Digestibilidade da matéria seca de suplementos concentrados e de forrageiras tropicais determinada por dois procedimentos *in vitro*

Rosemeire Aparecida de Carvalho Dornellas¹, Fernando César Ferraz Lopes², José Alberto Bastos Portugal³, Rui da Silva Verneque⁴, José Moreira de Castilho⁵, Álcio Azambuja de Azambuja²

¹Estudante de Ciências Biológicas do CES-JF. Assistente da Embrapa Gado de Leite – Rua Eugênio do Nascimento, 610 – Juiz de Fora/MG. Bolsista de IC do CES-JF. E-mail: miererose@yahoo.com.br.

Resumo: Para otimizar o emprego de recursos financeiros e humanos, sistemas automatizados de fermentação *in vitro* foram desenvolvidos, permitindo processar maior número de amostras em relação ao método de dois estágios realizado em tubos individuais, tradicionalmente adotado na determinação da digestibilidade *in vitro*. Foi objetivo deste experimento comparar valores de digestibilidade *in vitro* da matéria seca (DIVMS) de alimentos concentrados e de forrageiras tropicais, determinados pelo método de dois estágios realizado em tubos individuais ou em equipamento automatizado de fermentação. Utilizouse delineamento inteiramente casualizado, em esquema fatorial 2 x 6 (procedimentos *in vitro* x classes de alimentos), com os alimentos de cada classe sendo as repetições. Os valores de DIVMS determinados pelo método realizado em tubos foram mais próximos dos relatados na literatura e inferiores (P<0,0001) aos obtidos na Incubadora *In vitro*. Os desvios-padrão das médias de DIVMS foram, de modo geral, menores quando determinados pelo método realizado em tubos.

Palavras-chave: análise química, composição química, método de análise, nutrição de ruminantes

Dry matter digestibility of tropical forages and supplements concentrates determined by two *in vitro* procedures

Abstract: To optimize the financial and human resources automatized systems of *in vitro* fermentation had been developed, allowing to process greater number of samples in relation to the two-stage 48 h digestion technique carried through in individual sample digestion tubes, traditionally adopted in the determination of the *in vitro* digestibility. The aim of this trial was to compare values of *in vitro* dry matter digestibility (IVDMD) of following six classes of food: extrusas coleted in tropical pastures (4), sugar-canes (4), legum forages (4), tropical graminea forages (4) proteic concentrates (2) and energetic concentrates (2). For the IVDMD was determined by the two-stage technique carried through in individual digestion tubes and by an automatized equipment of fermentation (filter bag technique). The experimental design was completely randomized with a 2 x 6 factorial arrangement (*in vitro* procedures x food classes), with foods being the repetitions. The IVDMD values determined in tubes were close to those found by others authors and lower (P<0.0001) than those obtained by the filter bag technique. Standard deviation of IVDMD means were, in general, lower when the individual tubes method is used.

Keywords: chemical analysis, chemical composition, method of analysis, ruminant nutrition

Introdução

Vários são os métodos disponíveis para determinação do valor de digestibilidade de alimentos utilizados na formulação de dietas para gado de leite (ADESOGAN, 2002). O método direto convencional *in vivo*, por basear-se em ensaios de digestão conduzidos com animais é o procedimento de referência, e aquele que, preferencialmente, deve ser utilizado para calibração das demais técnicas. No entanto, é oneroso, laborioso e demorado, além de não permitir a avaliação simultânea de vários alimentos. Técnicas alternativas concomitantemente eficientes, rápidas e de baixo custo vêm sendo propostas, visando à determinação de valores de digestibilidade. Dentre muitos métodos, o procedimento *in vitro* de dois estágios de TILLEY & TERRY (1963), é o mais difundido e utilizado em estudos de nutrição de ruminantes (ADESOGAN, 2002). No entanto, apresenta restrições de ordem prática, como as relacionadas ao excesso de tempo e de trabalho despendidos à realização das etapas químico-

²Analista da Embrapa Gado de Leite. E-mail: <u>fernando@cnpgl.embrapa.br</u> e <u>alcio@cnpgl.embrapa.br</u>, respectivamente.

³Professor do CES-JF. E-mail: <u>portugal@cesjf.br</u>

⁴Pesquisador da Embrapa Gado de Leite. E-mail: rsverneq@cnpgl.embrapa.br.

⁵Assistente da Embrapa Gado de Leite.

44ª Reunião Anual da Sociedade Brasileira de Zootecnia

mierobiológicas da análise, bem como à necessidade metodológica de que cada alimento avaliado na bateria, seja incubado individualmente em tubos, o que limita sobremaneira sua eficiência na utilização dos recursos humanos, financeiros e de infra-estrutura do laboratório. Para superar este problema, sistemas automatizados de determinação de digestibilidade *in vitro* de alimentos estão sendo comercializados, permitindo redução dos custos relacionados ao trabalho, e processando até 100 amostras por vez, coletivamente fermentadas em jarros de digestão, ao invés de individualmente incubadas em tubos, como no procedimento *in vitro* tradicional de TILLEY & TERRY (1963). MABJEESH et al. (2000) recomendaram a utilização de sistemas automatizados de fermentação *in vitro* na análise de digestibilidade da matéria seca. Entretanto, houve dependência do tipo de forragem incubada quanto ao resultado de digestibilidade obtido do sistema automatizado de fermentação *in vitro* em relação ao método realizado em tubos (MABJEESH et al., 2000; WILMAN & ADESOGAN, 2000).

Foi objetivo deste experimento comparar valores de digestibilidade *in vitro* da matéria seca de alimentos concentrados e de forrageiras tropicais, determinados pelo procedimento de dois estágios de TILLEY & TERRY (1963) ou obtidos de equipamento automatizado de fermentação.

Material e Métodos

O experimento foi conduzido no Laboratório de Digestibilidade da Embrapa Gado de Leite (Coronel Pacheco, MG). Foram avaliados dois procedimentos de determinação da digestibilidade *in vitro* da matéria seca (DIVMS) de amostras pertencentes a seis classes de alimentos comumente utilizados na dieta de bovinos (Tabela 1), a saber: (1) quatro extrusas coletadas em pastagens tropicais; (2) quatro amostras de cana-de-açúcar; (3) quatro forragens de leguminosas; (4) quatro forragens de gramíneas tropicais; (5) dois concentrados protéicos; e (6) dois concentrados energéticos. As amostras de alimentos foram pré-secas em estufa de ventilação forçada (72 h, 55°C) e moídas (1 mm).

Tabela 1 Composição química (% da matéria seca) dos alimentos avaliados no estudo^a

Alimentos	PB	FDN	FDA
Extrusa de capim-elefante (Pennisetum purpureum) – pastagem com 30 dias			
de descanso - 1º dia de pastejo	15,4	72,2	41,1
Extrusa de capim-elefante (45 dias de descanso; 1º dia de pastejo)	10,5	77,0	46,6
Extrusa de Cynodon spp. (28 dias de descanso; estação das chuvas)	14,6	64,0	28,6
Extrusa de <i>Cynodon</i> spp. (38 dias de descanso; estação da seca)	14,3	60,5	34,0
Cana-de-açúcar (Saccharum officinarum, L.) – cultivar CB-47355	2,9	51,6	31,4
Cana-de-açúcar – cultivar SP-811520	2,9	53,8	34,1
Cana-de-açúcar – cultivar NA-5679	1,4	48,9	31,2
Cana-de-açúcar – cultivar IAC 915156	3,5	49,1	35,3
Cratylia argentea	20,4	50,1	35,8
Amendoim-forrageiro (Arachis pintoi) – 20 dias de crescimento	12,8	52,2	44,0
Feijão-guandu (<i>Cajanus cajan</i>) – 5 meses de rebrota	16,8	50,0	39,8
Leucena (Lecaena leucocephala) – 1 ano de rebrota	28,8	30,3	25,9
Brachiaria brizantha cv. Xaraés	11,6	58,9	35,7
B. decumbens	13,2	57,6	33,3
Panicum. maximum cv. Mombaça	10,2	64,0	41,7
P. maximum cv. Tanzânia	12,4	61,1	37,6
Farelo de soja	50,2	9,8	-
Farelo de algodão	40,4	31,8	22,5
Fubá de milho	10,4	6,9	3,5
Farelo de trigo	17,8	-	-

^aPB = proteína bruta; FDN = fibra em detergente neutro e FDA = fibra em detergente ácido

Os dois procedimentos *in vitro* avaliados foram: 1) tradicional, de dois estágios de TILLEY & TERRY (1963); e 2) automatizado, utilizando Incubadora *In vitro* modelo TE-150 (Tecnal Equipamentos para Laboratório, Piracicaba, SP). No procedimento *in vitro* de dois estágios de TILLEY & TERRY (1963), os vinte alimentos foram incubados em duplicata em tubos contendo 50 mL de solução tamponada, preparada utilizando-se relação 4:1 (v/v) de saliva artificial e líquido ruminal, coletado de vaca Holandês x Zebu fistulada no rúmen, mantida em pastagem formada por forrageiras de clima tropical. Dois tubos contendo somente a solução tamponada ("prova em branco") e dois tubos com amostra de forragem de digestibilidade conhecida ("alimento-padrão") foram incluídos à bateria. Após 48 h de incubação, 4 mL de ácido clorídrico (HCl) a 7,4% (v/v) e 2 mL de pepsina 1:10.000 a 5% (p/v)

44ª Reunião Anual da Sociedade Brasileira de Zootecnia

Unesp-Jaboticabal, 24 a 27 de Julho de 2007

foram adicionados a cada tubo e, após novo período de 48 h de incubação, foram realizados os procedimentos de filtragem a vácuo, secagem e pesagem dos resíduos, visando aos cálculos de DIVMS (SILVA & QUEIROZ, 2002). No método automatizado, as amostras dos alimentos pertencentes às classes (1), (2) e (5) foram incubadas em duplicata em dois dos quatro jarros de fermentação, em sacos confeccionados em TNT-100 (Tecido-não-tecido, 100% polipropileno; 5,5 x 5,5 cm), além de dois sacos para "prova em branco" e dois outros contendo o "alimento-padrão", totalizando 24 sacos em cada um dos dois jarros de fermentação, que continham 1.200 mL da mesma solução tamponada relatada para o tratamento realizado nos tubos. O mesmo procedimento foi adotado na incubação das amostras pertencentes às classes de alimentos (3), (4) e (6). Após 48 h de incubação foram adicionados em cada jarro de fermentação, 96 mL de HCl a 7,4% (v/v) e 48 mL de pepsina 1:10.000 a 5% (p/v), e após novo período de 48 h de incubação foram realizados os procedimentos de lavagem, secagem e pesagem dos sacos, visando aos cálculos de DIVMS. O experimento foi analisado, utilizando delineamento inteiramente casualizado, em esquema fatorial 2 x 6 (procedimentos *in vitro* de determinação da DIVMS x classes de alimentos), com os alimentos sendo as repeticões.

Resultados e Discussão

De modo geral, os valores de DIVMS determinados pelo método de TILLEY & TERRY (1963) foram mais próximos dos relatados na literatura do que os obtidos da "Incubadora In vitro". Além disso, os desvios-padrão das médias de DIVMS foram, generalizadamente, menores quando determinados pelo método de TILLEY & TERRY (1963). Trabalhando com forrageiras de clima temperado, WILMAN & ADESOGAN (2000) relataram que o método tradicional, de TILLEY & TERRY (1963) produziu resultados mais precisos (menores erros-padrão e coeficientes de variação) que o sistema automatizado de fermentação in vitro utilizado em seu estudo. Foram observados efeitos (P<0,0001) de classe de alimentos e do procedimento de determinação de DIVMS. No entanto, não houve interação entre os fatores estudados (P>0,05). Os valores de DIVMS determinados pelo método de TILLEY & TERRY (1963) foram inferiores (P<0,0001) aos obtidos na "Incubadora In vitro", corroborando os resultados de MABJEESH et al. (2000) e WILMAN & ADESOGAN (2000). Ademais, ao utilizar-se a Incubadora In vitro, os valores de DIVMS do "alimento-padrão" foram superestimados em relação ao valor padrão, enquanto que na incubação realizada nos tubos, obteve-se boa concordância entre estes. Ressalte-se que a própria rotação contínua dos jarros de fermentação da Incubadora In vitro em interação com o tipo de material utilizado na confecção do saco de incubação pode contribuir para maior digestão e/ou efluxo das amostras, já que no método de TILLEY & TERRY (1963) foram realizadas apenas duas agitações nos tubos por dia. Foi observado que os sacos confeccionados com TNT-100 frequentemente desfiavam-se, facilitando a adesão de partículas suspensas da solução tamponada.

Conclusões

A despeito de otimizar a utilização dos recursos humanos, financeiros e de infra-estrutura do laboratório, o equipamento automatizado de fermentação *in vitro* superestimou os valores de digestibilidade da matéria seca de alimentos volumosos e concentrados comumente utilizados na dieta de ruminantes, condicionando a recomendação de seu emprego, à implementação de novos estudos, com ênfase naqueles relacionados ao material utilizado na confecção dos sacos de incubação.

Agradecimentos

À Embrapa Gado de Leite pela oportunidade de realização do trabalho e ao Centro de Ensino Superior de Juiz de Fora (CES-JF) pela concessão da bolsa de Iniciação Científica.

Literatura citada

ADESOGAN, A. T. What are feeds worth?: A critical evaluation of selected nutritive vlues methods. In: ANNUAL FLORIDA RUMINANT NUTRITION SYMPOSIUM, 13., 2002, Gainesville. **Proceedings...** Gainesville: University of Florida, 2002, pág.33-47. Disponível em: http://www.animal.ufl.edu/dairy/2002ruminantconference/default.htm>. Acesso em: 2 abr. 2004.

MABJEESH, S. J.; COHEN, M.; ARIELI, A. In vitro methods for measuring the dry matter digestibility of ruminant feedstuffs: comparison of methods and inoculum sources. **J. Dairy Sci.**, v. 83, n. 10, p. 2289-2294, 2000.

SILVA, J.S.; QUEIROZ, A.C.da. **Análise de alimentos**: métodos químicos e biológicos. 3.ed. Viçosa: UFV, 2002. 235p.

44ª Reunião Anual da Sociedade Brasileira de Zootecnia

Unesp-Jaboticabal, 24 a 27 de Julho de 2007

TILLEY, J. M. A.; TERRY, R. A. A two-stage technique for the *in vitro* digestion of forage crops. **J. Brit. Grassl. Soc.**, v. 18, p. 104-111, 1963.

WILMAN, D. Dr.; ADESOGAN, A. A comparison of filter bag methods with conventional tube methods of determining the in vitro digestibility of forages. **Anim. Feed Sci. Technol.**, v. 84, p. 33-47, 2000.