protamination in condensing chromatin, facilitates DNA breakage. It is suggested that a reduction in the level of deoxyribonucleic acid protection, render the DNA molecule more sensitive to external damaging agents.

P375

GnRH-a induced steroid hormone receptor regulation in bovine endometrium

Singh, R*; Pretheeben, T; Perera, R; Rajamahendran, R Animal Science, University of British Columbia, Canada

Introduction Ovarian steroids consistently influence the endometrium and maintain its cyclicity by acting through their corresponding receptors. Estrogen receptors(ER α and ER β) and progesterone receptors (PR) are present in bovine endometrium in follicular and luteal phases of the estrous cycle, bovine ovaries and placentomes. We, most recently demonstrated the presence of GnRH receptors (GnRH-R) in bovine endometrium at both mRNA and protein level and localized these receptors to endometrial epithelial cells in both the phases of the estrous cycle. Additionally GnRH-R mRNA is also present in normal and carcinogenic human endometrium and endometriosis, where GnRH acts in an apoptotic and antiproliferative manner. GnRH is widely used in the bovine reproductive management including estrous and ovulation synchronization, induction of ovulation, post partum cyclicity, treatment of cystic ovarian disease, to overcome early embryonic mortality, and increase pregnancy rates; but there is clear lack of information on its local modulatory role in the endometrium. We find the co-existence of GnRH-R and steroid hormone receptors as interesting and there are prior reports about ligand independent activation of steroid hormone receptors. Whether GnRH through its receptors could regulate these receptors in normal endometrium is still not known and this study, for the first time examined the GnRH induced regulation of ER α and ER β and PR in bovine endometrium.

Materials and Methods Uteri belonging to follicular and luteal phases of the estrous cycle were collected from the local abattoir, transported to lab within one hour. One hundred mg of endometrial explants were cultured at 37^{0} C, 5% CO₂ in humidified atmosphere. After 20 h incubation, explants were treated with different doses of GnRH agonist – buserelin (0, 200, 500, 1000 ng/mL respectively), GnRH antagonist – antide (500 ng/mL) and a combination of antide (500 ng/mL) and buserelin (200ng/mL) for 6 h. Two µg of total RNA extracted from each treatment was reverse transcribed using commercially available kit and the mRNA levels of ER α , ER β and PR were assessed by semi-quantitative RT-PCR and using the gene specific primers G3PDH was used as an internal control in the experiments. Optical intensity of individual bands was analyzed by Scion imaging beta and statistically analyzed by comparing to control and using student t test.

Results This study revealed that GnRH (200ng/mL) upregulated ER α mRNA in both follicular and luteal phases of the estrous cycle and it this effect was more pronounced (P ≤ 0.05) in the luteal phase; whereas mRNA levels of ER β and PR were not altered.

Conclusions GnRH induced upregulation of ER α could have potential implications on reproductive process such as gamete transport, fertilization, cellular proliferation, uterine receptivity, implantation and maintenance of normal physiological status of the uterus and increases our understandings of the molecular basis of the reproduction at the endometrial level.

P376

Effect of pre-incubation of male and female gametes with fibronectin prior to fertilization *in vitro* in cattle

Thys, M1*; Nauwynck, H2; Maes, D1; Van Soom, A1

¹Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Belgium; ²Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium

Carbohydrates and glycoproteins modulate various adhesion and binding events in reproductive processes, including sperm-oviduct adhesion, sperm-egg interaction and embryo implantation. When fibronectin (Fn) – an extracellular matrix glycoprotein – is supplemented to the fertilization medium, a substantial inhibition of sperm penetration during bovine *in vitro* fertilization (IVF) was observed. To identify whether Fn interacts with either male or female gametes, 2 experiments were conducted incubating either sperm cells or cumulus oocyte complexes (COCs) with Fn prior to IVF.

To evaluate the effect of Fn on sperm, 2 groups of in vitro matured bovine COCs were fertilized in standard medium. One group was inseminated with spermatozoa (1x10⁶ sp/ml) previously incubated with 500 nM Fn for 30 min. The second group was fertilized with spermatozoa (same ejaculate) incubated with standard medium. Two extra experiments – where the sperm cells were incubated for 2 h resp 4 h - were performed to evaluate effect of time of sperm preincubation on inhibition of sperm penetration. To assess the effect of Fn on the female gamete, in vitro matured COCs were divided into 2 groups. The first group was fertilized under standard conditions, the second one was treated with 500 nM Fn for 30 min prior to IVF. Subsequently, a similar setup was applied on zona-free oocytes. Twenty hours after insemination, all presumed zygotes were fixed, stained with Hoechst 33342 and evaluated by fluorescence microscopy for sperm penetration and fertilization. Differences in fertilization and penetration percentage were analyzed by binary logistic regression (SPSS 15.0).

Pre-incubation of sperm cells with Fn significantly decreased the sperm penetration compared to that of the control (75.2% vs 87.0%) resulting in an inhibition of penetration of 13.6%. The same tendency was observed for fertilization with or without Fn pre-incubated sperm (68.6 % vs 78.2 %). Prolonging the duration of sperm pre-incubation caused more prominent inhibition of penetration (22.2% after 2 h; 42.8% after 4 h). When pre-incubating COCs with Fn, penetration was not significantly reduced (76.2% vs 83.0%) compared to that of the control, nor was the fertilization rate (67.3% vs 75.4%). Furthermore, Fn pre-incubation of zona-free oocytes did not affect sperm penetration (42.0% vs 46.9%) nor fertilization (37.1% vs 37.0%).

In conclusion, Fn inhibits sperm penetration in bovine COCs through interaction with the sperm cell. To elucidate the underlying mechanism, identification of receptors for Fn on bovine sperm is required.

P377

Effect of replacer of fetal calf serum in the development

and gene expression in bovine embryos *in vitro* cultured Serapião, RV1*; Boité, MC^{1,2}; Camargo, LSA¹; Polisseni, J¹; Viana, JHM¹; Folhadella, I¹; Sá, WF¹; Fonseca, FA⁴

¹Laboratório de Reprodução Animal, Embrapa Gado de Leite, Brazil; ²Faculdade de Medicina Veterinária, Universidade Federal Fluminense, Brazil; ³Laboratório de Genética Molecular, Embrapa Gado de Leite, Brazil; ⁴Laboratório de Reprodução Animal, Universidade Estadual do Norte Fluminense, Brazil

Introduction The period of post fertilization embryo culture is the most critical affecting blastocyst quality. Knockout SR (Gibco Labs., Grand Island, NY) is a serum replacer optimized to support embryonic stem cells in culture and can also be used to replace serum during culture of bovine embryos. The expression of genes associated to stress response, such as heat shock proteins (Hsp), can be affected by *in vitro* culture conditions, including culture medium components. The aim of this study was to evaluate the effect of KnockoutTM SR on

the development, total number cells and relative abundance of Hsp70.1 of *in vitro* fertilized bovine embryos.

Materials and methods COCs collected in slaughterhouse were matured and in vitro fertilized. The presumptive zygotes were randomly distributed in three groups of medium culture CR2aa supplemented with 10% of fetal calf serum (FCS); 10% knockout serum replacer (KSR) and 3 mg/ml of polyvinyl alcohol (PVA). Cleavage rate and blastocyst rate were determined respectively 72 and 168 hours post-fertilization (hpf). The total number of cells were determined at 192 hpf. Pools of ten embryos obtained at 192 hpf were frozen for RNA extraction and real time RT-PCR methodology was used to obtain quantitative data of Hsp 70.1 transcripts. Expression of GAPDH gene was used as endogenous reference. Calculations of relative quantification were performed by Comparative Ct method, using the value found in PVA group as calibrator. Data of cleavage and blastocyst rate were analyzed by the Kruskal Wallis test and the total number of cell by variance analyses. Means were compared by Student Newman Keuls test.

Results and Discussion No significant difference (P>0.05) was found among FCS (57,8±4,6), KSR (62,2±4,5) and PVA (60,4±4,4) on cleavage rate. However, blastocyst rate (12,2±2,1 and 18,6±3,0) and total number of cells (105,9±5,9 and 109,4±6,1) were similar (P>0.05) for KSR and FCS, and higher (P<0.01) when these supplements were compared to PVA (4,2±1,0 and 79,6±8,4). Expression levels for FCS and KSR group were 1.2±0.06 and 1.4±0.08 fold different relative to PVA group without differences (P>0.05) between FCS and KSR groups. These data show that bovine embryos cultured in medium supplemented with KSR has similar patterns of development, quality and Hsp70.1 expression than those cultured in presence of the serum. In conclusion, KSR is able to support development of *in vitro* fertilized bovine embryos and it can be an alternative when serumfree culture medium is recommended.

Thanks to Agrogenetica, FAPEMIG, CNPq

P378

Melatonin treatment and undernutrition affect expression of uterine estrogen and progesterone receptors in ewes during the reproductive and the anestrous seasons

Vázquez, MI1*; Sartore, I2; Abecia, JA1; Forcada, F1; Sosa, C1; Palacín, I1; Casao, A1; Meikle, A3

¹Animal Production and Food Science, Veterinary Faculty, University of Zaragoza, Spain; ²Biochemistry, Faculty of Veterinary Medicine, University of Montevideo, Uruguay; ³Laboratory of Nuclear Techniques, Faculty of Veterinary Medicine, University of Montevideo, Uruguay

Melatonin treatment in ewes increases prolificacy and fertility. A reduction in PGF2 α in vitro secretion by endometrial cells after melatonin addition has been reported, suggesting that melatonin could act directly on sheep endometrium. In previous studies we have shown that undernutrition affects endometrial sensitivity to estradiol and progesterone by decreasing their receptor concentration (ER α and PR, respectively) which could explain the lower pregnancy rates found in undernourished ewes. In this study we tested the hypothesis that melatonin treatment could counteract subnutrition effects, and thus ERa and PR content in different endometrial cell types were studied in undernourished ewes. Adult Rasa Aragonesa ewes were assigned to a 2 x 2 factorial design performed both in the reproductive (RS, n=25) and anestrous seasons (AS, n=24). They were treated (+MEL) or not (-MEL) with a subcutaneous implant of melatonin for 42 days (Melovine®, CEVA) and fed to provide 1.5 (Control, C) or 0.5 (Low, L) times daily maintenance requirements from synchronization day with intravaginal pessaries. Ewes were mated at oestrus (Day=0) and slaughtered on Day 5, when pieces of uterus were collected to determine PR and ERa by immunohistochemistry. There was an effect of season on the staining intensity of PR (P<0.0001), and a tendency for ERa (P=0.10); the expression was higher during the anestrous season, being more evident in the deep stroma. No effect of undernutrition or melatonin was observed during the AS in any cell type. However, differences were found during RS: C ewes had greater ERa staining than L ewes (luminal epithelium, P<0.05); PR staining was greater in C+MEL than in L+MEL (superficial stroma, P<0.05). Treatment with melatonin in undernourished ewes decreased PR expression in both superficial and deep glandular epithelia and in superficial stroma (P<0.05). This study shows that neither melatonin nor nutrition treatment had an effect on ERa and PR expression during anoestrous. Melatonin treatment could not counteract the detrimental effects of undernutrition on sex steroid receptors; moreover, it even provoked a higher decrease in PR content in undernourished ewes which was associated with lower embryo viability during reproductive season.

This study was supported by grants AGL2004-00432 from CICYT and A-26 from DGA

P379

Effects of E and F prostaglandin receptor agonists on luteal function in vivo in ewes

Weems, C^{1*}; Weems, Y¹; Nett, T²; Davis, T²; Uchima, T¹; Raney, A¹; Johnson, D¹; Randel, R³

¹Dept. of HNFAS, University of Hawaii, USA; ²College of Veterinary Medicine and Biomedical Sciences, Colorado State University, USA; ³Agricultural Research and Extension Center, Texas A&M University at Overton, USA

Introduction PGF₂ α is delivered locally from the uterus to the adjacent corpus luteum (CL)-containing ovary in ewes. However, PGF₂ α during early pregnancy is not decreased in uterine endometrium or venous blood, ovarian venous blood, or CL, nor binding to CL membranes. Ewes become resistant to PGF₂ α^{1} (C. Weems et al. 2006). PGE₁ and PGE₂ increased two fold in endometrium of day 13 pregnant ewes² (Wilson et al. 1972). PGE₁ or PGE₂ prevented luteolysis only when infused chronically into the uterine horn lumen adjacent to the CL-containing ovary, increase luteal progesterone (P4) secretion in vitro and in vivo, and PGE₁ in vivo increased P4 secretion longer than PGE₂¹ (C. Weems et al. 2006). Four PGE receptor subtypes (EP₁, EP₂, EP₃, and EP₄) and one PGF₂ α (FP) receptor have been identified (Narumiya 1995).

Objective The objective of this experiment was to elucidate the effects of EP_1 , EP_2 , EP_3 , and FP receptor agonists on CL function

Methods On day-9, ewes received a single treatment into the vascular interstitium adjacent to the CL-containing ovary of Vehicle, $PGF_{2\alpha}$ (100 µg) an FP receptor agonist, or 500 µg of the EP receptor agonists 17-Phenyl-Tri-Nor-PGE₂ (EP₁ and EP₃). Butaprost (EP₂), 19-(R)-OH-PGE₂ (EP₂), or Sulprostone (EP₃). Jugular venous blood was collected at 0 and every 6 hours up to 48 hours for analysis for P4 by RIA. CL were collected at 48 hours, bissected, weighed, and stored in liquid nitrogen until analysis for the mRNA:actin ratio for LH receptors and unbound and bound LH receptors. P4 in jugular venous plasma was analyzed by a Split-Plot ANOVA for repeated measures. CL weight, CL mRNA:actin ratio for LH receptors, and CL unbound and bound LH receptors were analyzed by a One Way ANOVA.

Results and conclusion PGF2 α or Sulprostone reduced (P \leq 0.05) CL weight, circulating P4, CL mRNA:actin ratio for LH receptors, and CL unbound and bound LH receptors. 17-Phenyl-Tri-Nor-PGE₂ did not affect (P \geq 0.05) any parameter analyzed. Butaprost and 19-(R)-OH-PGE₂ increased (P \leq 0.05) circulating P4, CL mRNA:actin ratio for LH receptors, and CL unbound and bound LH receptors. Luteal mRNA for LH receptors and unbound and bound receptors for LH may be increased via the EP₂ receptor, while the EP₃ receptor may decrease CL mRNA for LH receptors and unbound and bound receptors for LH may be increased via the EP₃ receptor and unbound and bound receptors for LH rece

¹Weems et al., The Vet. J., 171:206-228, 2006; ²Wilson et al., Prostaglandins. 1:479-487, 1972; ³Narumiya, Prostaglandins, Thrombox., and Leukotriene Res. 23:17-22, 1995