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Abstract - Agricultural tomography aims at investigating soil
proprieties as water and solute transport, soil porosity, soil
contents, root growing and humidity. For a better analysis
about these proprieties, an image quality is required. The
enhancement of tomographic images can be reached by the use
of filters in their projections (signals) with the objective to reach
a better signal/noise relation. Previous works focused on image
filtering or the use of filters specialized in Gaussian process
estimation which presented insignificant improvement in
signal/noise relation or loss in the image details. These
projections have different types of noises affecting the image
quality directly and omitting important details that can be
recognized as if they were noise or fake details caused by noises.
This paper presents formulations for the use of unscented
Kalman filter with neural networks in a dual estimation
filtering: a filter for state estimation and a filter for weight
estimation with the objective of obtaining better quality in the
signal / noise relation of tomographic projections. Besides the
filter uses nonlinear functions, the square root technique also
improves the performance and numerical stability compared
with the basic unscented Kalman Filter. The use of neural
network applied to the square-root unscented Kalman filter
showed significant results, as high ISNR values together with an
image where details are kept.

Keywords: Kalman filter, Artificial Neural Network,
Tomography.

L INTRODUCTION

Widely used in medical areas, the use of Computerized
Tomography (CT) in soil science has been introduced by
Petrovic, Siebert and Riek [1], Hainswoth and Aylmores [2]
and by Crestana [3]. Petrovic has shown the possibility of
using an X-ray computed tomography to measure the density
of soil volumes, while Crestana has demonstrated that CT
can solve problems related to studies of the physics of water
in the soil and was from these studies which led to a project
involving the development of a tomography to soil science.
[4] [5]. The use of the computer tomography is essential for
the image reconstruction from projections.

The application of CT for the investigation of soil physics
properties in grain and pore levels is important to the water
and solute transport study in this environment, particularly in
non saturate regions, as well as for the interaction

investigations of soil and roots. Combined with other
conventional techniques as neutrons probes, gravimetry,
gamma and X-ray direct transmission, tracers, optical
microscopy, electron microscopy scanning, mercury
intrusion and other similar ones, it contributes greatly to
resolve diverse problems of soil area. The results were
obtained in a millimeter order scale, while various answers
are expected in particle, macropore and micropore levels
[6]. In the visualization of a tomographic image there is the
presence of granularity, which is significant in the viewing
of objects in low contrast.

Besides, the use of X-ray computer tomography
requires, as its application, the use of digital filters which
are necessary since the studied signal is represented
discretely and due to the ability to treat an adaptive
approach to promote a best filtering. One of them is the
Kalman filter, which is a mathematical tool developed
based on concepts such as (hidden) Markov chains [7],
Bayesian estimation among others with the ability to obtain
future and hidden states given the observation and the
ability to improve with the other techniques of estimation
used as artificial neural networks and genetic algorithms.
These filters are seen as extensions of nonlinear filters and
changes are made directly in the equations for filter
measurement and correction.

The linear filtering main characteristic is the ability to
make a prediction using a known linear function. For the
discrete filter the matrix of translation was used, where the
difference from the future state and the current state is
estimated and the observed value shall be the sum of these
states after being corrected by the filter. The non-linear
filtering can be made through the use of a nonlinear
function for this estimation. This is done with the use of
neural networks that promote a non-linear mapping and the
use ofthe filter to estimate the neural network weights. The
Kalman filter is a mathematical tool widely used for
statistical problems and is considered a good estimator for
a large class of problems and an effective and useful
estimator for other classes. In 1960, Rudolf Emil Kalman
published an article describing a recursive solution to the



problem of discrete data linear filtering. While there are
several specific applications that are close to estimating an
unknown state of a set of process measures, several of these
methods do not inherently take into account the nature of the
typical noise. For example, consider them working on a
mapping for interactive computer graphics. While the
requests for information vary with application, the key source
of information is the same: estimate poses of measures that
are derived from noisy electrical mechanical, inert, optical,
acoustic or magnetic sensors. This noise is statistically
typical in nature (or can be effectively modeled well), which
leads to stochastic methods to address problems.

The techniques used in artificial intelligence and in
estimation with Kalman filter are used to increase its filtering
power to solve problems of higher orders. To determine the
behavior of a function, it can use its own filter to perform a
linear prediction or make a non-linear prediction using neural
networks.

The main source of noise in CT images is quantum mottle,
defined as the spatial and temporal statistical variation in the
number of X-ray photons absorbed in the detector. Other
types of noise present in CT images are the rounding errors
in the program of reconstruction (noise of the algorithm) and
the electronic noise attributed by the system displays.
Electronic noise can originate in not ideal electronic devices,
such as not pure resistors and capacitors, not ideal terminal
contacts, current leakage transistors, Joule and can also be
independent of the signal, such as external interference
(electrical or even mechanical) [8] [9] [10] [11]. The low-
pass filters and median are solutions to solve the problem of
signal or noise, but there is loss of crucial information.
Systems with different source noise do not have a solution
with the use of filter. There is, therefore, the need for more
use of filters complex that can be seen in [12] [13] [14],
which also provi de a comparison with a solution of using
neural networks (pre-filter) with Discrete Kalman filter.

This paper is regarding to understand the use of unscented
Kalman filter (UKF) and the algorithm used to separate a
noise from a signal. This will be done by showing that the
unscented Kalman filter with neural network is the best
option for filtering. It will be an overview and specified after
each equation ofthe algorithm.

The unscented Kalman filter is similar to the extended
version [15]. The distribution of states is represented by a
Gaussian random variable, but is now specified using a
minimum of sampling point sets chosen carefully. The
sampled points capture the true mean and covariance of
random variable and when it propagates through a truly non-
linear system, it captures the mean and covariance accurately
to promote a third order estimation for any nonlinearity.
Thus, this is done through the use of unscented processing.

An unscented processing (Unscented Transform) is a
method to calculate the statistics of a random variable x
(with dimension L), which can be understood as a noiseless
free projection that, through a non linear function
y = g(x) results in an observed state or a noisy projection.

Assuming x has mean ~ and covariance ~. To calculate

the statistics of y, it must form a matrix X with 2L + 1

sigma vectors sigma Xi (with weight W,), according to the
following:

-
X; = x (1)

w,(m) = w,(c) = 1!{2(L + À.)}, for i = I, ..., 2L (6)

where À. = a' (L + k) - L is a scalar parameter. The
variable a determines the sigma points spreading around

the mean X and it is ever a minimal positive value. k is a
secondary scalar parameter that is equal to O for a single
state and equal to 3 - L for weight estimation and jJ is
used to incorporate the distribution a priori knowledge x
(for Gaussian distributions, jJ = 2 is optimal).

(~(L+À.)~)i is the i-th square root matrix line. These
sigma vectors are propagated through non linear function

Yi = g(X;) for i = 0, ... ,2L (7)

and the .', mean and covariance are approximate using
sample mean and covariance ofposteriors sigma points.

_ 21.

Y"" Lw,(m)y; (8)
i=O

2L __

'"' (c) TP; "" L.. W, {y; - y}{y, - y}
i=O

(9)

This method differs from the general methods of
sampling (Monte-Carlo methods such as particle filters),
which require orders of magnitude with more sample
points in an attempt to define and propagate the state
(possibly non-Gaussian) distributions. The unscented
approaches result in more hits for the third order for
Gaussian inputs for all nonlinearities. For non-Gaussian
inputs, approximations are more reliable, at least for a
second order, with the success of moments for third order
or higher orders determined by the choices of a and jJ .

The unscented Kalman filter is a direct extension of
unscented transformed for the equation recursive
estimation

x, = ( prediction of xk) + K, .[Yk - ( prediction of Yk)] (10).
where the state of random variable is redefined with the
concatenation of original states and noise:

x;=[x;v;n;f. (11)
The selection of sigma points is applied for a new

random variable state to selection to calculate the



corresponding sigma matrix x; . The unscented Kalman filter
equations are given below. They do not need to calculate
Jacobian or Hessians matrices, in addition, the calculation
total numbers are the same of extended filters.

Unscented Kalman filter algorithm
Sigma points calculation:

X; =[;:-1 ;:-1 ±J(L+Â-)Pk
a
_l] (12)

where X is the set of points with unscented
transformation based on the mean and covariance a
priori.

Preview equations:
2L

-- _ "W(m) xx, - L., i Xi,klk-I
;=0

where Wm
) represents the set of sigma point weights

used for true mean reconstruction.
2L A_ A_

~- =I W;(C)[X;klk_1 -xk][X;klk-1 -xk]T (14)
;=0

where Wc
) represents the set of sigma point weights

used for true mean reconstruction.
X:1k_1 = F(X:_pX:_I) (15)

where F is the function for the sigma propagation for
state transitions.

Correction equations:
~Ik-I = H(X:_i'X;_I)

where H is the system function for sigma points
generation of observation states Y.

A_ 2L
_ "W(m)y'Yk - L., i i.klk-I

;=0

where Y is the observed state estimation reconstructed
for the sigma points.

2L ~_ A_

PY~Yk= IW;(C)[l';,klk_I-Yk][l';,klk_l-yJ (18)
;=0

2L A_~_

P . = "W;(C)[Xiklk_I-Xk][l';klk_l- yJ (19)
x"y" ~ , ,

;=0

K = P (P.. ri (20)
XkY,I: YtYk

where K is the Kalman gain obtained through the noise
covariances.

Xk=Xk+K(Yk-Yk) (21)
this equation represents the mean a priori correction
and

~ = ~- -K(P .. )KT (22)
Y,tY,t

represents the covariance a priori correction.

The Kalman filter was originaIly designed for a problem
of state estimation, and has been used in applications to
nonlinear controls that require feedback from the states. In
these applications the dynamic model is a physicaIly based
parametric model, which assuming is known.

(13)

(16)

(17)

Due to numerical instability related to the filter noise,
and the use of the Cholesky factorization to determine the
square root of probability matrix, Rudolph van der Merwe
and Eric A. Wan have developed the square-root unscented
Kalman filter (SRUKF) [16], which aIlows better control
variance matrix values, bypassing the problem ofbecoming
a negative or indefinite matrix. This new filter also
provides an improvement in performance, leaving the
unscented Kalman filter with the same order of complexity
ofthe extended filter.

As the original unscented Kalman filter, the square root
filter is initialized by calculating the square root of
covariance matrix states by the Cholesky factorization:

So = chol{E[(xo -xo A)(XO -xo -rn (23)
However, the spread factor and the update of Cholesky

is then made in subsequent iterations to directly form the
sigma points. In the equation below, the update time ofthe
Cholesky factor is calculated by using a QR decomposition
of the matrix composed of the weight of the propagated
sigma points and the square root of covariance matrix of
the additive noise case:

S; = qr{[~~(C) (X;2L.klk-1 -x;)~RVn (24)

A subsequent update of Cholesky (or regression) in the
equation below is needed since the weight zero is perhaps
negative:

S; = cholupdate{ S;,X~,k - x; ,Wo(C)} (25)

These two steps replace the time update. They are also
used in the calculation of the Cholesky factor, the error
covariance of the observation:

SYk = qr{[~~(C) (l';2L,k - y;)JRnn (26)

SYk = cholupdate{SYk'Ya,k - Y; ,Wo(C)}. (27)

Unlike the way in which the gain of Kalman filter is
calculated in standard unscented, using two inversions:

Tx, (SykSyk) = PXkYk (28)

Since it is square and triangular, efficient replacements
can be used to solve it directly without the need for an
inversion of the matrix. FinaIly, the Cholesky factoration
update of the covariance factor of the state in the equation
below is calculated by applying sequential Cholesky
regressions

S, = cholupdatei Sç ,U,-} (29)
The vectors are the columns of the equation regression

2l. This update replaces the rear equation 22
U = «.s; (30)

There is then the possibility ofusing a mapping function
with neural networks where the filter trains the neurons and
moves to a stable system where the weights are estimated
so weIl that the mapping function has a lower error
probability. This fi\ter aIlows working with higher orders
(with accuracy equivalent to the expansion of third order
Taylor series), while the fi!ter works only with extended
functions of second order. With the knowledge of non-
linear function of the process and a Kalman filter that



supports non linear functions is possible to get a significant
improvement in the signal. One solution is to use a neural
network to promote a better function of the mapping process,
reducing the noise present in the projections. For an
estimation of the weights of the neural network together with
the estimates of the states, we can use two methods of
filtering: the estimation and dual estimation. These
arrangements for determining the filtering initial weights are
known, the next state is obtained in a linear mapping with the
previous one.

Details of unscented Kalman filter implementations and
modeling are shown in section 2. Section 3 presents a
comparison of the results obtained by the filters. Finally,
section 4 presents the conc\usion.

lI. METHODOLOGY

The equipment utilized is a first generation mini-
tomograph developed at Embrapa Agricultural
Instrurnentation. The mini-tomograph data acquismon
process provides a matrix with the sample values of
projections. For the modeling process, it considers a matrix
line that, by convention, is named sum ray. This signal is
composed of various incidences with variable and non
deterministic values, whose amplitude is given by

Im[n] = loe-!'d , (31)
where d is the distance traveled by the photon ray within the
evidence body, f.J is the attenuation coefficient, 10 is the free
beam counting and 1m is the projection n attenuated beam .

This allows a filtering with a priori knowledge only in the
previous variable. Thus, the transference and system matrices
are reduced as:

[lm_IO~:~~-1)] = [~ ~][Jm~~:c~n_-:21)] (32)

Pe,[n]= [I O][lm_IO~:~~-1)] (33)

Matrix [1 O] corresponds to matrix H of the system
equation, which allows to power or to hide the observation
states according to hidden Markov chains. This allows the
filter to estimate states that are not visible outside the system.

The Kalman filter can be a nonlinear function and train
parameters (weights). There is then the possibility of using a
mapping function with neural networks where the filter trains
the neurons and moves to a stable system where the weights
are estimated and the mapping function has the lowest error
rate possible. This filter allows working with higher orders
(with the accuracy equivalent to the expansion of third order
Taylor series), while the filter, in its extended form, works
only with second order functions.

With the knowledge of a non-linear function ofthe process
and a Kalman filter that supports linear functions to get a
significant improvement in the signal. One solution is to use
a neural network to promote a better function of the mapping
process, reducing the noise present in the projections. For a
weight estimation of the neural network together with the

states estimation, it is possible to use two methods of
filtering: the state estimation and the dual estimation.

The use of Hidden Markov Chains model to estimate
weights of a neural network arose from the need to obtain
an estimator for the Kalman filter that could map the
nonlinear functions efficiently and better than the process
of linearization (applied in translations) and merge other
functions without the need to create several states to map a
single behavior. These arrangements for determining the
filtering initial weights are known, the next state is
obtained in a linear mapping with the previous state. Thus,
it has:

Xk+1 = f(xp Wp vk) (34)
Then, a Kalman filter to estimate the states and a

Kalman filter to estimate the weights are used. This
filtering allows the application in a system where the
dynamics of status is unknown or chaotic (non-
deterministic). Then it has a filtering system with dual
estimation that can be written as:

Xk+1 = f(xp ~, vk) (35)

Zk = h(xk, nk) (36)

Wk+1 = 1]Wk (37)

Yk = g(xk,Wk,mk) (38)

Zk = xk - Yk (39)
It can be used the two forms of Kalman filter for

nonlinear systems to compose the dual. Despite being a
more complete estimate, it is still prone to errors since the
estimation of the signal observed is approximate.

ITI. RESULTS AND DISCUSSION

As the Kalman filter works on a white noise process it
takes up the value of variance Q, which determines the
degree of confidence in the processo To measure the quality
of filtering, the ISNR variance was used based on the
windows (ROIs) in reconstructed images. A negative 1SNR
(Improvement in Signal Noise Ratio) indicates a loss of
detail or deformation (presence of artifacts) in the final
image. For the heterogeneous phantom, five windows
(ROIs) were used, where the presence of a negative value
or a decrease of 1SNR values indicate a lower quality of
filtering. In the homogeneous phantom, a ROI of 42 X 28
pixels was used and in the heterogeneous phantom, five
ROIs of 14 X 11 pixels were used to quantify the results
obtained with the filters. For the last, a soil sample is used
to validate the results. Table I presents test results to verify
the relationship between 1SNR and the quality of the signal
and the image reconstructed with SRUKF. Table 2 shows
the results of test ISNR values and the results of applying
the filter with artificial neural network.

By analyzing the values of the table, it may experience a
drop in the 1SNR homogeneous phantom due to the
presence of peaks in the image. These peaks may be
originated of the reconstruction algorithm itself or even by
the presence of other mechanical noises. The filter is stable
because the Poisson noise is more influential than the white
noise in high counts of photons.



The best result with the homogeneous phantom was with
the system variance value of 10, while the heterogeneous
phantom was stable for any value ofthe variance. The system
filtering of white noise was effective for both samples and
the drop in value of ISNR in homogeneous phantom is due to
the estimation of future states of the filter match the noise in
the samples. The results obtained by applying the filter to the
phantoms can be seen in Figure 1.

Table 1 - Results obtained with the unscented Kalman filter and
phantoms for calibration. The (I) is defined as homogeneous phantom and
the (2) is defined as heterogeneous phantom.

Q=l
Max ISNR (dB)

(1) (2)
R=O,OI -0,57 4.52 4.43 4.63 1.82 3.96
R=0,5 -0,81 4.52 4.43 4.63 1.82 3.96
R=0,8 -0,59 4.52 4.43 4.63 1.82 3.96
R=1 -1,88 4.52 4.43 4.63 1.82 3.96
R=5 -2,76 4.52 4.43 4.63 1.82 3.96
R=10 -0,17 4.52 4.43 4.63 1.82 3.96
R=15 -2,40 4.52 4.43 4.63 1.82 3.96
R=20 -0,40 4.52 4.43 4.63 1.82 3.96

Table 2 - Results obtained with the unscented Kalman filter with neural
networks and phantoms for calibration .. The (1) is defined as homogeneous

phantom and the (2) is defined as heterogeneous phantom.

Q=l
Max ISNR (dB)

(1) (2)
R=O,OI 4.75 2.31 1.91 2.35 1.24 1.67
R=0,5 6.63 5.11 4.31 5.34 2.81 3.86
R=0,8 6.77 6.53 5.64 6.86 3.85 5.03
R=1 6.73 7.37 6.31 7.74 4.34 5.68
R=5 7.62 10.86 8.69 11.13 2.30 8.38
R=10 7.91 13.92 10.88 13.76 -0.73 12.52
R=15 7.65 16.73 12.66 15.84 -1.85 16.14
R=20 7.05 19.01 14.13 17.38 -2.47 14.95

Noting the filtered projections, it is possible a more
consistent and stable filtering. Looking at the variance of
pixel values in the reconstructed image of the homogeneous
phantom, we find a concentration of values in a lower range,
even with the presence of pixels with different values
(darker). The heterogeneous phantom showed better stability,
the samples are well defined within the body studied. As the
filter can accurately estimate the noise affecting the states of
the observation process and the results show better details. A
rnulti-layer perceptron neural network is used with 2 neurons
in a hidden layer and 1 neuron in an output layer.

The filter with unscented estimation proved to be stable
for the homogeneous phantom, with little different values.
The same result was not reached with the heterogeneous
phantom in that it is possible to repair the distortion and loss
of detail due to the simplicity ofthe neural network applied.

There was an improvement in higher values obtained by
the filter, due to the efficiency of the unscented algorithm.
The higher values represent a greater fali in the variance
value in the regions of interest, demonstrating a better

filtering.
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Figure 1 - Results using the square-root Kalman filter. In the first
column the original projections are represented, together with their
respective reconstructed images. ln the second column, it is possible to
see the obtained results using a canonical observed model and last
column shows the use ofthe filter in dual estimation mode.

The tests with the unscented filter and neural networks
provided a better result than the extended filter, despite the
distribution of values of ROIs be differentiated. This delay
is due to the convergence ofthe network signal.

The results were as expected and have, to some extent,
the same visual results for the implementation of unscented
and basic filters, proving that the characteristics of Poisson
noise can be mapped by a neural network, where the
complexity to understand the process of equations deeply
can be replaced by an iterative intelligent system, able to
find new senso r features over time (difference in
temperature, equipment aging and new mechanical
structures). The results with soil sample show the dual
estimation can reach a better image due to the presence of



image details and no blurring effects in the sand grains.

IV. CONCLUSION

The unscented Kalman filter uses the resources for the
creation of sigma points in the mean and around it, making a
better mapping of the variance behavior exc1uding the need
for ca1culations with matrices of linearization. The filter
implemented in this work has several feature clusters:
Increased use of covariance, which allows working with the
signal, noises and process and system noise variances at the
same time, allowing noise estimation, something that does
not happen with the other Kalman filters; Use the type of
filter to square root, which using the Cholesky factoration
allows greater stability of the filter conceming the noise and
a gain in the filter order; Freedom to use the algorithm
without the need for a priori knowledge of the response
functions.

Accuracy equivalent to third-order functions without the
need for neural networks. Despite the use of a translation
function be something simple and perhaps more suitable for a
range of problems, due to the processing time and memory
required, the Kalman filter with neural network replaces the
old algorithms with these techniques due to the minimal use
of layers and number of neurons in these layers. In addition,
the use of the dual estimation modifies the initial intense
training, what not always guarantees the convergence and
adaptability to a better result and proves that a translation
function implemented in the model of hidden Markov chains
is not so efficient as the use of this mode! to identify the
weights.

As the unscented Kalman filter, it allows the mapping
functions for the use of higher orders through the mapping of
the mean and variances by the sigma points, without the use
of linearization by Jacobian and Hessian matrices.

The use of neural networks with this filter type allows
mapping any function, with precise estimation of results.
Additionally, by checking the results of the unscented
Kalman filter with neural networks in phantoms, it was
possible to observe the efficiency of the filter to adapt to the
chaotic features, such as heterogeneities normally present in
real samples.

As a pre-filtering, maintaining details in an image should
be the most important objective.
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