

XANTHOMONAS CAMPESTRIS PV. CAMPESTRIS SECRETOME TOWARD SUSCEPTIBLE AND RESISTANT ARABIDOPSIS THALIANA ECOTYPES

Gomes, P.H.M.¹, Cândido, E.S.¹, Aquino, E.N.³, Noronha, E.F.¹, Franco, O.L.¹,
Fontes, W.³, Krüger, R.H.¹ & Quirino, B.F^{1,2*}.

**¹Programa de Pós-graduação em Ciências Genômicas e Biotecnologia,
CAPB, UCB-DF, Brazil.**

²EMBRAPA-Agroenergia, Brasília-DF, Brazil.

**³Centro Brasileiro de Pesquisas em Proteínas, Universidade de Brasília,
Brasília-DF, Brazil.**

*Corresponding Author: betaniaf@pos.ucb.br

Xanthomonas campestris pv. *campestris* (Xcc) and *Arabidopsis thaliana* are an excellent research model for plant-pathogen interactions as both partners in the interaction have their genomes sequenced. Extracellular proteins often play an important role in plant disease processes. The secretome is defined as the set of soluble proteins that are secreted encoded by a genome and includes proteins such as hydrolytic enzymes and others that interfere in host signaling and metabolism. In our previous work, the response of 33 *A. thaliana* ecotypes to a Brazilian Xcc isolate was investigated and the ecotype CS1308 was identified as resistant while CS1194 was identified as susceptible. Here we begin to investigate at a proteomic level how the interaction of Xcc with a resistant *A. thaliana* ecotype differs from that with a susceptible ecotype regarding secreted proteins. Gel images were analyzed with BioNumerics and ImageMaster 2D Platinum 6.0™ software. All proteins secreted by Xcc in the presence of CS1194 were also secreted in the presence of CS1308, in other words, the proteins expressed in response to the susceptible ecotype represents a subset of the proteins responding to the presence of the resistant ecotype. In the presence of CS1308, 82 additional spots were present. Of these, 52 differential spots with pI ranging between 3.5 and 6 and with molecular masses between 32 and 70 kDa were selected for mass spectrometry analysis.

Financial support: CNPq and UCB

Keywords: Secretome