TAXA DE SOBREVIVÊNCIA IN VITRO DE EMBRIÕES BOVINOS PRODUZIDOS IN VITRO SUBMETIDOS À VITRIFICAÇÃO OU CONGELAMENTO LENTO COM ETILENOGLICOL

Mariana Córtex Boitê¹; Luiz Altamiro Garcia Nogueira¹; Michele Munk Pereira²; Ribrio Ivan Tavares Pereira Batista³; Sabine Wohlraes Viana³; Juliana Polissen³; Gustavo Bruno Mota³ Raquel Varela Serapião¹; Bruno Campos de Carvalho³; Lilian Tami Iguma³; Wanderlei Ferreira de Sá³; João Henrique Moreira Viana³; Luiz Sérgio de Almeida Camargo³

1-Estudante do curso de mestrado em medicina veterinária da Universidade Federal Fluminense - UFF, Niterói-RJ, E-mail: maricboite@hotmail.com; 2-Estudante do curso de biologia do Centro de Ensino Superior de Juiz de Fora – CESJF, Juiz de Fora- MG; 3-Estudante do curso de mestrado da Universidade Federal de Juiz de Fora – UFJF, Juiz de Fora - MG; 4-Embrapa Gado de Leite – Juiz de Fora, MG

Palavras-chave: criopreservação, embriões bovinos, produção in vitro de embriões.

INTRODUÇÃO

A produção in vitro de embriões (PIVE) bovinos é uma técnica muito utilizada tanto comercialmente como para pesquisa científica. Entretanto, um dos obstáculos para sua maior difusão é a ausência de métodos adequados para preservar os embriões. A criopreservação de embriões produzidos in vivo é realizada pelos profissionais de campo, normalmente através do congelamento lento, e apresenta índices satisfatórios. Contudo, os embriões produzidos in vitro possuem características que aumentam a sensibilidade ao processo, como maior teor de lipídios, menor quantidade de junções intercelulares, zona pelúcida mais frágil e menor número de células (FAHR et al., 2001). As peculiaridades desses embriões levaram os pesquisadores a buscar outras formas de criopreservar os produtos da fertilização in vitro, sendo uma delas a vitrificação.

A vitrificação é um processo físico pelo qual a solução alcança um estado amorfo, estável e vitério através do resfriamento rápido, sem formação de cristais de gelo, mantendo as propriedades de um líquido em forma solidificada (RALL, 1992). Para obter essa transformação é necessário o uso de altas concentrações de crioprotetores, o que prejudica os embriões pelo nível de toxicidade. VAJTA et al. (1998) estabeleceu na vitrificação o uso do open pulled straw (OPS) que elevou ainda mais as taxas de resfriamento e reaquecimento (mais de 20.000°C/min) e menor tempo de contato com crioprotetores, o que reduziu os danos tóxicos e osmóticos. A principal vantagem da
vitrificação em relação ao congelamento lento é a ausência de formação de cristais de gelo, que lesam as membranas celulares e prejudicam a viabilidade embrionária.

Objetivou-se avaliar a capacidade de sobrevivência de embriões produzidos *in vitro* através da comparação, após serem submetidos à técnica de vitrificação por OPS ou congelamento lento com etilenoglicol, das taxas de reexpansão e eclosão dos embriões de cada tratamento.

MATERIAL E MÉTODOS

Complexos *cumulus*-oócitos (COCs), obtidos a partir de aspiração de ovários coletados em matadouro, foram maturados e fecundados *in vitro*. Os possíveis zigotos foram cultivados em meio CR2aa adicionado de 10% de soro fetal bovino (SFB) e em co-cultura com células do *cumulus* oriundas dos próprios oócitos em ambiente atmosférico com 5% de CO₂ a 38,5°C. Sete dias após a fecundação (D7), blastocistos (B1) e blastocistos expandidos (Bx), graus de qualidade 1 e II, provenientes de oito baterias, foram retirados do cultivo (n=148) e divididos equitativamente quanto à qualidade e estádio de desenvolvimento entre os grupos de tratamento vitrificação (Vt=48), congelamento lento com etilenoglicol (EG=46) e controle (C=54). Todos os embriões foram acondicionados em placa contendo TALP aquecido. Aqueles separados para o congelamento lento, foram transferidos individualmente para gotas de solução de etilenoglicol e PBS 1,5M e envasados em palhetas 0,25 ml Nutricel. Cada palheta foi vedada em sua extremidade e, ao final de dez minutos de contato entre o crioprotetor e o embrião, foram transferidas para o cryochamber da máquina de congelamento Freeze Control®. Após seis minutos na máquina, foi feito o seeding e iniciou-se a curva de congelamento com redução de 0,5°C/min até -32°C. Ao final da curva, as palhetas foram armazenadas em nitrogênio líquido a-196°C.

Os embriões do grupo Vt foram transferidos para uma placa de Nunc sobre placa aquecedora a 39°C contendo 1 ml de *holding medium* (HM), solução de PBS acrescido de 5% se soro fetal bovino. Em seguida foram individualmente transferidos para outro poço da mesma placa de Nunc contendo 10% de DMSO e 10% Etilenoglicol em HM, onde permaneceram por um minuto. Ao final desse período foram transferidos para gotas de 20µl de solução HM contendo 20% de DMSO e 20% de etilenoglicol onde permaneceram por período não superior a 25 segundos. Neste intervalo foram acondicionados em OPS pelo efeito de capilaridade e submersos em nitrogênio líquido.

O descongelamento das palhetas do grupo EG foi realizado por 10 segundos em temperatura ambiente e 20 segundos em banho-maria a 37°C. O conteúdo de cada palheta era depositado sobre uma placa de Petri para localização do embrião, que em seguida era "lavado" em CR2 e transferido para a placa de cultivo. A desvitrificação foi realizada pela permanecie de cada OPS em

239
temperatura ambiente por 5 segundos e imersão da extremidade contendo o embrião em solução 1.5 M de sacarose em HM aquecida por 5 minutos. Em seguida, os embriões eram transferidos para outro poço contendo solução de 1.2M de sacarose em HM onde permaneceram por mais cinco minutos e então eram transferidos para a placa de cultivo. O cultivo dos embriões descongelados e desvitriificados foi feito em gotas de 50µl de CR2aa previamente preparadas, contendo monocamada de células da camada granulosa oriundas de foliculos com mais de 8 mm. As observações para determinar a taxa de sobrevivência foram realizadas 24, 48 e 72 horas após o processo de criopreservação. Levou-se em consideração as taxas de reexpansão com 24 horas, eclosão com 72 horas e degeneração nos três momentos para, através de análise pelo teste qui-quadrado, compararmos as duas técnicas.

RESULTADOS E DISCUSSÃO

Os tratamentos Vt e EG não apresentaram diferença (p>0,05) entre si na taxa de reexpansão com 24 horas ou na taxa de eclosão com 72 horas de cultivo. Os dois grupos diferiram do controle (p<0,01) na taxa de eclosão com 72 horas, como mostra a Tabela 1. Entretanto, houve diferença entre o grupo Vt e EG (p>0,01) nas taxas de degeneração com 48 horas e 72 horas, sem diferença (p>0,05) na taxa de degeneração com 24 horas de cultivo (Tabela 2). O grupo controle apresentou a maior taxa de eclosão com 72 horas (42,6%) e as menores taxas de degeneração nos três momentos de observação (7,4%, 24,1%, 27,8%), diferindo estatisticamente (p<0,01) dos grupos Vt e EG em todas as análises.

Os parâmetros usados para avaliar a taxa de sobrevivência in vitro, neste experimento, foram a taxa de reexpansão com 24 horas e taxa de eclosão com 72 horas de cultivo após o tratamento. Não foram encontradas diferenças entre os grupos Vt e EG, indicando que, tanto o congelamento lento com etilenoglicol quanto a vitrificação possuem efeitos similares sobre os embriões. Entretanto, a análise da taxa de degeneração mostrou que, a partir de 48 horas após o tratamento, maior número de embriões submetidos ao congelamento lento degeneram. Este dado indica que, o tratamento com etilenoglicol causou danos aos blastocistos que induziram a degeneração. A formação de cristais de gelo, com consequente rompimento de membranas celulares e do citoesqueleto (DOBRINSKY, 1996) podem ter causado tais danos. A vitrificação não envolve formação de cristais, porém, a concentração utilizada de crioprotetores também prejudica a sobrevivência dos embriões, principalmente pelo efeito tóxico sobre o citoesqueleto (DOBRINSKY, 1996).

A sobrevivência dos embriões submetidos aos tratamentos de criopreservação, avaliada a partir das taxas de reexpansão e eclosão, não foi diferente entre os grupos. Porém, as taxas de
degeneração diferentes após 48 horas de cultivo mostram que, o congelamento lento com etilenoglicol causou danos irreversíveis aos embriões, levando mais estruturas à degeneração quando comparado à vitrificação. Pelo fato de embriões FIV apresentarem peculiaridades que conferem a alta sensibilidade à criopreservação, o congelamento lento destes embriões não apresenta a mesma eficiência observada com embriões produzidos in vivo. A vitrificação pode representar uma nova opção. Entretanto, adaptações na técnica, específicas para embriões FIV, devem ser testadas para melhores índices serem alcançados.

<table>
<thead>
<tr>
<th>GRUPOS</th>
<th>REEXPANSÃO HORA</th>
<th>24 ECLOSÃO HORA</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLE</td>
<td>-</td>
<td>42,6% (23/54) a</td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td>48,0% (23/48) a</td>
<td>16,7% (8/48) b</td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td>34,8% (16/46) a</td>
<td>15,3% (7/46) b</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 1: taxas de reexpansão com 24 horas de cultivo após o tratamento e eclosão com 72 horas de cultivo após o tratamento. Valores representados com letras distintas diferem entre si.

<table>
<thead>
<tr>
<th>GRUPOS</th>
<th>24 horas</th>
<th>48 horas</th>
<th>72 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROLE</td>
<td>7,4% (4/54) a</td>
<td>24,1% (13/54) a</td>
<td>27,8% (15/54) a</td>
</tr>
<tr>
<td>VT</td>
<td>27,1% (13/48) b</td>
<td>45,8% (22/48) b</td>
<td>50% (24/48) b</td>
</tr>
<tr>
<td>EG</td>
<td>45,6% (21/46) b</td>
<td>73,9% (34/46) c</td>
<td>78,3% (36/46) c</td>
</tr>
</tbody>
</table>

Tabela 2: Taxa de degeneração observada com 24, 48 e 72 horas de cultivo após o tratamento nos três grupos. Valores representados com letras distintas diferem entre si.

AGRADECIMENTOS
Fapemig, cNPQ e Embrapa Gado de Leite

REFERÊNCIAS BIBLIOGRÁFICAS

XXX SEMANA DE BIOLOGIA
O MUNDO SE TORNOU PEQUENO PARA VOCÊ
MAS VOCÊ NÃO É GRANDE PARA O MUNDO

> XIII MOSTRA DE PRODUÇÃO CIENTÍFICA
> V FEIRA MUNICIPAL DE CIÊNCIAS
> II MOSTRA DE PALEOBIO DIVERSIDADE
> MINI CURSOS

> CICLO DE PALESTRAS:
 - ADOCAÇÕES
 - ADOCAÇÕES SUSTENTÁVEIS
 - FRAGMENÇÃO FLORESTAL
 - CORREDORES ECOLÓGICOS
 - AGROECOSISTEMA VIGAAL
 - SISAL DE DESENVOLVIMENTO NA ILHA
 - ENSAIOS DE DESENVOLVIMENTO EM NÚCLEO

INSCRIÇÕES: A partir de 01 de outubro
no DA de Biologia ICB - UFJF

INQUIETE: luizmauro907@gmail.com
TEL.: (31) 39292-4422 / 3242 / 99369896 / 99494335

REALIZAÇÃO: