Empresa Brasileira de Pesquisa Agropecuária Embrapa Instrumentação Agropecuária Ministério da Agricultura, Pecuária e Abastecimento

Rede de Nanotecnologia Aplicada ao Agronegócio Anais do V Workshop 2009

Odílio Benedito Garrido de Assis Wilson Tadeu Lopes da Silva Luiz Henrique Capparelli Mattoso Editores

Embrapa Instrumentação Agropecuária São Carlos, SP 2009

Exemplares desta publicação podem ser adquiridos na:

Embrapa Instrumentação Agropecuária

Rua XV de Novembro, 1452

Caixa Postal 741

CEP 13560-970 - São Carlos-SP

Fone: (16) 2107 2800 Fax: (16) 2107 2902

http://www.cnpdia.embrapa.br E-mail: sac@cnpdia.embrap.br

Comitê de Publicações da Unidade

Presidente: Dr. Luiz Henrique Capparelli Mattoso

Membros: Dra. Débora Marcondes Bastos Pereira Milori,

Dr. João de Mendonça Naime,

Dr. Washington Luiz de Barros Melo

Valéria de Fátima Cardoso

Membro Suplente: Dr. Paulo Sérgio de Paula Herrmann Junior

Supervisor editorial: Dr. Victor Bertucci Neto

Normalização bibliográfica: Valéria de Fátima Cardoso

Capa: Manoela Campos e Valentim Monzane

Imagem da Capa: Imagem de AFM de nanofibra de celulose - Rubens Bernardes Filho

Editoração eletrônica: Manoela Campos e Valentim Monzane

1ª edicão

1ª impressão (2009): tiragem 200

Todos os direitos reservados.

A reprodução não-autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei no 9.610).

CIP-Brasil. Catalogação-na-publicação.

Embrapa Instrumentação Agropecuária

Anais do V Workshop da rede de nanotecnologia aplicada ao agronegócio 2009 - São Carlos: Embrapa Instrumentação Agropecuaria, 2009.

Irregular

ISSN: 2175-8395

 Nanotecnologia - Evento. I. Assis, Odílio Benedito Garrido de.
 II. Silva, Wilson Tadeu Lopes da. III. Mattoso, Luiz Henrique Capparelli. IV. Embrapa Instrumentação Agropecuaria

APLICAÇÃO DE HIDROGÉIS EM SISTEMAS DE LIBERAÇÃO CONTROLADA DE PESTICIDA

Fauze Ahmad Aouada^{1,4}, Zhongli Pan², Bor-Sen Chiou³, William J. Orts³, Luiz Henrique Capparelli Mattoso⁴*

¹Depto. de Química - UFSCar, 13560-905, São Carlos, SP

²Processed Foods Research Unit, USDA-ARS-WRRC, Albany, CA, United States

³Bioproduct Chemistry & Engineering Research Unit, USDA-ARS-WRRC, Albany, CA, United States

⁴Laboratório Nacional de Nanotecnologia para o Agronegócio, Embrapa Instrumentação Agropecuária,

13560-970, São Carlos, SP *mattoso@cnpdia.embrapa.br

Projeto Componente: PC4

Plano de Ação: 01.05.1.01.04.04

Resumo

Neste trabalho, a potenciabilidade de aplicação de hidrogéis de poliacrilamida (PAAm) e metilcelulose (MC) como carreador em sistemas de liberação controlada do pesticida paraquat foi investigada por medidas espectroscópicas UV-Visível. Os resultados indicaram que a taxa de liberação pode ser controlada pela relação entre AAm/MC e que sua liberação torna-se mais prolongada à medida que se aumentam os grupamentos hidroxilas provenientes do polissacarídeo MC. A cinética de liberação pode ser otimizada (até 45 dias) pelo controle da hidrofilicidade através da variação entre a relação acrilamida / metilcelulose na solução formadora dos hidrogéis. Por tudo apresentado e pela alta absorção de água dos hidrogéis, estes materiais podem ser considerados como promissores para serem aplicados em diferentes campos na agricultura, destacando a liberação controlada de insumos agrícolas.

Palavras-chave: hidrogéis, poliacrilamida, metilcelulose, pesticida, liberação controlada, agronegócio.

Introdução

Pesticidas podem ser definidos como substâncias utilizadas para matar, controlar ou inibir (ART, 1998) todas as formas de vidas, vegetais ou animais presentes em culturas agrícolas, pecuária, nas casas e jardins, saúde pública, no combate de vetores de doenças transmissíveis, etc. São utilizados na agricultura com três principais objetivos: aumentar a produtividade das culturas, produzir culturas de alta qualidade e reduzir o custo de mão-de-obra. O polissacarídeo metilcelulose (MC) trata-se de um polímero polihidroxilado hidrofílico solúvel em meio aquoso, podendo ser transformado em gel através de reticulação química

utilizando di-aldeídos na presença de ácido forte (TOMIHATA e IKADA, 1997; PARK et al., 2001). No entanto, hidrogéis de metilcelulose apresentam pobre resistência mecânica limitando à sua aplicação tecnológica. Já hidrogéis sintetizados a partir de monômeros sintéticos apresentam excelentes propriedades mecânicas e hidrofilicas. Assim, a síntese de hidrogéis de metilcelulose suportadas mecanicamente em redes poliméricas constituídas por poliacrilamida (PAAm) reticuladas torna-se uma perspectiva para possibilitar à sua aplicação. Dentre as diferentes aplicações, as relacionadas com o agronegócio, principalmente a liberação controlada de pesticidas, têm se tornado uma interessante vertente (ISIKLAN, 2007). Sendo que as principais propriedades que credenciam os hidrogéis são:

atoxicidade; biodegradabilidade; variação de propriedades em função de estímulos externos (intensidade iônica e pH); alta hidratação em um curto intervalo de tempo; capacidade de liberação prolongada/controlada de água e insumos agrícolas. O objetivo principal desse sistema é aumentar a eficiência funcional do insumo, reduzindo os riscos de toxidez para o homem e contaminação ambiental.

Este trabalho teve como objetivo principal desenvolver hidrogéis de poliacrilamida contendo o polissacarideo metilcelulose buscando hidrogéis para aplicação em sistemas carreadores para liberação controlada do pesticida paraquat.

Materiais e métodos

Os hidrogéis constituídos por PAAm e polissacarídeo biodegradável MC foram obtidos por meio de polimerização química do monômero acrilamida (AAm) em solução aquosa contendo MC, agente de reticulação N'-N metileno-bisacrilamida (MBAAm) e catalisador N,N,N',N'- tetrametiletilenodiamina (TEMED). Persulfato de sódio foi utilizado como iniciador da reação de polimerização via radical livre.

Inicialmente foi quantificada a adsorção de paraquat nos hidrogéis através da inserção de um hidrogel previamente seco em uma dada solução de paraquat com concentração conhecida (C₀). As concentrações do paraquat foram determinadas utilizando-se um espectrofotômetro UV-Visível baseando-se em uma curva de calibração, previamente construída em um específico comprimento de onda ($\lambda = 258$ nm), $R^2 = 0.9991$. Posteriormente, foi realizado o estudo de liberação do pesticida paraquat em meio aquoso. Para isso, o hidrogel foi retirado da solução de estudo C₀ e adicionado em um recipiente contendo volume conhecido de água, sendo que alíquotas foram retiradas e quantificadas utilizando o mesmo procedimento descrito acima. Após as medidas em cada tempo, as alíquotas foram recolocadas na solução de origem, para que o volume do sistema não sofresse alteração. Os resultados de liberação foram quantificados em termos de liberação cumulativa (LC) em função do tempo utilizando a Eq. 1:

$$LC(\%) = \frac{M_t}{M_{\infty}} \times 100$$
 (1)

onde M_t é a quantidade de pesticida liberada pelo hidrogel no tempo t e M_{∞} é a quantidade total de pesticida carregada no hidrogel.

Resultados e discussão

A potencialidade de liberação controlada do pesticida paraquat a partir de hidrogéis de PAAm e MC foi investigada utilizando a técnica

espectroscópica UV-Visível. Na Figura 1 são mostrados a variação espectral de absorção do pesticida paraquat em toda a região ultravioleta e o processo cinético de liberação do paraquat no comprimento de onda de absorção máxima ($\lambda = 258$ nm) (Inset) do hidrogel constituído por 6,0 % de AAm e 1,0 % de MC.

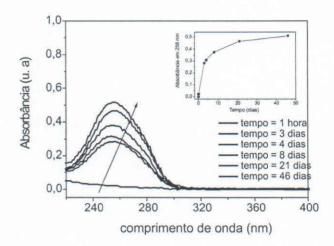


Fig. 1. Cinética de liberação do pesticida paraquat através do hidrogel de PAAm-MC: [AAm] = 6.0 % (m/v), [MC] = 1.0 % (m/v), $[C_0] = 37.5$ mg L⁻¹, e $T = 25.0 \pm 0.1$ °C.

Na Figura 2 são mostradas as percentagens de liberação cumulativa em função do tempo para hidrogéis com 6,0 % de AAm e diferentes teores de MC. Pode-se observar que a menor quantidade de paraquat liberada foi obtida para os hidrogéis constituídos apenas por PAAm. Esse hidrogel libera praticamente todo o paraquat adsorvido em apenas 1 dia, devido a pequena interação que sua matriz possui com o pesticida. Nessas condições o processo de adsorção ocorre via interação hidrofóbica entre grupamentos amidas (via PAAm) e regiões catiônicas do pesticida. À medida que a concentração de MC é aumentada observa-se aumento na quantidade de paraquat liberada, o que é desejável. Os valores de liberação cumulativa para hidrogéis contendo MC foram 41; 73; 60 e 24 % para 0,25; 0,5; 0,75 e 1,0 % de MC, respectivamente. O hidrogel com 0,5 % de MC apresentou o máximo de liberação de paraquat. Ainda é observada que a cinética atinge o estado de equilíbrio em torno de 15-20 dias.

Foi investigada também a influência da concentração de acrilamida no processo de liberação controlada do pesticida paraquat e seus resultados estão mostrados na Figura 3.

O aumento da concentração de AAm, e consequentemente aumento da rigidez da matriz polimérica (PAAm + MC), provoca diminuição considerável na percentagem de pesticida liberada. Isto indica que a interação pesticida-matriz é mais forte nessas condições. Também, outro fator que contribui para esse efeito é o menor grau de

intumescimento. Observa-se ainda a extensão do processo de liberação para 45 dias.

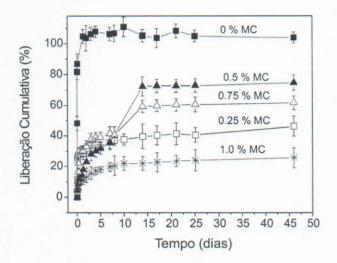
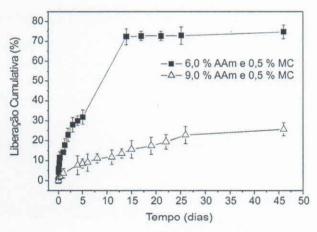



Fig. 2. Dependência da liberação cumulativa em função do tempo para hidrogéis de PAAm-MC: [AAm] = 6,0 % (m/v), $[C_0]$ = 37,5 mg L⁻¹, e T = 25,0 ± 0,1 °C.

Fig. 3. Dependência da liberação cumulativa em função do tempo para hidrogéis de PAAm-MC: [MC] = 0,5 % (m/v), $[C_0]$ = 37,5 mg L⁻¹, e T = 25,0 \pm 0,1 °C.

Conclusões

O estudo destes materiais possibilitou a otimização do controle da cinética de liberação do paraquat (até 45 dias) por meio do controle da hidrofilicidade dos mesmos através da variação entre a relação acrilamida / metilcelulose na solução formadora dos hidrogéis. O processo de liberação foi fortemente dependente das concentrações de metilcelulose e acrilamida. Sendo que sua liberação torna-se mais prolongada à medida que se aumentam os grupamentos hidroxilas.

Por tudo apresentado e pela alta absorção de água dos hidrogéis, estes materiais podem ser

considerados como promissores para serem aplicados em diferentes campos na agricultura, destacando a liberação controlada de insumos agrícolas.

Agradecimentos

CNPq, FAPESP, FIPAI, FINEP/MCT, EMBRAPA, USDA.

Referências

ART, H. W. Dicionário de ecologia e Ciências ambientais. São Paulo: Melhoramentos, 1998. ISIKLAN, N. J. Appl. Polym. Sci., New York, v. 105, n. 2, p. 718-725, 2007. PARK, J. -S.; PARK, J. -W.; RUCKENSTEIN, E. Polymer, [S. l.], v. 42, n. 9, p. 4271-4280, 2001. TOMIHATA, K.; IKADA, Y. J. Polym. Sci., Part A: Polym. Chem., Easton, v. 35, n. 16, p. 3553-3559, 1997.