

Determinação da Umidade de Máxima Compactação de um Latossolo Amarelo Distrófico dos Tabuleiros Costeiros do Estado da Bahia

<u>Caroline Valverde dos Santos</u>⁽¹⁾; Laércio Duarte Souza⁽²⁾; Luciano da Silva Souza⁽²⁾; Bruno Laecio da Silva Pereira⁽³⁾; Danila dos Santos⁽⁴⁾; Fátima Plácido⁽⁴⁾

(1) Graduanda de Eng. Agronômica da UFRB, Bolsista FAPESB no Laboratório de Física do Solo CNPMF – Embrapa, Cruz das Almas - BA, CEP 44380-000, cvalsan@hotmail.com; (2) Pesquisador CNPMF - Embrapa, Cruz das Almas - BA, CEP 44380-000, laercio@cnpmf.embrapa.com.br; (3) Graduando de Eng. Agronômica da UFRB, Bolsista PIBC-CNPq no Laboratório de Física do Solo CNPMF - Embrapa, Cruz das Almas - BA, CEP 44380-000, brunolaecio-3@hotmail.com (4) Graduanda em Geografía da Famam, Estagiária

do Laboratório de Física do Solo do CNPMF - Embrapa, Cruz das Almas - BA Apoio: CNPMF-EMBRAPA, FAPESB.

RESUMO: O manejo do solo, para fins agrícolas, utiliza práticas que podem resultar na compactação das partículas do solo. A umidade do solo é fator fundamental nesse processo. A curva de umidade versus compactação do solo, utilizando o Teste de Proctor Normal, estima as zonas de umidade favoráveis ocorrência mais a compactação. O objetivo desse trabalho foi identificar a umidade de máxima compactação (Umc) e a respectiva densidade do solo na máxima compactação (Dsmc) para cada um dos horizontes do Latossolo Amarelo Distrófico (LAd) Tabuleiros Costeiros (TC), correlacionando-os com a sua granulometria e porosidade. O trabalho foi realizado no CNPMF-EMBRAPA, no município de Cruz das Almas, Bahia. A amostragem do solo foi realizada em um Latossolo Amarelo Distrófico, nos horizontes Ap, AB, Bw₁, Bw₂, Bw₃. As amostras de cada horizonte foram divididas em porções que foram umedecidas de forma diferenciada. Para cada umidade foi determinada a densidade do solo (Ds). O aumento da Ds solo em função da umidade, foi uma função quadrática positiva em todos os horizontes. A Umc variou de 0,1172 a 0,1744 g.g⁻¹, enquanto os valores para a Dsmc foram de 1,59 a 1,73 kg.dm⁻¹. O coeficiente de correlação entre a Umc e os parâmetros físicos variou de 0,8123 a 0,8791.

Palavras-chave: Porosidade, Umidade, Densidade do solo, Teste de Proctor.

INTRODUCÃO

O processo de compactação, atuando em diferentes classes de solo, apresenta resultados

distintos em função de fatores como: energia de granulometria, teor compactação aplicada, matéria orgânica e umidade do solo (Stone e Ekwue, 1993; Ekwue e Stone, 1995; Dias Junior e Pierce, 1996). A tensão induzida pelos processos pedogenéticos na formação do solo eo manejo atual, também influem no processo de compactação (Dias Junior e Pierce, 1996). Entretanto, a umidade é a propriedade com maior influência na quantidade de deformação que poderá ocorrer no solo (Dias Junior e Pierce, 1996). Tratase também de uma variável que sofre alterações praticamente todos os dias. Portanto, o estudo da compactação em função da umidade, para cada classe de solo, sob diferentes sistemas de chuvas e irrigação, é fundamental para o seu manejo agrícola.

As maiores pressões exercidas no solo, no manejo agrícola, ocorrem na superfície e subsuperfície. A pressão em solo seco, pulveriza os agregados; em solo úmido provoca deslizamento entre as partículas. Nos dois casos, ocorrem danos a estrutura, mas, baixa compactação. No entanto, existe uma zona de umidade em que a pressão exercida no solo, encaixa as suas partículas, eliminando grande volume de ar, provocando o máximo de compactação para a pressão exercida.

Os solos dos TC apresentam uma camada coesa subsuperficial, oriunda da sua gênese (Jacomine, 1996). Ocorre também, com freqüência, a compactação superficial em função do manejo.

O ensaio mais utilizado para avaliar a compactação do solo em função da umidade, em laboratório, tem sido o Teste de Proctor Normal (Dias Junior, 1996).

O objetivo desse trabalho foi identificar a Umc e a respectiva Dsmc para cada um dos horizontes do LAd dos TC, e a sua correlação com a granulometria e a porosidade.

MATERIAL E MÉTODOS

O trabalho foi realizado no Laboratório de Física do Solo do CNPMF / Embrapa, localizado no município de Cruz das Almas, no Recôncavo Baiano, a 12°40'19" de latitude Sul e 36°06'22" de longitude Oeste de Greenwich, altitude de 220 m, precipitação média anual de 1.200 mm, temperatura média anual de 24°C e umidade relativa do ar média anual de 80%. O solo foi classificado como Latossolo Amarelo Distrófico.

Foi aberta uma trincheira de 1,00 m x 1.60m x 2,20 m no campo experimental de Citrus, onde foram coletadas amostras de solo dos horizontes Ap (0-0,09m), AB (0,09-0,38m), Bw1 (0,38-0,72m), Bw2 (0,72-1,20m) e Bw3 (1,20-1,60m). Coletando-se 25 kg de solo de cada horizonte.

Foram realizadas as análises granulométricas, macro e microporos e a densidade do solo segundo Embrapa (1997). Para o Teste de Proctor Normal (Head, 1986) as amostras de solo foram secas ao ar, destorroadas e passadas em peneiras de 2,0 mm. As amostras de cada horizonte foram subdivididas em 8 porções de 3,0 kg, que foram umedecidas, com pulverizadores, com volumes de água de 0,10; 0,15; 0,20; 0,25; 0,30; 0,40; 0,50 e 0,60 litro. Após o molhamento foram envolvidas em sacos plásticos e mantidas em repouso por uma noite. O teste utiliza um conjunto constituído por uma base e um cilindro de aço inoxidável com volume de 1015 cm3 e um compactador de 2,5 kg, com um deslocamento de 0,30 m. O volume de solo, dentro do cilindro, foi compactado em três camadas, aplicando-se 27 impactos/ camada, de forma sobreposta. A energia total aplicada neste procedimento é de 596 Joules. A umidade foi determinada em cada camada compactada, considerando-se para o cilindro a média das três. Esse procedimento foi realizado nas oito amostras dos cinco horizontes do LAd.

A regressão mais adequada, para as variações da Ds em função da umidade, foi à polinomial do segundo grau.

RESULTADOS E DISCUSSÃO

Observa-se na Tab.1 que a Ds e a areia diminuem com a profundidade, enquanto a argila e os macro e microporos aumentam. A Ds alta com baixa

porosidade, mesmo com alto teor de areia, indica problemas de compactação/coesão, nas condições de campo, nos horizontes mais superficiais.

A Fig.1 mostra que a Ds aumenta com o teor de água no solo até determinado ponto, quando começa a decrescer com o aumento da umidade em todos os horizontes. Observa-se que os volumes de ar, água e solo vão substituindo um ao outro, determinando uma nova proporção entre os três a cada processo de compactação. A Ds aumenta até o momento em que está substituindo-se ar por água. Quando começa a haver a substituição de solo por água, a Ds diminui.

A baixa Umc significa que há uma pequena faixa de umidade no solo adequada ao trabalho mecânico. Depois da Umc, o excesso de água faz com que as partículas do solo deslizem umas sobre as outras.

A função obtida entre a Ds e a umidade do solo para cada horizonte, onde os valores de R² foram maiores do que 0,8280, assim como a Umc e a respectiva Dsmc, estão na Tab.2.

Os coeficientes de correlação para a Umc em relação aos parâmetros areia total, argila, macro e microporos foram maiores do que 0,8123 (Tab.3).

CONCLUSÕES

Os horizontes com as maiores Ds e as menores porosidades em condições de campo, Ap e AB, mesmo sofrendo um novo arranjo estrutural no processo de compactação, apresentaram os menores valores para a Umc.

REFERÊNCIAS

DIAS JUNIOR, M. S. & PIERCE, F.J. O processo de compactação do solo e sua modelagem. **R. Bras. Ci. Solo**, 20:1-8, 1996.

EKWUE, E. I.; STONE, R. J. Irrigation scheduling for sweet maize relative to soil compaction conditions. **Journal of Agricultural Engineering Research**, London, v.62, n.2, p.85-94, 1995.

EMBRAPA-CNPS. Empresa Brasileira de Pesquisa Agropecuária—Centro Nacional de Pesquisa de Solos. **Manual de métodos para análise de solo**. Rio de Janeiro, 2ªed. Embrapa-CNPS. 1997, 212p.

HEAD, K.H. **Manual of soil laboratory testing.** v. 3, Pentech Press, London, 1986.

JACOMINE, P. K. T. Distribuição geográfica, características e classificação dos solos coesos dos tabuleiros costeiros. **Anais da Reunião técnica sobre solos coesos dos tabuleiros costeiros**. Embrapa – CPATC. Aracaju. p 13-26.1996.

STONE, R.J.; EKWUE, E.I. Maximum bulk density achieved during soil compaction as effected by the incorporation of three organic materials.

Transaction of the ASAE, St. Joseph, v. 36, p. 1713-1719, 1993.

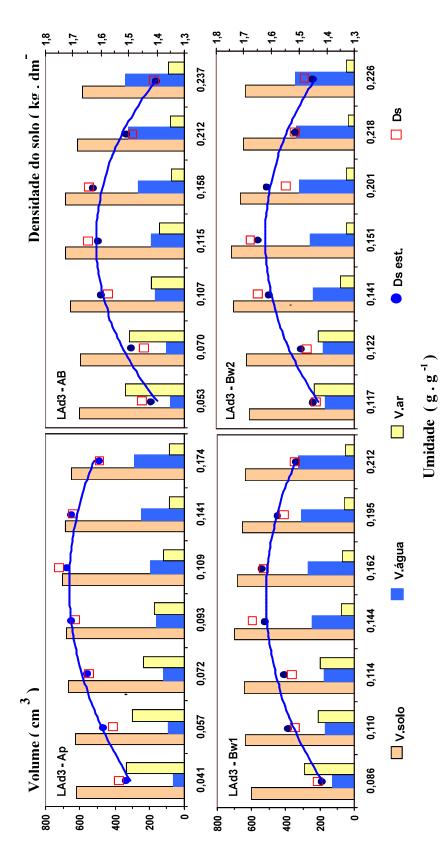


Figura 1. Variação dos volumes de solo, ar e água e curva de máxima compactação do Latossolo Amarelo Distrófico em função do teor de água no solo.

Tabela 1. Parâmetros físicos do Latossolo Amarelo Distrófico coeso dos Tabuleiros Costeiros.

Horizonte	Profundidade	Areia	Silte	Argila	Macroporos	Microporos	D s
		Total					
	(m)		(g.kg ⁻¹)		(porce	ntagem)	(kg . dm ⁻³)
Ap	0-0,09	719	79	202	8,46	20,47	1,65
AB	0,09 - 0,38	536	94	370	13,82	23,34	1,62
Bw1	0,38 - 0,72	529	96	375	14,21	24,24	1,54
Bw2	0,72 - 1,20	457	103	440	15,11	25,36	1,37
Bw3	1,20 - 1,60 +	413	82	505	18,32	28,95	1,41

Nota: Ds: densidade do solo

Tabela 2. Funções obtidas nas regressões da densidade do solo versus umidade em cada horizonte do Latossolo Amarelo Distrófico, com as respectivas umidades de máxima compactação (Umc) e densidades do solo de máxima compactação (Dsmc).

Horizonte	Função Ds x Ug	R ²	Umc	Dsmc
			(g.g ⁻¹)	(kg . dm ⁻³)
Ap	$Ds = -37,57 Ug^2 + 8,81Ug + 1,21$	0,936	0,1172	1,73
AB	$Ds = -26,30 Ug^2 + 7,52 Ug + 1,09$	0,906	0,1430	1,64
Bw1	$Ds = -42,57 Ug^2 + 13,45 Ug + 0,57$	0,900	0,1579	1,63
Bw2	$Ds = -77,25 Ug^2 + 26,49 Ug - 0,59$	0,828	0,1715	1,68
Bw3	$Ds = -31,79 Ug^2 + 11,09 Ug + 0,62$	0,880	0,1744	1,59

Nota: Ug: umidade gravimétrica; Ds: densidade do solo

Tabela 3. Funções obtidas nas regressões entre a umidade de máxima compactação (Umc) em relação a areia total, argila, macro e microporos dos horizontes do Latossolo Amarelo Distrófico.

Regressão	Função	R2	
Umc x Areia total	$Umc = 10.13 AT^{-0.6729}$	0,8850	
Umc x Argila	$Umc = 0.0142 A^{0.4013}$	0,8791	
Umc x Macroporos	$Umc = 0.0427 \text{ MA}^{0.4833}$	0,8500	
Umc x Microporos	$Umc = 0.0049 \text{ MI}^{-1.0716}$	0,8123	

Nota: Umc: umidade de máxima compactação.