment (Pe), maternal permanent environment (MPe), and residual (R) 
effects with random regression model1,2  

Sample 1 Sample 2 Mean 
age 

(days) D M DM Pe MPe R D M DM Pe MPe R 

1 0.8 0.5 -0.2 8.1 0.1 4.7 2.6 4.1 -0.9 10.1 0.8 4.5 
60 8.9 9.2 -9.9 18.2 16.6 65.6 10.4 12.6 -10.1 19.4 15.4 65.1 
152 34.5 23.3 -15.2 96.5 41.3 180.4 33.9 21.4 -16.9 101.1 39.5 174.3 
243 50.8 28.2 -16.7 165.9 77.3 244.5 58.0 33.4 -18.9 173.8 65.5 268.2 
333 73.2 29.5 -20.2 242.5 66.4 392.2 83.8 36.2 -24.3 244.8 62.5 372.2 
426 99.2 15.9 -33.5 315.6 63.5 455.9 103.7 28.5 -27.8 302.5 60.9 440.8 
517 148.2 11.4 -42.4 325.4 63.2 515.7 141.9 23.2 -28.2 332.1 59.2 465.4 
601 185.5 9.1 -34.9 386.2 64.8 543.3 181.2 18.5 -29.7 369.9 57.9 522.8 
683 213.0 7.4 -44.5 432.1 69.9 597.7 208.9 11.8 -32.9 425.4 59.9 575.8 

1Units are kg2 

2Additive direct, permanent environment, additive maternal, and maternal permanent environment effects 
adjusted for cubic, cubic, quadratic and linear polynomials, respectively. 
 
The application of higher order polynomials is 
undesired mainly because of excessive costs. So, 
that is the reason for the study of those four 
models. The results presented in Table 4, with a 
model less parameterized, was not different than 
the others when compared by the likelihood ratio 
test (Rao, 1973). 
 
Components of parameters of growth in beef cattle 
include direct and maternal variances across ages, 
correlations among ages for the direct effect, the 
same correlations for the maternal effect, and 
correlations between the direct and maternal 
effects along ages. Additional parameters include 
variances and correlations for environmental 
effects and variance for the residual effect. When 
some records are missing, the variances associated 
with ages of most missing records become erratic, 
and all correlations fluctuate. When connections 
between the direct and maternal effects are weak, 
the correlations between the direct and maternal 
effects become more negative. Random regression 
models are more susceptible to artifacts due to data 
problems than multiple trait models. If a random 
regression model is to be used for genetic 

evaluation, genetic parameters estimated by 
random regression models may not be satisfactory. 
 
In this study, the covariances estimates with RRM 
were similar to those with MTM from WB (one d) 
through weight at 601-day old. Parameters 
estimated via RRM are susceptible to large 
sampling errors and estimation artifacts for data 
points along the trajectory that have small amounts 
of data (Van der Werf and Schaeffer, 1997). 
Records were missing sequentially; all animals had 
records on WB; however, only 4% had records on 
W8. The reason may be that at 683 days, the 
number of records reduced the degree of freedom. 
 
The results with RRM are in agreement with those 
reported by Nobre et al. (2003a, b). It has been 
indicated that parameter estimates obtained by 
fitting polynomials could be affected by sparse 
data and extremes of trajectories, especially at 
older ages.  
 
Table 5 presents the values of eigenvalues 
corresponding to covariances in each effect of 
the RRM. 
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Table 5. Eigenvalues for genetic (G), permanent environment (Pe), maternal permanent  environment 
(Mpe), and residual (R) with a random regression model 

           Eigenvalue 
Effect First Second Third Fourth Fifth Sixth Seventh Eighth 

G 192.2 51.2 12.1 7.7 2.5 1.0 0.004 <10-4 

Pe 334.5 30.9 19.7 <10-4  --- --- --- --- 
MPe 48.9 3.6 2.4 0.0009 --- --- --- --- 

R 79.4 53.5 30.1 0.004 --- --- --- --- 
 

For the genetic effects, the first two eigenvalues 
explained 92% of the genetic variance, and the 
last eigenvalue was close to zero. Also, for 
permanent environment effects, the first two 
eigenvalues explained 95% of variance. For 
maternal permanent environment effects and 
residual effects, those eigenvalues explained 96 
and 82% of variances, respectively. Nobre et al. 
(2003b) reported that small eigenvalues indicated 
that parameters of RRM were indeed poorly 
conditioned and also indicated potential of 
reducing the number of effects in the model.  
 
When diagonalization was done for all effects, 
low correlations remained until the covariance 
matrices were recreated as VD*V’, in which D* 
was like D but with small eigenvalue set to zero 

and convergence criterion was set to 10-12. This 
indicate that the diagonalization and convergence 
criterion were essential in obtaining accurate 
EPD from RRM. However, when the error effect 
was replaced by weights and effects 
corresponding to very small eigenvalues were 
dropped from the model, the correlations 
remained the same.  
 
Since that the error effect replacement by 
weights did not change the correlations, four 
models less parameterized were studied to avoid 
unnecessary computation demands. Estimated 
correlations between EPD by MTM and the 
reduced RRM obtained with the complete data 
by BLUP90IOD with convergence criterion set 
to 10-12 are reported in Table 6. 

 
Table 6. Estimated correlations between expected progeny differences with multiple  trait model and a 
complete and a reduced random regression model  

Model/effect BW W1 W2 W3 W4 W5 W6 W7 W8 
MTM x RRM1 

Direct 
Maternal 

 
0.99 
0.97 

 
0.96 
0.94 

 
0.96 
0.92 

 
0.96 
0.92 

 
0.93 
0.90 

 
0.93 
0.90 

 
0.92 
0.89 

 
0.91 
0.88 

 
0.91 
0.87 

MTM x RRM2 

Direct 
Maternal 

 
0.99 
0.97 

 
0.96 
0.94 

 
0.96 
0.92 

 
0.96 
0.92 

 
0.93 
0.90 

 
0.93 
0.90 

 
0.92 
0.89 

 
0.91 
0.88 

 
0.91 
0.87 

MTM x RRM3 

Direct 
Maternal 

 
0.99 
0.97 

 
0.96 
0.93 

 
0.96 
0.91 

 
0.96 
0.90 

 
0.93 
0.89 

 
0.93 
0.90 

 
0.92 
0.89 

 
0.91 
0.88 

 
0.91 
0.87 

MTM x RRM4 

Direct 
Maternal 

 
0.99 
0.97 

 
0.96 
0.93 

 
0.96 
0.91 

 
0.96 
0.90 

 
0.93 
0.89 

 
0.93 
0.90 

 
0.92 
0.89 

 
0.91 
0.86 

 
0.91 
0.86 

RRM1 - with cubic additive direct genetic, cubic permanent environment, cubic additive maternal genetic, and cubic 
maternal permanent environment polynomials effects, respectively; 
RRM2 - with cubic additive direct genetic, cubic permanent environment, cubic additive maternal genetic, and 
quadratic maternal permanent environment polynomials effects, respectively;  
RRM3 - with cubic additive direct genetic, cubic permanent environment, quadratic additive maternal genetic, and 
quadratic maternal permanent environment polynomials effects, respectively;  
RRM4 - with cubic additive direct genetic, cubic permanent environment, quadratic additive maternal genetic, and 
linear maternal permanent environment effects, respectively. 
 
The correlations between MTM and all RRM 
were not perfect (were not equal to 1.0). There is 
no age variability for WB; therefore, given 

numerically accurate solutions and functionally 
identical parameters, the MTM and RRM should 
provide identical results. Differences for WB 
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could be due to larger numbers of fixed effects to 
estimate in RRM. However, Nobre et al. (2003b) 
dropped all but constant terms for covariables in 
RRM and did not change the correlations. So, 
assuming numerically accurate computations, 
differences between MTM and RRM were 
largely due to differences in parameter estimates 
used in both models. 
 
Nobre et al. (2003c) concluded that RRM are 
more susceptible to artifacts due to data 
problems than MTM and recommended that 
genetic parameters estimated by RRM may have 
to be adjusted based on estimates from MTM, if 
a RRM is to be used for genetic evaluations.  
 
The correlations for the additive direct effect 
were the same for all RRM; however, for the 
additive maternal effect were smaller for RRM4. 
This suggested that important differences in EPD 
between MTM and RRM for maternal direct 
effects existed due to factors beyond the models. 
Nobre et al. (2003b) reported that the absence of 
some traits in MTM made a small difference to 
animals with a large numbers of records. Also, 
these authors reported that the maternal direct 
effect correlations were lower for sires with ≥ 
100 progeny and concluded that differences in 
EPD between RRM and MTM existed due to 
factors beyond fewer traits used in MTM. 
 
Nobre et al. (2003b) reported that estimated 
genetic parameters by RRM can be inaccurate 
for various reasons: data size, data selection, 
model and methodology applied. Misztal et al. 
(2000) and Pool and Meuwissen (2000) related 
that the parameters can be estimated more 
accurately after improvements in methodologies, 
making computations more reliable and less 
expensive. 
 
Covariance functions of Tabapuã cattle were 
estimated by RRM using Legendre polynomials 
by Dias et al. (2006). They concluded that the 
model including additive direct genetic, additive 
maternal genetic, permanent environment, and 
maternal permanent environment effects 
respectively adjusted by cubic, quadratic, fourth 
order and linear polynomials, and residual 
variances adjusted by fifth order variance 
function as the best one to describe the 
covariance functions of the used database. 
 

The computation costs decreased when were 
dropping random regression coefficients with 
eigenvalues that explained less than 1% of 
variance; however, the correlations for the 
additive maternal effect decreased. This result is 
in agreement with Bohmanova et al. (2005). 
Theses authors concluded that even though the 
eigenvalue corresponding to the eliminated 
maternal direct variance component accounted 
for less than 1%, it explained a large portion of 
the variance at first ages. Similarly, the reduction 
of the maternal effect decreased variance at early 
ages and caused almost no change at older ages.  
 

CONCLUSIONS 
 
To better convergence rate and adequate 
performance, it is necessary diagonalization in 
RRM with Legendre. To implement genetic 
evaluation by RRM in beef cattle is necessary 
testing to ensure that not only numerical 
problems but also inaccurate parameters decrease 
the accuracy of EPD. RRM less parameterized 
was unable to estimate the reliable covariances to 
genetic evaluate in beef cattle as a consequence 
the correlations between reduced RRM and 
MTM were not perfect. 
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