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Abstract 
 
In this article we propose the use of Data Envelopment Analysis (DEA) measures of efficiency, under 
constant returns to scale and input equal to unity, in the analysis of multidimensional nonnegative 
responses in the design of experiments. The approach agrees with the standard Analysis of Variance 
(Covariance) for univariate responses and simplifies the statistical analysis in the multivariate case. The 
best treatments provided by the analysis optimize a combined output defined by shadow prices, which 
are the solutions of the DEA problem. The approach is particularly useful for the analysis of 
intercropping (crop mixtures) experiments. In this context we discuss two examples. To properly 
address the issue of correlation and non-normality of DEA measurements in different experimental 
plots we validate the results via Randomization Theory. 
 
Keywords:  experimental design; intercropping; data envelopment analysis. 
 
 

Resumo 
 
Neste artigo é proposto o uso de medidas de eficiência DEA, com retornos constantes à escala e input 
unitário, na análise de respostas multidimensionais não negativas de ensaios experimentais. A abordagem 
proposta concorda com a Análise de Variância (Covariância) clássica para respostas unidimensionais e 
simplifica a análise estatística para o caso multidimensional. Os melhores tratamentos indicados pela 
análise otimizam um output combinado, definido por preços sombra, que são as soluções dos 
problemas lineares de DEA. A abordagem é particularmente útil na análise de experimentos 
consorciados (plantio simultâneo de mais de uma cultura agrícola). São aqui discutidos dois exemplos. 
Os resultados são validados via Teoria de Aleatorização, de modo a estudar apropriadamente as 
questões de correlação e não-normalidade das medidas DEA nas diferentes parcelas experimentais. 
 
Palavras-chave:  ensaios experimentais; consórcios; análise envoltória de dados. 
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1. Introduction 

In a designed experiment one measures a response, real valued or multidimensional, and 
carries out a regression analysis modeling the response as a function of qualitative effects 
(dummy variables) and possibly some quantitative variables (Montgomery, 2004; Hinkelman 
& Kempthorne, 2007a, 2007b; Ryan, 2007). These exogenous variables, under the control 
of the experimenter, are called contextual variables in the Data Envelopment Analysis 
(DEA) literature. Typical in this class of statistical procedures are the Analysis of Variance 
(only qualitative effects) and the Analysis of Covariance (qualitative and quantitative 
variables) models. Whenever the response is multidimensional the analysis is complex and 
the statistical findings are hard to interpret. For this reason in many applications one 
notices real efforts to reduce the dimensionality of the response vector to ease the 
statistical analysis. 

Such is the case with intercropping experiments in agriculture, where a response, such as 
yield, is measured for each crop in a finite set of crops that are sown together in each 
experimental plot. The observation in each plot is therefore a vector of correlated yields since 
the crops compete for available resources. Typically, treatments applied to the experimental 
plots are to be compared on the basis of the yield vector. Indexes like total yield value, for 
example, transform the response vector to a nonnegative real variable, easing the statistical 
analysis relative to the use of multivariate analysis. The interest in intercropping is growing, 
as can be seen, for instance, in Blaser et al. (2006), Salgado et al. (2006), Bezerra Neto et al. 
(2007), Wang et al. (2007), Strydhorst et al. (2008). 

Here we suggest a new approach to assess treatment differences in any designed experiment 
whose objective is to optimize response in some sense, where response is defined by a vector 
of yields. The proposal is to use DEA to generate a measure of efficiency to each 
experimental plot. This one-dimensional score can be analyzed by the classical statistical 
methods. DEA estimates of efficiency are flexible in the sense that they can be derived 
imposing or not a set of weights reflecting the importance of each component of the response 
vector (yield). If a designed experiment has a real valued nonnegative response, the DEA 
analysis as proposed here is equivalent to the usual statistical analysis carried out in Analysis 
of Variance (Covariance) models. In the multivariate case, besides simplifying the analysis, 
it endows the statistical conclusions with optimal properties in the sense that best treatments 
represent best yield practices relative to the complete set of treatments under analysis. 

The exposition is divided into four sections. Section 2 defines the DEA efficiency 
measurements we deal with in the article. Section 3 shows the Analysis of Variance for two 
intercropping experiments using efficiency measurements (seen as scores or indexes) as 
responses to treatments. Section 4 is on validation of the statistical data analysis via 
Randomization Theory. Finally, Section 5 summarizes the main conclusions and the 
suggestions put forward in the article. 

 
2. Data Envelopment Analysis 

From an Economics point of view, DEA has for objective the assessment of efficiency of a 
set of production units, the so-called Decision-Making Units (DMUs). DEA uses linear 
programming problems to identify DMUs that represent the best production practices in the 
sense that they make the best use of the inputs available to produce outputs. These units are 
considered efficient and act as benchmarks to the other DMUs. 
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The efficiency of production of a DMU, in a typical DEA analysis, is defined by the ratio of a 
weighted average of the outputs by a weighted average of the inputs. These weights are shadow 
prices. They are distinct for outputs and inputs, and are determined by linear programming. For 
each DMU, the linear programming problem is set in such a way to maximize the efficiency 
ratio. Subjective or preconceived perceptions of the investigator about the relative importance 
of outputs and inputs may be included as restrictions in the linear programming problem. 

There are two classical DEA models, the CCR (Charnes et al., 1978) and the BCC (Banker 
et al., 1984). The two models differ according to the convexity restriction imposed in the 
BCC DEA model. Two orientations are possible in any DEA model. One may look for 
maximal outputs given input levels, or one may look for minimal input utilization, given 
output levels. 

In DEA modeling one has to define the DMUs, the production variables (inputs and outputs), 
the orientation and the model. In a designed experiment the DMUs are the experimental plots 
arranged in accordance with the layout of the experimental design. The nonnegative response 
vector of each experimental plot defines the output. Typically, treatments are applied to the 
experimental plots, like different management practices, and one is concerned with the 
assessment of treatment differences on the basis of the output vector. To measure the 
efficiency of each experimental plot we assume unitary inputs for all units. This idea is not 
strange in the DEA literature; see Lovell & Pastor (1999), De Koeijer et al. (2002), Leta 
et al. (2005). The model we consider is CCR with output orientation. We note that there are 
no issues of scale here, since the BCC solution for unit inputs coincide with the CCR 
solution, as stated and proved by Lovell & Pastor (1999). The assumption of unitary inputs is 
adequate for a designed experiment. It puts all experimental plots on the same basis for 
comparisons, and real differences in the response vector are therefore due to error control 
variables and to the influence of contextual variables, like treatments and other quantitative 
variables affecting the experimental plots and under the control of the investigator. Error 
control is typically achieved by design choice. In this context, using DEA scores as the 
response variable, the effects of contextual variables are to be assessed in a second stage, 
using a linear model where the classical assumptions (Steel et al., 1996) of the Analysis of 
Variance (Covariance) are postulated for the DEA efficiency measurements. 

We now define the general DEA CCR model. Assume that each DMU (experimental plot) k, 
1...=k n , is a production unit that uses m inputs (non-negatives, not all zeros)  ikx , 1...=i r , 

to produce s outputs (non-negatives, not all zeros)  jky , 1...=j s . The efficiency oh  of 
DMU o, with production values ( , )o ox y , is defined by the solution of the linear 

programming problem 
1

Min  ,
=

= ∑
r

o i io
i

  h v x  subject to the restrictions 

1
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=

=∑
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The quantities vi and uj are the shadow prices (weights) of inputs and outputs, respectively. 

In some instances the investigator may feel that some outputs should be regarded as more 
important than others. If such is the case, it is possible to define a DEA model incorporating 
these perceptions. As discussed in Thanassoulis et al. (2004), there are many approaches for 
incorporating value judgements in DEA. One of them is the Assurance Region of Type I, 
which introduces the relative ordering or values of the outputs, by adding the restrictions 
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1+≤ ≤j j j ju uα β  on the output shadow prices in the classic DEA models. In these 
restrictions, jα  and jβ  are user-specified constants to reflect value judgements regarding 
the relative importance of outputs j  and 1+j , i.e., they are assigned by the decision-maker, 
here the investigator that is conducting the experiment. It is important to notice that the 
solutions for this problem (unitary input and multiple outputs) under constant returns and 
variable returns to scale still coincide. 

We note here that is not necessary to assume an underlying frontier as a data generating 
process for the yield observations. We are concerned with the population of responses 
generated using empirical DEA for the experimental plots available for the experiment, 
classified according to the treatment arrangement laid out by the experimental design. 
Random allocation of treatment levels to experimental plots typically validate the statistical 
analysis resulting from the model induced by the design, which becomes the data generating 
model for the efficiency measurements. The main interest in the analysis is in the comparison 
of treatments, once these responses have been adjusted for the other quantitative covariates. 

Responses may be defined as the DEA measurements themselves or by some monotonic 
transformation of these measurements, like ranks. However, it should be pointed out here 
that the design environment with yield responses does not violate typical production 
assumptions. It is not unreasonable to impose Assumptions A1, A4-A6 of Simar & Wilson 
(2007), as well as the separability condition A2 in the same article, since the covariates, in a 
typical design of experiments application, are measured without error and are under the 
control of the investigator. They are not correlated with the error term, which is the 
experimental error responsible for the variation among experimental units treated alike. They 
are unaffected by treatments and they are observed before the study (Kutner et al., 2005). 

The dimension of the output vector relative to the size of the experiment is important in 
DEA. If the dimension is too large, one may have many efficient plots and this fact may 
obscure the study of treatments differences. The problem however does not exist for 
univariate yields and also for intercropping experiments, since the dimension of the output 
vector, in many applications, is two or three. The constant input helps to lessen this problem. 
It should be said here that a large dimension of the output vector would put hard problems 
also for a standard multivariate analysis of the design. 

In Section 4 we continue with the discussion of the validity of the two-stage procedure 
involving DEA responses in a designed experiment. 

 
3. Intercropping 

Here we consider two experiments: a randomized complete block and a split-plot design over 
a factorial structure. It’s important to consider the two cases since they define different levels 
of complexity and may lead to different results regarding the validity of statistical tests in the 
corresponding Analysis of Variance (ANOVA). 
 
3.1 Intercropping of Maize and Bean 

The first experiment we consider is the intercropping of maize and bean laid out as a 
randomized block design. The reference is Steel et al. (1996). The randomized block design 
is used when the experimental plots are grouped in such way that within each group the plots 
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are homogeneous. Each group is called a block and the number of experimental plots within 
each block may be the same or not. Treatments are randomly assigned to the experimental 
plots within each block. Blocking is used to control experimental error. The primary interest 
in the analysis is on treatment differences. Suppose one has n experimental plots, grouped in 
b blocks, and v treatments. Each block has jk  experimental plots and each treatment appears 

ir  times. One must have 
1 1= =

= =∑ ∑v b
i ji j

r k n . If the experimental plot u has response uy  

corresponding (possibly) to ux , a vector of observations on controllable quantitative 
contextual variables or covariates, block j, and treatment i, one postulates 

′= + + + +u i j u uy xµ α ρ β ε , where µ  is an overall mean, 1( )= … vα α α  is the vector of 
treatment (parameter) effects, 1( )= … bρ ρ ρ  is the vector of block (parameter) effects, ′β  is 
the parameter vector associated with the covariates, and the uε  are iid random errors 
normally distributed with mean zero. Typically, the design matrix for the block design is 
singular but ′β , and block and treatment contrasts, of the form 0, 1 0,p pα′ ′= =  

0, 1 0,c cρ′ ′= =  are estimable. 

Table 1 shows responses and DEA efficiency measurements (Eff) for an intercropping 
experiment with maize and bean. The experiment was carried out at Embrapa (Brazilian 
Agricultural Research Corporation) and appears in Federer (1993). Four bean varieties 
(A, B, C e D) are intercropped with two maize varieties (X e Y). The crop combinations plus 
the sole crops, in a total of 14 levels, define the treatments here. The response is defined by 
the vector of yields of maize and beans measured by weight (Kg) per square meter. Sole 
crops show a zero in one of the yields. 
 

Table 1 – Responses (bean yield – BY, maize yield – MY, and efficiency – Eff) for the 
intercropping of bean and maize in a randomized block experimental design. 

Treatments Block 1 Block 2 Block 3 Block 4 

 BY     MY     Eff BY     MY     Eff BY     MY     Eff BY     MY     Eff 
1 Inter.: A. X 34.5   463.8   0.706 48.5   340.6   0.658 38.2   411.7   0.653 52.0   598.0   0.924 
2 Inter.: A. Y 32.0   418.4   0.637 47.5   396.9   0.704 32.2   367.6   0.569 45.2   310.1   0.607 
3 Inter.: B. X 18.4   575.1   0.869 34.0   530.4   0.806 34.2   341.6   0.559 22.3   523.9   0.793 
4 Inter.: B. Y 40.2   479.1   0.731 55.2   655.     1.000 57.4   401.7   0.778 35.2   519.4   0.790 
5 Inter.: C. X 43.1   417.9   0.692 42.0  546.8    0.833 30.7   317.4   0.512 46.5   599.3   0.913 
6 Inter.: C. Y 45.0   480.4   0.765 48.0   525.9   0.828 30.0   425.9   0.649 59.2   527.1   0.908 
7 Inter.: D. X 34.0   550.4   0.836   -       571.1         -   54.7   522.9   0.872 60.4   335.4   0.737 
8 Inter.: D. Y 38.6   450.4   0.692 41.8   353.6   0.623 37.5   386.7   0.625 52.4     42.6   0.774 

9 Sole:   A 126.3      0     0.885 79.4        0     0.556 56.5      0       0.396   -            0            -  
10 Sole: B   44.3      0     0.310 52.9        0     0.371 66.4      0       0.465 48.0        0      0.336
11 Sole: C 142.7      0     1.000 101.8      0     0.713 88.2      0       0.618 82.2        0      0.576
12 Sole: D 105.8      0     0.741 141.2      0     0.989 98.4      0       0.690 118.7      0      0.832
13 Sole: X    0     476.9   0.717    0     473.4   0.712    0     451.2   0.678    0      475.6   0.715
14 Sole: Y    0     597.3   0.898    0     617.6   0.928    0     531.8   0.799    0      665.3   1.000
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The DEA model should be run with 56 DMUs (14 treatments and 4 blocks), but there were 
missing data in two of them (treatment 7 – block 2, and treatment 9 – block 4). Thus, it was 
run with 54 DMUs, one single and constant input (equal to unit) and two outputs, bean yield 
(BY) and maize yield (MY). The analysis of variance of the experiment based on efficiency 
responses is shown in Table 2. The statistical analysis is carried out assuming the data 
generating process of the block design with DEA efficiency measurements as the observations 
on the dependent variable. Treatment contrasts of interest were also included in the analysis. 

Efficiency seems to be the same for all variety combinations of maize and bean used in 
intercropping (rows (d) and (e), Table 2). Overall, there is no significant gain in efficiency of 
sole plots over intercropping (row (a), Table 2). Intercropped beans however are significantly 
more efficient than sole beans (row (b), Table 2). An interesting aspect of this intercropping 
experiment is that it shows a smaller risk for intercropped plots. Efficiency variation of 
intercropped plots is dominated by efficiency variation in sole plots. This remark is evident 
from Figure 1 where treatments 1-8 refer to intercropping and treatments 9-14 refer to sole 
crops (treatments 1-8 show less dispersion than treatments 9-14). 

Efficiency responses belong to the interval (0.1], and treatment variances seem to be 
heterogeneous. In this context, one may perform an analysis of variance considering ranks as 
the response variable. The approach is non-parametric. We notice that this analysis leads to 
similar conclusions. 

 
Table 2 – Analysis of variance for the intercropping of maize and bean. DEA efficiency is the 

response variable. Data generating process is defined by the randomized block design. 

 Source df Sum of  
squares 

Mean  
square F p-value 

 Blocks 3 1.149 0.050 3.79 0.018 
 Treatments 13 0.832 0.064 4.89 <0.001 

(a) 
Intercropping x Sole crops 

Contrast coefficients: 
(6,6,6,6,6,6,6,6,-8,-8,-8,-8,-8,-8) 

1 0.041 0.041 3.13 0.085 

(b) 
Bean (Intercropped) x Bean (Sole) 

Contrast coefficients: 
(4,4,4,4,4,4,4,4,-8,-8-8,-8,0,0) 

1 0.128 0.128 9.78 0.003 

(c) 
Maize (Intercropped) x Maize (Sole) 
Contrast coefficients – treatments: 

(2,2,2,2,2,2,2,2,0,0,0,0,-8,-8) 
1 0.022 0.022 1.68 0.203 

(d) 
Maize (Intercropping) 
Contrast coefficients: 

(1,-1,1,-1,1,-1,1,-1,0,0,0,0,0,0) 
1 0.009 0.009 0.68 0.415 

(e) 

Bean (Intercropping) 
Contrasts coefficients: 

(1,1,0,0,-1,-1,0,0,0,0,0,0,0,0) 
(0,0,1,1,0,0,-1,-1,0,0,0,0,0,0) 
(0,0,0,0,1,1,-1,-1,0,0,0,0,0,0) 

3 0.051 0.017 1.30 0.290 

 Error 37 0.484 0.013   
 Total 53 1.466    
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Figure 1 – Box plots of treatments. Intercropping of maize and bean. 

 
3.2 Intercropping of Groundnut and Maize 

The second experiment we consider is the intercropping of groundnut and maize in a 
randomized block design laid out as a split plot. The underlying principle of the split plot is 
this: the levels of a factor A (treatment A) are applied to the experimental plots arranged as 
in the randomized block design. Each experimental plot is then divided into subplots to 
which the levels of a second factor B (treatment B) are applied. In this context each 
experimental plot becomes a block for factor B. The randomization is carried out in two 
stages. First the levels of A are randomized over the (whole) experimental plots. Then the 
levels of B are randomized over the subplots. The reference is Steel et al. (1996). 

The data generating process for the split plot assuming the randomized block design is as 
follows. Let ( )= + + + + + +ijk i j ij k ijkjky µ ρ α γ δ αδ ε  denote the observation in the ith block 
of a randomized (complete) block design, on the jth level of factor A with the kth level of 
factor B. Here i=1…r blocks, 1...=j a  levels of factor A, and 1...=k b  levels of factor B. 
The error components ijγ  and ijkε  are normally and independently distributed about zero 

means, with 2
γσ  being the common variance of the ijγ  and 2

εσ  the variance of the ijkε . The 

error component ijγ  is the whole plot random error (Error A) and ijkε  is the subplot random 

error (Error B). The parameters ( ), , , ,i j k jkµ ρ α δ αδ  represent an overall mean, block 
effects, factor A effects, factor B effects and the interaction A*B (joint) effects. As before, 
the design matrix is singular but all parametric functions of interest are estimable. Covariates 
may also be superimposed in the context of the design layout. 
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Table 3 shows production and efficiency data for an intercropping experiment involving 
maize and groundnuts. Response for each crop is measured in tons/acre. The experiment was 
carried out in the substation of Morwa, in Samuru, Nigeria. It is described in Carvalho 
(1988). The whole experimental plot treatment levels are defined by factor A with 5 levels, 
which are repeated in 4 blocks. The levels of A are defined by the plant densities 
(maize: groundnut) 1:3, 1:2, 2:3, 4:9, and 1:6. The subplot treatment, factor B, comprises two 
levels of nitrogen treated as qualitative. We denote by 1-5 the plant densities and by 1-2 the 
nitrogen levels. 

Figure 2 shows clearly an increase in efficiency due to nitrogen level 2 independently of the 
plant density (treatments Tx2 have higher response that treatments Tx1). It is also evident the 
dominance of plant density 4. A non-parametric analysis of variance is shown in Table 4. 
The response considered for this analysis is rank of efficiency. The ranks are assumed to 
follow the data generating process of the split plot with the randomized block design. The 
interaction A*B is significant. 
 
Table 3 – Responses (maize yield, groundnut yield, efficiency) for a factorial design laid out as a 
randomized block design with a split plot structure. The first index in treatment combination Tij 
refers to a level of Factor A (plant density) and the second to a level of Factor B (nitrogen level).  

Treatments Blocks Maize Groundnut Efficiency 
T11 1 23.8 24.1 0.651 
T21 1 36.2 21.6 0.677 
T31 1 37.8 17.4 0.610 
T41 1 53.4 19.0 0.786 
T51 1 21.0 26.2 0.677 
T12 1 31.2 27.4 0.766 
T22 1 49.2 22.0 0.786 
T32 1 54.8 18.9 0.799 
T42 1 69.0 19.5 0.950 
T52 1 25.2 31.8 0.820 
T11 2 35.2 24.2 0.725 
T21 2 43.2 18.8 0.683 
T31 2 45.0 15.1 0.650 
T41 2 53.6 18.2 0.777 
T51 2 22.8 33.7 0.849 
T12 2 36.6 27.9 0.811 
T22 2 52.0 13.5 0.716 
T32 2 65.6 15.8 0.904 
T42 2 55.4 20.0 0.819 
T52 2 24.6 30.2 0.783 
T11 3 29.6 31.1 0.833 
T21 3 28.4 26.2 0.723 
T31 3 41.0 20.5 0.685 
T41 3 65.0 14.9 0.895 
T51 3 24.4 31.3 0.804 
T12 3 35.8 31.7 0.884 
T22 3 50.6 23.7 0.823 
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T32 3 65.0 22.5 0.948 
T42 3 70.8 14.9 0.975 
T52 3 30.2 36.9 0.957 
T11 4 21.4 27.5 0.706 
T21 4 40.2 27.4 0.823 
T31 4 52.2 20.7 0.797 
T41 4 39.8 32.0 0.916 
T51 4 23.2 36.3 0.914 
T12 4 29.4 28.8 0.784 
T22 4 55.0 26.5 0.904 
T32 4 72.6 20.8 1.000 
T42 4 60.0 29.9 1.000 
T52 4 27.8 39.7 1.000 

 

 
Figure 2 – Box plots of treatments. Intercropping of groundnut and maize. 

 
Table 4 – Analysis of variance table for ranks of efficiencies of experimental units.  
Intercropping of groundnut and maize in a split plot with a randomized block design. 

Source df Sum of squares  Mean square F p-value 
Blocks 3 1499.20 499.73 8.20 0.003 

A 4 990.25 247.56 4.06 0.026 
Error A 12 731.55 60.96 - - 

B 1 1276.90 1276.90 43.07   < 0.0001  
A*B 4 385.35 96.34 3.25 0.042 

Error B 15 444.75 29.65 - - 
Total 39 5328.00 - - - 
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Table 5 provides information on the average efficiency rank per treatment (means over 
efficiency ranks for the intercropping of maize and groundnut). Comparison of two A means, 
at the same or different levels of B, involve both main effect A and interaction A*B. The two 
error component are involved, the whole plot error and the subplot error. The variance of the 

difference is given by ( )2 22⎛ ⎞ +⎜ ⎟
⎝ ⎠r γ εσ σ . An unbiased estimate of ( )2 2+γ εσ σ  is given by 

a bMSE ( 1) MSE
b

+ −b
, where aMSE  and bMSE  are the mean square errors for errors A and 

B, respectively (Milliken & Johnson, 1984; Steel et al., 1996). The sampling distribution 
associated with this unbiased estimate is not chi-square but a linear combination of chi-
square distributions. There is not an exact least significant difference for the comparison of 
two A means. Using the method of moments an approximate value can be computed. The 
procedure is similar to the one used when the means of two populations with distinct 
variances are compared. Following Milliken & Johnson (1984, p.303), the least significant 

difference for comparing any two A means at the 5% level is 60.96 29.65
4

∗ +
=lsd t . In this 

expression 
12 15
0.975 0.97560.96 29.65

60.96 29.65
∗ × + ×
=

+
t t

t , where rtα  is the quantile of order α  of the 

Student distribution with r degrees of freedom. Thus, 10.30=lsd . 

 
Table 5 – Treatment means of efficiency ranks for the intercropping of maize and groundnut. 

Treatment Mean 
T11 12.00 
T21 11.50 
T31 07.00 
T41 23.00 
T51 20.75 
T12 19.00 
T22 20.00 
T32 30.50 
T42 33.25 
T52 28.00 

 

We see that the visual impression of Figure 2 is confirmed. Responses associated with 
nitrogen level 2 are dominant. Treatment combination 42 has the highest efficiency. 
However it does not differ significantly (5%) from T32 or T52. 

To compare the two levels of factor B, averaging over all densities, only the variance 2
εσ  is 

involved and a standard t-test may be carried out (Milliken & Johnson, 1984). Based on the 
ANOVA of the design (Table 4), the observed difference should be at least 3.67 to be 
declared significant at the 5% level. We see that level 2 significantly dominates level 1. We 
emphasize at this point that a similar analysis using non-transformed data leads to the same 
conclusions. 
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If the investigator feels that maize is more important than groundnut, this perception can be 
incorporated in the analysis using DEA models with Assurance Region weights restrictions 
approach ( 1≥maize groundnutu u ), as discussed in Section 2. It leads to the data in Table 6 and 
the analysis shown in Table 7 when the responses are ranks. The interaction A*B is no 
longer significant at the 5% level. At this level of significance the least significant difference 
for A comparisons is 7.49. The A means are 12.13, 20.62, 26.00, 36.63 and 10.93, 
respectively. The best density is level 4, which is superior significantly to densities 1, 2, and 
5 and marginally to density 3. The least significant difference for comparison of nitrogen 
levels is 3.05 and the observed mean difference is 10.8. Level 2 is superior as before. 

 
Table 6 – Responses (efficiency) for a factorial design laid out as a randomized block design with 

a split plot structure. The first index in treatment combination Tij refers to a level of Factor A 
(plant density) and the second to a level of Factor B (nitrogen level).  

Perception groundnut ≤ maize incorporated. 

Treatments Blocks Efficiency Treatments Blocks Efficiency 
T11 1 0.513 T11 3 0.650 
T21 1 0.619 T21 3 0.585 
T31 1 0.591 T31 3 0.659 
T41 1 0.775 T41 3 0.895 
T51 1 0.505 T51 3 0.596 
T12 1 0.627 T12 3 0.723 
T22 1 0.762 T22 3 0.796 
T32 1 0.789 T32 3 0.937 
T42 1 0.950 T42 3 0.975 
T52 1 0.610 T52 3 0.718 
T11 2 0.636 T11 4 0.524 
T21 2 0.664 T21 4 0.724 
T31 2 0.644 T31 4 0.781 
T41 2 0.769 T41 4 0.769 
T51 2 0.605 T51 4 0.637 
T12 2 0.691 T12 4 0.623 
T22 2 0.716 T22 4 0.873 
T32 2 0.904 T32 4 1.000 
T42 2 0.807 T42 4 0.963 
T52 2 0.587 T52 4 0.723 
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Table 7 – Analysis of variance table for ranks of efficiencies of experimental plots.  
Intercropping of groundnut and maize in a split plot with a randomized block design.  

Perception groundnut ≤ maize incorporated. 

Source df Sum of squares Mean square F p-value 
Blocks 3 400.95 133.65 2.83 0.080 

A 4 2686.06 671.52 14.20 <0.001 
Error A 12 567.49 47.29 - - 

B 1 1166.40 1166.40 56.82 < 0.001 
A*B 4 200.16 50.04 2.44 0.093 

Error B 15 307.93 20.53 - - 
Total 39 5329.00 - - - 

 

4. Validation 

The assumptions behind the statistical analysis carried in both examples of the previous 
section are strong and can be questioned. Typically, errors are uncorrelated and normally 
distributed. DEA efficiency responses cannot be normally distributed. The use of DEA 
efficiency measures as a response variable in regression models has been questioned recently 
in the econometric literature. See Simar & Wilson (2007). Besides normality, another issue 
in this discussion is that the analysis is carried out in two stages and in the first stage a 
correlation between experimental units is induced by the computation (and the definition) of 
the response variable and the potential association of covariates with the error term. In this 
context, one loses the distributional properties of the least squares estimators. For designed 
experiments however, the analysis of variance is known to be robust against many departures 
from the linear models defining the data generating process. Including non-normality and 
correlation among the experimental plots responses. On the other hand, covariates are not 
considered random in a designed experiment. 

The random allocation of treatments to the experimental plots is the key feature that validates 
the statistical analysis besides allowing a method to verify if the significance levels induced 
by the normal theory are correct or not. Fisher (1925) extensively promoted this 
experimental process. A good discussion on this theory may also be seen in Hinkelman & 
Kempthorne (2007a, 2007b) and Kutner et al. (2005). 

Based on the robustness of the statistical analysis of designed experiments, we should stress 
once again that the issues of correlation and non-normality are of secondary importance in 
many applications. For example, with unitary inputs and a single response, the measure of 
efficiency proposed here amounts simply to divide the values of the response by its sample 
maximum. Since t and F statistics are invariant by scale transformations, the statistical results 
are unaffected by the two-stage process. The situation with multiple outputs is more complex. 
Our experience is that the correlation is not sufficiently strong to invalidate the analysis. In a 
previous study (Souza et al., 2007), we did not find that the correlation was significant. 

A way to overcome the discussion on whether or not the classical analysis of variance is 
valid is to derive the distribution, induced by the randomization of treatments to the 
experimental plots, of the test statistics of concern, and compare them with the distribution 
generated under normal theory, i.e., under the model assumed to have generated the data. 
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For a complete randomized block design with r blocks and v treatments there are ( )! rv  
possible assignments of treatments to experimental plots. Consider the F statistics used to 
test equality of treatment effects. Each treatment assignment generates a value for F. The 
collection of these F values defines the distribution of F under randomization. Typically the 
number of possible treatment allocations is large and one works with a random sample from 
this population. Here we use 10,000 random allocations, which will generate 10,000 F 
values. We note that in these simulations the DEA responses are fixed in each experimental 
plot. Only the treatment allocations change. 

For the split plot arranged in r blocks with a levels of factor A applied to main plots and b 
levels of factor B applied to the subplots, there will be ( )! ! ra b  possible treatment allocations 
to the experimental plots. The statistics of main concern here are the F test statistics for the 
effects A, B and the interaction A*B. Here we also use 10,000 random allocations. 

For a more complete discussion in randomization test see, for instance, Edgington & 
Onghena (2007). 

 
4.1 Intercropping of Maize and Bean 

We used SAS v9.1.3 to program a Macro to generate 10,000 values of the F statistic used for 
testing equality of treatment effects under normal theory. The SAS procedures used were 
PROC PLAN and PROC GLM. Table 8 shows the quantiles of the two distributions 
involved. 

The quantiles of the two distributions are close. The analyses with normal theory and with 
randomization are coincident. The empirical p-value does not point to any significant 
discrepancy. 
 
Table 8 – Comparison of quantiles. Intercropping of maize and bean. Randomized block design. 

Quantile (%) F (Normal) F (Randomization) 
90 1.71 1.71 
95 2.00 2.03 
99 2.66 2.76 

 

4.2 Intercropping of Groundnut and Maize 

Here, also, a macro SAS was developed to generate values of the three F statistics associated 
with the effects A, B, and A*B. Table 9 shows the quantiles of the distributions of these test 
statistics under normality and under randomization. 

Although the approximations for the split plot are not as good as for the previous randomized 
block design, the distributions reasonably agree. Empirical p values are 0.0254, < 0.0001 and 
0.0489, for A, B and A*B, respectively. They are practically the same as those reported in 
the ANOVA analysis reported in Table 4. 
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Table 9 – Quantiles of the distributions under normality and randomization.  
Intercropping of groundnut and maize. Randomized block design with split-plot. 

Effect Quantile (%) F (Normal) F (Randomization) 
 90 2.48 2.57 

A 95 3.26 3.37 
 99 5.41 5.20 
 90 3.07 3.11 

B 95 4.54 4.70 
 99 8.68 9.49 
 90 2.36 2.43 

A*B 95 3.06 3.21 
 99 4.89 5.18 

 

5. Conclusions 

We propose the use of DEA output oriented efficiency measurements, under constant returns 
to scale, assuming a unitary input, as the response of each experimental plot in a designed 
experiment whenever the output vector is defined by non-negative yields. The technique 
consists in applying the normal theory or non-parametric (rank) methods to the efficiency 
measurements. This proposed approach, with the validation test, has never been used before 
in intercropping experiments. 

The analysis coincides with the classical analysis of variance when yield is univariate, since 
the analysis of variance computations are invariant under scale transformations. The use of 
DEA has a strong appeal in the analysis of intercropping experiments were, typically, one is 
looking for the most efficient combination of two or more cultures. 

In this context, we illustrated the efficiency analysis using two randomized block designs. 
One of them with the structure of a split plot. The intercropping considered were maize and 
bean for the randomized block design, and groundnut and maize for the split plot. In both 
cases the statistical analysis with efficiency scores is simpler and more objective than that 
based on the bivariate normal distribution. The classical analysis of variance for the 
efficiency scores in the two instances was validated via Randomization Theory, reinforcing 
its usefulness in this kind of application. 
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