IDENTIFICAÇÃO DE MARCAS MOLECULARES ASSOCIADAS À RESISTÊNCIA AO VÍRUS DO MOSAIDO SEVERO DO FELJÃO-CAUPI

Alberto Vinicius Casimiro Onofre¹, Lidiane Lindinalva Barbosa Amorim¹, Ilza Maria Sittolin², Maurisrael de Moura Rocha², Francisco Rodrigues Freire Filho², Genira Pereira de Andrade³, Gilvan Pio Ribeiro⁴, Éderson Akio Kido⁵ e Ana Maria Benko Iseppon⁶

Resumo

Este trabalho teve como objetivo buscar associação entre marcadores moleculares e a resistência ao vírus do mosaico severo do feijão-caupi (CPSMV, *Cowpea Severe Mosaic Virus*), visando auxiliar no mapeamento fino desta característica. Foram avaliados 77 marcadores DAF (*DNA Amplification Fingerprinting*) e 12 SSR (*Simple Sequence Repeat*) nos parentais e *bulks* segregantes (análise de BSA, *Bulked Segregant Analysis*) a partir de uma progênie F₆₋₇ de feijão-caupi segregando para resistência ao CPSMV. Dentre os marcadores testados, três (dois DAF e um SSR) se mostraram relacionados ao caráter de resistência. Na próxima etapa a distância de cada marcador com o loco de interesse será avaliada aplicando-se os marcadores selecionados em população segregante (F₆₋₇) já disponível, em processo de saturação com marcadores moleculares.

Introdução

A cultura do feijão-caupi [Vigna unguiculata (L.) Walp] tem grande relevância e potencial no agronegócio brasileiro. Esta relevância deve-se aos lucros gerados nas regiões produtoras e a todos os empregos diretos e indiretos gerados em todos os elos da sua cadeia produtiva. O mosaico severo do caupi (CPSMV) encontra-se disseminado em todas as regiões do Brasil onde essa leguminosa é cultivada. A doença pode levar a perdas até de 50% da produção, dependendo da interação entre cultivar e estirpe, bem como da época de infecção (PIO-RIBEIRO; ASSIS; ANDRADE, 2005).

As estratégias usadas para obtenção de resistência a doenças dependem grandemente de informações obtidas através de pesquisa básica. Entre as abordagens disponíveis destacam-se o conhecimento da variabilidade do patógeno, tipo da herança da resistência e a disponibilidade de marcadores moleculares associados a alelos de resistência (COSTA, 2008). Dois métodos podem ser utilizados para agilizar a identificação de marcadores ligados a um gene ou a uma região genômica: a análise em linhagens quase isogênicas (NIL's, *Near Isogenic Lines*) ou a análise de populações segregantes com fenótipos contrastantes, pela análise de BSA (*Bulked Segregant Analysis*; MICHELMORE *et al.*, 1991).

A análise de *bulks* segregantes envolve a comparação de duas misturas equimolares de amostras de DNA dos indivíduos que compartilham o mesmo fenótipo para determinada característica, auxiliando na identificação de marcadores que os distinguem. Assim, considera-se que o marcador que co-segregar com os *bulks* tem grande probabilidade de estar ligado à característica avaliada. Esta técnica permitiu, por exemplo, a identificação de regiões genômicas associadas com a resistência a duas raças de *Fusarium* e a *Ascochyta* na cultura do grão-de-bico (WINTER *et al.*, 2000; BENKO-ISEPPON *et al.*, 2003) e ao caruncho (*Callosobruchus chinensis* L.) em uma população de mapeamento de *Vigna radiata* (L.) Wilczek (CHEN *et al.*, 2007). Este trabalho teve como objetivo buscar associação entre marcadores moleculares e a resistência ao vírus do mosaico severo do caupi usando a análise de BSA.

¹Alunos do Programa de Pós-graduação em Ciências Biológicas, Universidade Federal de Pernambuco (UFPE), Recife, PE, CEP 50670-420. Email: lidiane.amorim@gmail.com; vinicius.alberto@gmail.com

² Pesquisadores da Embrapa Meio-Norte, Teresina, PI, CEP 64006-220, CP: 001. ilza@cpamn.embrapa.br; mmrocha@cpamn.embrapa.br

³ Professor Adjunto do Departamento de Agronomia, UFRPE. Email: genira@ufrpe.br, gilvan@ufrpe.br;

⁴ Professor Adjunto do Departamento de Genética, Laboratório de Genética Molecular, UFPE. Email: ederson.kido@gmail.com

Coordenadora Projeto NordEST/RENORBIO, Departamento de Genética, UFPE. Email: ana.benko.iseppon@pq.cnpq.br. Apoio Financeiro: CAPES, FACEPE, CNPq, RENORBIO/FINEP/BNB

Material e Métodos

Um isolado do CPSMV foi inoculado mecanicamente nos parentais IT85F-2687 (suscetível) e BR14-Mulato (resistente) e em 221 linhas endogâmicas recombinantes (RILs) da geração F₆₋₇ por meio da fricção de gaze embebida de extrato foliar, obtido por maceração de folhas infectadas em tampão fosfato de potássio 10 mM, pH 7,0 acrescido de 0,1% de sulfito de sódio, na proporção de 1:10 (p/v) sobre a superfície das folhas, previamente polvilhadas com Carborundum 600 *mesh*. A avaliação sintomatológica foi realizada duas semanas após a inoculação mediante inspeção visual efetuada independentemente por quatro avaliadores. Todas as plantas assintomáticas foram testadas por dupla difusão em ágar em placas com anti-soro contra o CPSMV.

Folhas oriundas de plantas resistentes e suscetíveis foram coletadas e imediatamente congeladas em nitrogênio líquido para isolamento do DNA genômico (WEISING *et al.*, 1995). A quantificação do DNA foi efetuada pelo método comparativo em gel de agarose a 1,2% usando-se diferentes concentrações de λ-DNA como referencial. A partir da visualização e definida a concentração, foram realizadas diluições para concentração final de 10 ng/μL. As amostras de DNA de 10 plantas resistentes e 10 suscetíveis foram agrupadas em dois *bulks* de acordo com a metodologia descrita por Michelmore *et al.* (1991).

Marcadores microssatélites (SSR) foram obtidos a partir de 12 pares de *primers* desenvolvidos para *V. angularis* (WANG *et al.*, 2004). As reações de PCR foram realizadas em um volume final de 20 μL, contendo 30 ng DNA genômico, 2,5 μM MgCl₂, 200 μM dNTP-mix, 5 μM de cada primer e 0,5 U de DNA polimerase. Foi realizada com desnaturação inicial a 94°C para por 2 min, seguida de 30 ciclos de 94°C por 15 s, 15 s a 55°C para anelamento e 5 min a 68°C para a extensão. Os produtos das reações foram submetidos à eletroforese em géis de poliacrilamida 6% não desnaturante, corados com nitrato de prata.

Para a análise DAF (*DNA Amplification Fingerprinting*), foram testados 77 oligonucleotídeos randômicos seguindo metodologia descrita por Simon *et al.* (2007) , a partir de 1 ng/μL de DNA molde, 1,5 μL 10x PCR buffer, 1,5 mM de MgCl₂, 10 mM de dNTP-mix (Fermentas), 50 μM de primer e 0,7 U de 'Taq DNA polimerase' (Fermentas ou LGC), ajustando-se o volume final de 15 μL com H₂O bidestilada estéril. A PCR constou de uma desnaturação inicial a 95°C por 2 min, seguidos de 40 ciclos compostos de três etapas: desnaturação de 15 seg a 95°C; anelamento de 1 min a 35°C e alongamento final de 2 min a 72°C. Ao final dos 40 ciclos a reação foi completada com um alongamento final de 2 min a 72°C, permanecendo a 4°C até seu processamento. Os amplicons foram submetidos a eletroforese em gel de agarose 1,8%, corado com brometo de etídio a 0,5 μg/mL.

Resultados e Discussão

Foi possível distinguir com facilidade os indivíduos suscetíveis (n=137) dos resistentes (n=84), uma vez que os primeiros apresentaram sintomas inequívocos de mosaico severo, bolhosidade nas folhas e necrose nos caules, enquanto que os indivíduos resistentes não apresentaram sintomas. Em testes de dupla difusão em ágar a formação de linha de precipitação foi observada apenas nos indivíduos suscetíveis, claramente identificados pelos sintomas descritos.

Testaram-se 89 marcadores, 48 dos quais geraram bandas polimórficas (Tab. 1). Dois polimorfismos foram identificados pela técnica de DAF (iniciadores OP-T18 e OP-C11) e um pela técnica de SSR (marcador CEDG 006), em todos os casos apresentando uma banda presente apenas no parental BR14-Mulato e no *bulk* resistente. Caso a associação se confirme, será possível o desenvolvimento de marcadores SCAR (Regiões amplificadas de sequências características) (PARAN; MICHELMORE, 1993) a partir das marcas DAF encontradas.

Para que os marcadores detectados sejam confirmados como ligados ao gene de resistência, faz-se necessária a determinação da proximidade do loco marcador ao gene através de análise em mapa molecular saturado, o qual se encontra atualmente em desenvolvimento, havendo no total 140 marcadores disponíveis, incluindo outros marcadores SSR, DAF e também ISSR (*Inter Simple Sequence Repeat*), AFLP (*Amplified Fragment Length Polymorphism*), CAPS (*Cleaved Amplified Polymorphic Sequences*) e RGAs (*Resistance Gene Analogs*).

Pretende-se com este estudo fortalecer o uso de ferramentas moleculares junto aos programas de melhoramento genético do feijão-caupi, acelerando o processo de desenvolvimento de genótipos

resistentes ao CPSMV, ampliando o conhecimento sobre a resistência a esta virose e possibilitando o desenvolvimento de seleção assistida por marcadores.

Referências

- BENKO-ISEPPON, A. M.; WINTER, P.; HUTTEL, B.; STAGGINUS, C.; MUEHLBAUER, F. J.; KAHL. G. Molecular markers closely linked to *fusarium* resistance genes in chickpea show significant alignments to pathogenesis-related genes located on *Arabidopsis* chromosomes 1 and 5. *Theoretical and Applied Genetics*, Berlin, v. 107, p. 379-386. 2003.
- CHEN, H. M.; LIU, C.A.; KUO, C. G.; CHIEN, C. M.; SUN, H. C.; HUANG, C. C.; LIN, Y. C.; KU, H. M. Development of a molecular marker for a bruchid (*Callosobruchus chinensis* L.) resistance gene in mungbean. *Euphytica*, Dordrecht, v. 157, n. 1-2, p. 113-122. 2007.
- COSTA, J. G. C. *Melhoramento para resistência a doenças e pragas do feijoeiro comum.* Documentos, IAC, Campinas, 85. 2008. 1672-1674.
- MICHELMORE, R. W.; PARAN, I.; KESSELI, R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. *Proceedings of the National Academy of Science USA*, USA, v. 88, p. 9828-9832. 1991.
- PARAN, I.; MICHELMORE, R. W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. *Theoretical and Applied Genetics*, Berlin, v. 85, n. 8, p. 985-993. 1993.
- PIO-RIBEIRO, G.; ASSIS F. M.. ANDRADE, G. P. Doenças do caupi (Vigna unguiculata (L.) Walp. In: KIMARI, H., AMORIM, L., BERGAMIN FILHO, A., CAMARGO, L. E. A.; REZENDE, J. A. M. (Eds.) *Manual de Fitopatologia 2: doenças das plantas cultivadas*. 4 ed. São Paulo: Agronômica Ceres. v. 2, 2005. p. 215-222.
- SIMON, M.V.; BENKO-ISEPPON, A.M.; RESENDE, L.V.; WINTER, P.; KAHL, G. Genetic diversity and phylogenetic relationships in *Vigna* Savi germplasm revealed by DNA amplification fingerprinting (DAF), *Genome*, Ottawa, v.50, p.538-547. 2007.
- WANG, X. W.; KAGA, A.; TOMOOKA, N.; AUGHAN, D. A. The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [*Vigna angularis* (Willd.) Ohwi & Ohashi]. *Theoretical and Applied Genetics*, Berlin, v. 109, p. 352-360. 2004.
- WEISING, K.; NYBOM, H.; WOLFF, K.; KAHL, G. *DNA fingerprinting in plants*. Boca Raton, USA. 1995. 322 p.
- WINTER, P.; BENKO-ISEPPON, A.M.; HÜTTEL, B.; RATNAPARKHE, M.; TULLU, A.; SONNANTE, G.; PFAFF, T.; TEKEOGLU, M.; SANTRA, D.; SANT, V.J.; RAJESH, P.N.; KAHL, G.; MUEHLBAUER, F.J. A linkage map of the chickpea (*Cicer arietinum* L.) genome based on recombinant inbred lines from a *C. arietinum x C. reticulatum* cross: localization of resistance genes for *Fusarium* wilt races 4 and 5. *Theoretical and Applied Genetics*, Berlin, v.101, p.1155-1163, 2000.

Tabela 1. Relação dos iniciadores selecionados nos parentais, com suas respectivas sequências e número de fragmentos polimórficos (NFP).

Iniciador	Sequência	NFP
15-8	TGCGTGCTTGTTAAT	01
15-16A	GAACCTACGGTGAAG	05
15-16D	GAACCTACGGTAAGG	03
15-17	TCTCCGCAACGCAAC	03
15-20	ACCTGGGGAGGGAG	06
B-12	CCTTGACGCA	03
B-18	CCACAGCAGT	03
B-19	ACCCCGAAG	01
C-02	GTGAGGCGTC	02
D-20	ACCCGGTCAC	03
C-10	TGTCTGGGTG	02
C-11	AAAGCTGCGG	03
C-15	CCCGATTCGG	01
E-13	CCCGATTCGG	01
E-17	CTACTGCCGT	01
E-VI	ACCGCTTCAA	01
F-05	CCGAATTCCC	01
HP-A-V	GCGAAAGC-AAT	01
HP-A-VI	GCGAAAGC-GAA	03
T-15	GGATGCCACT	01
T-16	GGTGAACGCT	01
T-17	CCAACGTCGT	01
T-18	GATGCCAGAC	02
T-20	GACCAATGCC	03
U-01	ACGGACGTCA	03
U-02	CTGAGGTCTC	01
U-02 U-08	GGCGAAGGTT	01
U-10	ACCTCGCAC	01
U-12	TCACCAGCCA	02
U-13	GGCTGGTTCC	01
U-15	ACGGGCCAGT	02
U-16	CTGCGCTGGA	01
X-01	CTGGGCACGA	01
X-08	CAGGGTGGA	01
X-09	GGTCTGGTTG	01
O-05	CCCAGTCACT	02
O-15	TGGCGTCCTT	01
O-16	TCGGCGGTTC	01
O-17	GGCTTATGCC	02
O-20	ACACACGCTG	02
Q-15	GGGTAACGTG	01
Q-17	GAAGCCCTTG	01
Q-19	CCCCTATCA	01
	SSR	
CEDC 003	5' TTGCCAGAAAAGAAAGGAGC	02
CEDC 003	5' CAAGAAGTTTGCATTGCATC	02
CEDG 006	5' AATTGCTCTCGAACCAGCTC	02
	5' GGTGTACAAGTGTGTGCAAG	
CEDG 008	5' AGGCGAGGTTTCGTTTCAAG	02
	5' GCCCATATTTTTACGCCCAC	
CEDC 036	5' GAAAAAGTAATCAAAGCTGGG	02
	5' CTTTACTAACTCCAACTCCTAACTC	-
CEDC 181	5' CGCGAGATCTGGATCGTTGATC	02
	5' GCAGTACGGTAACGTCCTTGAC	02