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ABSTRACT 

We define and model the research production at Embrapa, the major Brazilian institution 
responsible for applied agricultural research. The main theoretical framework is Data 
Envelopment Analysis – DEA. We explore the economic interpretation and the statistical 
properties of these models to compute confidence intervals for output oriented efficiency 
measurements, based on a parametric flexible model, defined by the truncated normal 
distribution. These results provide a better insight on the efficiency classification and allow 
comparison among the DMUs involved in the evaluation process taking into account inefficiency 
random variation.  

Key words: Confidence intervals; DEA; Agricultural research. 
Main area: DEA 
 

RESUMO 

Neste artigo é definido e modelado o sistema de produção de pesquisa da Embrapa, a maior 
instituição brasileira de pesquisa agropecuária. A ferramenta teórica principal é Análise 
Envoltória de Dados – DEA. Exploram-se a interpretação econômica e as propriedades 
estatísticas desses modelos, para calcular intervalos de confiança para as medidas de eficiência 
orientadas a produto. Aqueles são baseados em um modelo paramétrico flexível definido pela 
distribuição normal truncada. Esses resultados geram melhores entendimentos sobre a 
classificação das medidas de eficiência e permitem comparações entre as DMUs envolvidas no 
processo de avaliação, considerando a variação aleatória da ineficiência. 

Palavras chave: Intervalos de confiança; DEA; Pesquisa agropecuária. 
Área de classificação principal: DEA 
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1. Introduction 

It is of importance to administrators of research institutions to have at their disposal 
measures and procedures making feasible an evaluation of the quantum of production, as well as 
the technical efficiency of the production process of their institutions. In times of competition 
and budget constraints a research institution needs to know by how much it may increase its 
production, with quality, without absorbing additional resources. The quantitative monitoring of 
the production process allows for an effective administration of the resources available and the 
observation of predefined research patterns and goals. In this context, the Brazilian Agricultural 
Research Corporation (Embrapa) developed a production model based on the input-output data 
of its research units. The theoretical framework for this model is the analysis of production 
frontiers, known as Data Envelopment Analysis (DEA).  

Several uses are made of the efficiency measurements by Embrapa’s administration. Those 
include monitoring of production targets, resource allocation and rewarding. Administrative 
actions regarding a given ranking of units will have more impact if they take into account the 
stochastic variation imbedded in the measurements of production variables. This leads to the 
consideration of statistical production models, from which one may infer statistical properties for 
efficiency estimates. For the stochastic frontier analysis, with proper parametric specifications of 
the production or cost functions, this is a natural process, as can be seen in Kumbhakar and 
Lovell (2000) and Coelli et al. (2005).  

For the nonparametric frontier approaches induced by classical DEA (Coelli et al., 2005) or 
the Free Disposal Hull (FDH) of Deprins et al. (1984), some technical issues arise and a proper 
approach has to be put forward to guarantee the derivation of sound statistical results. This is the 
line of work carried out by Banker (1993), Banker and Natarajan (2004, 2008), Simar and 
Wilson (2004, 2007), Daraio and Simar (2007), Souza and Staub (2007) and Souza et al. 
(2009a). 

In this article we combine the results of Banker (1993), Banker and Natarajan (2008), Simar 
and Wilson (2007) and Souza and Staub (2007) to come up with confidence intervals for DEA 
efficiency measurements, robust relative to production function choices and efficiency 
distributions within reason. These intervals are more appealing than those generated by the 
bootstrap of Simar and Wilson (2004, 2007) that may produce unexpected results, like one unit 
being regarded as inefficient after being observed as a benchmark or generating confidence limits 
that do not include observed efficiency measurements.  

Our discussion proceeds as follows. In Section 2 we review the concepts leading to the 
models for which one may view DEA estimates as nonparametric maximum likelihood, and for 
which statistical properties may be derived for efficiency estimates. In Section 3 we review 
Embrapa’s production model. Section 4 deals with the statistical results of our application and, 
finally, in Section 5 we summarize our findings.  
 
 
2. Data Envelopment Analysis Production Models 

Consider a production process composed of n decision making units (DMUs). Each DMU 
uses varying quantities of m different inputs to produce varying quantities of s different outputs.  

Denote by ),...,,( 21 nyyyY=  the ns×  production matrix of the n DMUs. The rth column of 

Y is the output vector of DMU r. Denote by ),...,,( 21 nxxxX =  the nm×  input matrix. The rth 

column of X is the input vector of DMU r. The matrices )( ijyY =  and )( ijxX =  must satisfy: 

0 ,0 >∑≥ ijiij pp  and 0>∑ ijj p , where p  is x  or y .  

The measure of technical efficiency of production (under constant returns to scale) for DMU 
} ..., ,2 ,1{    no ∈ , denoted )(ECR o , is the solution of the linear programming problem (1). 
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If we look at the coefficients u and v as input and output prices, we see that the measure of 

technical efficiency of production is very close to the notion of productivity (output income/input 
expenditure). Technical efficiency, in this context, basically, is looking for the price system 

),( vu  for which DMU o achieves the best relative productivity ratio. 
The dual problem of the linear programming problem (1) has an important economic 

interpretation, which we will explore. This is θλθ ,min , subject to 
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equivalently, formulation (2). 
 

free  ,0 iii) and  ii)  , i)

subject to

min ,

θλθλλ

θλθ

≥≤≥ oo xXyY

     (2) 

 
The matrix products λY  and λX , with 0≥λ , represent linear combinations of the columns 

of Y and X, respectively, i.e., a sort of weighted averages of output and input vectors. In this way, 
for each λ , we can generate a new production relation, a new “pseudo” producer. Trivially, the 
set of DMUs 1, 2,..., n are included among those new producers. Making allowance for these 
newly defined production relationships, the question that the dual intends to answer is: What 
proportional reduction of inputs ox θ  it is possible to achieve for DMU o and still produce at 

least output vector oy ? The solution ),(*
oo yxθ  is the smallest θ  with this property.  

We can define the concept of technical efficiency of production in a context of fixed inputs 
instead of fixed outputs, i.e., in a program of output augmentation. In this environment the 
measure of technical efficiency of production of DMU o, under constant returns to scale, is the 
one defined in (3). 
 

free  ,0 iii)  and  ii)  , i)

subject to

max),( ,
*
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φφ λφ
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=

oo

oo

xXyY

yx

     (3) 

 
In the output augmentation program the question we ask is: what proportional rate φ  can be 

uniformly applied to augment the output vector oy , without increasing the input vector ox ? The 

solution *φ  is the largest φ  with this property. This is the approach we will explore here.  
Questions of scale can be dealt properly imposing proper restrictions in the linear 

programming problem. One obtains the variable returns DEA imposing the additional condition 
1 1λ′ =  on the weight vector λ . 

We now turn our attention to production statistical models. We follow along the lines of 
Banker (1993). Suppose m = 1 (a single output) and assume the existence of a continuous frontier 
production function RKg →:  defined on the convex and compact subset K of the positive 

orthant of sR . For each DMU o, the input observations ox  are points in K. Let (4). 
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The DEA frontier production function is defined for *Kx∈  by (5), and it can be shown that 

for DMU o, * *( )o o og x yφ= , where we are assuming variable returns to scale. 
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Suppose that observations ),( oo yx  are interior points to K and that they are generated in 

accordance with the statistical model (6), 
 

ooo xgy ε−= )(          (6) 
 
where: 

a) The inefficiencies oε  are iid with a common density )(εf .  

b) The common distribution function F(x) of the inefficiencies is strictly positive in ),0(+∞ . 

c) The inputs ox  represent a random sample from a density h(x) strictly positive in the 
interior of K. 

d) The inputs ox  and the inefficiencies are independent. 
 

Then: 
1. )(*

oxg  is the nonparametric maximum likelihood estimate of )( oxg  if )(εf  is 
monotonically decreasing in ),0(+∞ . 

2. )(*
oxg  is weakly consistent for )( oxg . 

3. Let M be any fixed subset of DMUs. If n is large, the joint distribution of the estimated 
inefficiencies Mjxgy jjj ∈−=  ),(ˆ *ε , is, approximately, the joint distribution of the 

true inefficiencies Mjj ∈ ,ε . 

 
These results can be used to test hypothesis about the nature of the production process. An 

example is the verification of weather the technology shows constant returns to scale or variable 
returns to scale. We may perform this test comparing the empirical distribution functions of the 

oε̂  (estimated inefficiency errors) under the assumptions of constant and variable returns to scale 
computing Kolmogorov-Smirnov test statistic (Conover, 1998). 

The statistical properties of univariate DEA estimates were extended by Banker and 
Natarajan (2004, 2008) to encompass stochastic formulations of the production model, and by 
Souza and Staub (2007) to allow for non iid inefficient components.  

Checking weather or not the production model fits the data is a matter of verifying if the 
postulated inefficiency distribution fits the efficiency observations. As in stochastic frontier 
analysis, the three commonly used family of distributions used to model inefficiency errors are 
the exponential, the half-normal and the truncated normal, the latter having flexibility properties 
(Coelli et al., 2005). Again, Kolmogorov-Smirnov test can be used to assess proper fits of these 
families. For the exponential and half-normal cases, Banker (1993) and Souza and Staub (2007) 
have derived simple statistics, which allow the study of the quality of the fit.  

Under the exponential model, the statistic (7) will have qui-square distribution with 2n 
degrees of freedom, where d is the standard error of the inefficiency errors. 
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Under the assumption of a half-normal model, both w2 and w3, in (8), are approximately qui-

square with n degrees of freedom.  
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If one is concerned with 100(1 )α− % confidence intervals for the efficiency measurement 

iφ  those can be computed as (9), where q̂  is the corresponding quantile of the estimated 

inefficiency error distribution. This follows from a similar result reported in Souza and Staub 
(2007). 
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The quantile can be computed by parametric and non parametric methods. If the production 

models are subject also to random errors, assuming that the random error distribution has support 
in a bounded closed interval, the interval becomes (10), where the constant a should be estimated 
as in Banker and Natarajan (2008) or in Souza et al. (2009b). These conjectures in the context of 
interval estimation are new to the best of our knowledge. The extension of these results to the 
multivariate output is not clear in the literature. 
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3. Embrapa’s Production System 

Embrapa’s research system comprises 37 units (DMUs) of research centers. Input and output 
variables are defined from a set of performance indicators known to the company since 1991. The 
set comprises 28 outputs and 3 inputs. 

We begin our discussion with the output. The output variables are classified into four 
categories: Scientific production; Production of technical publications; Development of 
technologies, products, and processes; Diffusion of technologies and image.  

By scientific production we mean the publication of articles and book chapters aimed mainly 
to the academic world. We require each item to be specified with complete bibliographical 
reference.  

The category of technical publications groups publications produced by research centers 
aiming, primarily, agricultural businesses and agricultural production.  

The category of development of technologies, products, and processes groups indicators 
related to the effort made by a research unit to make its production available to society in the 
form of a final product. Only new technologies, products and processes are considered. Those 
must be already tested at the client’s level in the form of prototypes, or through demonstration 
units, or be already patented.  
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Finally, the category of diffusion of technologies and image encompasses production 
variables related to Embrapa’s effort to make its products known to the public and to market its 
image.  

The input side of Embrapa’s production process is composed of three variables. Personnel 
expenditure, Operational Costs (consumption materials, travel and services less income from 
production projects), and Capital (measured by depreciation). 

All output variables are measured as counts and normalized by the company’s mean of the 
corresponding variable for the year under analysis. Likewise, the inputs are normalized by the 
mean. As a final output we take a weighted average of all variables in all categories of 
production. The weights are user defined and reflect the administration perception of the relative 
importance of each variable to each research center or DMU. 

Defining weights is a hard and questionable task. In our application in Embrapa we followed 
an approach based on the Law of Categorical Judgments of Thurstone (Torgerson, 1958). More 
details on this issue may be seen in Gomes and Souza (2008). The model is competitive with the 
AHP method of Saaty (1994) and is well suited when several judges are involved in the 
evaluation process. Basically, we sent out about 500 questionnaires to researchers and 
administrators and asked them to rank in importance – scale from 1 to 5, each production 
category and each production variable within the corresponding production category. A set of 
weights was determined under the assumption that the psychological continuum of the responses 
projects onto a normal distribution. 

DEA models implicitly assume that the DMUs are comparable. This is not strictly the case in 
Embrapa. To make them comparable it is necessary an effort to define an output measure 
adjusted for differences in operation and perceptions. At the level of the partial production 
categories we induced this measure allowing a distinct set of weights for each DMU. In principle 
one could go ahead and use DEA with multiple outputs. This would minimize the effort of 
defining weights leaving to DEA the task of finding these coefficients. The problem with such 
approach is that there is a kind of dimensionality curse in DEA models. As the number of factors 
(inputs and outputs) increases, the ability to discriminate between DMUs decreases. Thus we 
found convenient to extend the weight system to produce a single measure of output oy . 

A personnel score was created for each unit dividing its number of employees by the 
company’s mean. Outputs and inputs were further normalized by this variable. This further 
established a common basis to compare research units and avoided the incidence of spurious 
efficient units and zero output (shadow) prices, another common occurrence in multiple output 
models, and also a disturbing fact for management interpretation. A single output also allows the 
use of the statistical tests described in the previous section. 

DEA models are known to be sensitive to outliers. In our application control of outliers is 
particularly important for output variables. In this context we use box plot fences to adjust the 
values of outlying observations. Values above ( )3 1.5 3 1Q Q Q+ −  are reduced to this value for 

any variable. Here Q1 and Q3 denote the first and third quartiles, respectively. 
 
 
4. Statistical Results 

In Table 1 we show Embrapa’s production data for 2007. 
We begin our analysis of the data in Table 1 checking the scale of operation of Embrapa’s 

research units. Efficiency estimates under constant and variable returns and the corresponding 
inefficiency errors are shown in Table 2. This test is particularly important since we further 
normalize the data by the index of quantum of personnel. The Kolmogorov-Smirnov statistics for 
this hypothesis is D=0.324 with a p-value of 0.041, significant. The data used in this analysis is 
shown in Table 2 and are inefficiency errors ( 1)yφ −  computed from the efficiency 
measurements. On the basis of this test statistic we assume a variable returns to scale technology.  
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Table 1. Embrapa’s mean normalized production data. Y is the output, X1 is personnel 
expenditures, X2 is other expenses and X3 is capital. 

Research Center Y X1 X2 X3 
1 1.991 1.411 2.266 1.922 
2 1.415 1.010 0.935 0.765 
3 1.289 1.009 1.444 1.344 
4 0.647 0.847 0.872 0.905 
5 1.395 1.150 1.311 1.222 
6 0.553 0.891 0.923 0.835 
7 1.991 1.182 1.848 3.305 
8 1.086 1.252 0.845 0.702 
9 0.444 0.967 1.259 1.592 
10 1.118 0.973 0.537 1.114 
11 1.024 0.832 0.822 0.829 
12 0.745 1.152 1.038 3.212 
13 0.886 1.147 0.940 1.202 
14 0.773 1.079 0.949 0.816 
15 0.760 0.993 1.029 1.026 
16 0.989 1.188 0.722 1.003 
17 1.164 0.862 0.918 0.981 
18 1.010 1.003 1.298 0.983 
19 1.098 0.958 0.819 0.904 
20 1.108 1.360 1.484 1.448 
21 1.185 0.943 0.998 1.525 
22 0.419 0.931 0.639 0.658 
23 0.555 0.930 1.113 0.800 
24 0.978 0.913 0.919 0.941 
25 0.569 1.057 1.255 0.978 
26 0.802 1.134 0.985 0.714 
27 1.262 0.908 0.696 0.505 
28 1.421 0.963 1.223 1.038 
29 0.589 0.758 0.628 0.480 
30 0.651 0.940 1.147 0.830 
31 0.574 1.116 0.911 0.850 
32 0.977 1.061 1.015 0.718 
33 1.670 0.814 0.686 0.606 
34 0.502 1.056 0.788 0.715 
35 1.131 1.028 0.965 1.101 
36 0.633 0.937 0.821 1.112 
37 1.841 1.089 1.400 1.754 
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Table 2. Product oriented measures of technical efficiency and inefficiency errors computed 
under constant returns to scale (CRS) and variable returns to scale (VRS). 

Research Center 
Efficiency Error 

CRS VRS CRS VRS 
1 1.453 1.000 0.903 0.000 
2 1.464 1.208 0.657 0.294 
3 1.605 1.393 0.780 0.506 
4 2.688 2.625 1.092 1.051 
5 1.692 1.292 0.965 0.407 
6 3.300 3.106 1.272 1.164 
7 1.218 1.000 0.434 0.000 
8 1.783 1.560 0.850 0.608 
9 4.464 4.049 1.538 1.354 
10 1.170 1.000 0.190 0.000 
11 1.667 1.647 0.683 0.663 
12 3.175 2.370 1.620 1.020 
13 2.584 1.965 1.403 0.855 
14 2.865 2.227 1.442 0.949 
15 2.681 2.299 1.278 0.987 
16 1.776 1.698 0.768 0.690 
17 1.520 1.471 0.605 0.548 
18 2.037 1.745 1.047 0.753 
19 1.789 1.553 0.866 0.607 
20 2.519 1.661 1.683 0.733 
21 1.631 1.481 0.748 0.571 
22 3.717 2.882 1.139 0.788 
23 3.436 3.096 1.352 1.163 
24 1.916 1.764 0.896 0.747 
25 3.817 3.096 1.603 1.193 
26 2.451 2.114 1.164 0.894 
27 1.103 1.000 0.129 0.000 
28 1.391 1.236 0.555 0.335 
29 2.247 1.000 0.735 0.000 
30 2.959 2.653 1.275 1.076 
31 3.861 2.994 1.642 1.145 
32 2.024 1.736 1.001 0.719 
33 1.000 1.000 0.000 0.000 
34 3.817 3.367 1.414 1.188 
35 1.866 1.538 0.979 0.609 
36 3.040 2.695 1.291 1.073 
37 1.214 1.001 0.393 0.002 

 
 

Table 3 shows goodness of fit statistics related to the fit of the exponential and half-normal 
distributions. We see that statistic w1 rejects the exponential model. The statistics w2 and w3 do 
not show evidence against the half-normal distribution.  
 

Table 3. Goodness of fit tests for the exponential and half-normal distributions. 
Distribution df Qui-square p-value 

Exponential ( 1w ) 74 119.57 < 0.001 

Half-normal ( 2w ) 37 32.33 0.687 

Half-normal ( 3w ) 37 48.18 0.103 

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1578



 

The probability distribution function for the exponential distribution with parameter 0γ >  is 

given by (11) and for the truncated normal ( , )N µ σ+  is (12), where (.)Φ  is the distribution 
function of the standard normal. The half-normal obtains making 0µ = . 
 

( ) 1 exp{ }F ε γε= − −         (11) 
 

( )F

ε µ µ
σ σε

µ
σ

− −   Φ − Φ   
   =

 Φ 
 

       (12) 

 
Estimating the parameters involved by maximum likelihood methods one seeks to maximize 

(13) for the exponential distribution and (14) for the truncated normal. Here (.)φ  denotes the 
probability density function of the standard normal distribution. 
 

1

( ) ln( ) 0
n

k
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L n errorγ λ γ
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Table 4 shows maximum likelihood estimates of ,  γ µ  and σ . To compute maximum 

likelihood estimates we follow Simar and Wilson (2007) and eliminate errors associated with 
efficient units. This practice does not destroy the asymptotic approximations.  
 
Table 4. Maximum likelihood estimates under the assumptions of exponential, half-normal and 
truncated normal distribution. 

Parameter Estimate Standard error p-value 
σ  (Half-normal) 0.854 0.108 <0.0001 
µ  (Truncated normal) 0.791 0.058 <0.0001 

σ  (Truncated normal) 0.315 0.044 <0.0001 
γ  (Exponential) 1.256 0.225 <0.0001 

 
The Kolmogorov-Smirnov test statistics for the hypotheses truncated-normal, half-normal 

and exponential are 0.078, 0.291 and 0.316, respectively. The only non significant result is that 
related to the truncated normal distribution, since the 95% asymptotic quantile for the 
Kolmogorov-Smirnov test statistic under the null hypothesis is 0.238. These results are not in 
agreement with the statistical tests reported in Table 3, which do not reject the half-normal 
hypothesis. In this context, since location is significantly different from zero in the truncated 
normal specification, we interpret Table 3 results as lack of enough power to reject the half-
normal null hypotheses and follow the truncated normal error assumption.  

The quantile plot shown in Figure 1 provides visual support for our conclusions regarding 
goodness of fit. This is further evidence in favor of the truncated normal.  
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Figure 1. Quantile plots for Half-Normal, Exponential and Truncated Normal distributions. 
 

Finally, Table 5 shows the efficiency estimates under the assumption of variable returns to 
scale and 95% individual confidence intervals, computed under a nonparametric assumption for 
DEA residuals. The 95% estimated quantile for the error distribution is 1.193. For the estimated 
truncated normal distribution the equivalent quantity is 1.310. The former leads to smaller 
confidence limits in the present case.  

The main advantage of the technique used here relative to other confidence intervals 
suggested in the literature, as the proposal of Simar and Wilson (2004, 2007), is that the actual 
efficiency estimates are lower bounds and they define real possibilities for the corresponding 
population values. However, the imposition of stochastic errors may destroy this property. The 
parametric fitting is particularly convenient when covariates are present, since residuals will not 
be iid and quantiles will change with the DMU level. 
 
 
5. Summary and Conclusions 

Under the assumption of a statistical model containing only inefficiency errors we compute 
confidence intervals for the efficiency measurements computed using Data Envelopment 
Analysis. The production variables are normalized, which potentially leads one to consider 
variable returns to scale technologies. Nonparametric goodness of fit test indicates significant 
differences, relative to the hypothesis of constant returns to scale.  

Residuals from the estimated production model follow a truncated normal distribution, which 
is used to compute the 95% upper limits of the individual efficient measurements. Only non 
efficient units are used for parameter estimation via maximum likelihood. The exponential and 
half-normal distributions fail to provide a good fit.  

The intervals provided include actual efficiencies as possible values. This property however 
may be destroyed if one includes bounded random errors in the model specification.  
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Table 5. 95% individual confidence intervals for product oriented efficiency measures using 
empirical quantile. Intervals scaled to be in [0,1]. 

Research Center Lower bound Upper Bound 
1 0.625 1.000 
2 0.488 0.828 
3 0.431 0.718 
4 0.224 0.381 
5 0.466 0.775 
6 0.190 0.322 
7 0.625 1.000 
8 0.376 0.641 
9 0.148 0.247 
10 0.484 1.000 
11 0.356 0.608 
12 0.252 0.422 
13 0.302 0.509 
14 0.265 0.449 
15 0.258 0.435 
16 0.344 0.589 
17 0.401 0.680 
18 0.342 0.574 
19 0.379 0.644 
20 0.365 0.602 
21 0.402 0.675 
22 0.174 0.346 
23 0.191 0.323 
24 0.335 0.567 
25 0.193 0.323 
26 0.278 0.473 
27 0.514 1.000 
28 0.482 0.809 
29 0.330 1.000 
30 0.223 0.378 
31 0.197 0.334 
32 0.338 0.576 
33 0.583 1.000 
34 0.174 0.297 
35 0.386 0.650 
36 0.218 0.371 
37 0.606 0.999 
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