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Abstract
Interval DEA frontiers are here used in situations where one input or output is subject to 

uncertainty in its measurement and is presented as an interval data. We built an efficient frontier 
without any assumption about the probability distribution function of the imprecise variable. We 
take into account only the minimum and the maximum values of each imprecise variable. Two 
frontiers are constructed: the optimistic and the pessimistic ones. We use fuzzy relationships to 
introduce a new efficiency index based on a set of some Fuzzy T Norms. We will explore only 
the case where only one single variable presents a certain degree of uncertainty.
Key words: Data envelopment analysis, Fuzzy sets, Interval data.

Resumo
Fronteiras DEA com dados intervalares são usadas em situações nas quais um input ou 

um  output tem incerteza na medição e é apresentado como um dado intervalar.  Neste artigo 
propõe-se  a  construção  de  uma  fronteira  eficiente  sem assumir  hipóteses  sobre  a  função  de 
distribuição de probabilidades da variável imprecisa. Aqui são apenas considerados os valores 
máximo e mínimo de cada variável imprecisa. São construídas duas fronteiras: uma otimista e 
outra pessimista. São usadas relações fuzzy para a proposição de um índice de eficiência baseado 
em Normas T Fuzzy. É discutido o caso em que apenas uma variável apresenta certo grau de 
incerteza em sua medida.
Palavras-chave: Análise envoltória de dados; Conjuntos difusos; Dados intervalares.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 1524



1. INTRODUCTION

Classic Data Envelopment Analysis (DEA) models (Cooper et al., 2000) estimate a non-
parametric linear piecewise frontier  determined by efficient  Decision-Making Units  (DMUs). 
Such models assume that the values involves are known with absolute precision. However, such 
hypothesis might not be true either due to uncertainty hidden in the measurements or because the 
data are given in interval format (Cooper et al., 2000). In the first case, the classical solution is to 
use the Stochastic Frontier Analysis (Coelli et al., 1998), which assumes that uncertainties follow 
some probability distribution. An introduction to such an approach with the use of parametric 
and econometric methods is found in Lovell (1993). 

This paper proposes a method to evaluate efficiency in the case where the data are in interval 
form. The method uses a geometrical approach in order to build a fuzzy efficient frontier sets. 
Instead of calculating an efficiency score we will attribute to each and every DMU a membership 
degree to the frontier which will become a fuzzy set (Zadeh, 1965). 

Alternative solutions for interval data in DEA models can be found in the literature with 
Fuzzy Linear Programming Problems. Yet another approach found is to present the efficiency 
measurements in terms of fuzzy functions.  We emphasize that the approach followed in this 
paper uses only the concept of fuzzy sets and T Norms.  The scores obtained herebellow are 
based mainly on geometrical considerations.

2. LITERATURE REVIEW IN DEA MODELS WITH UNCERTAINTIES

A comprehensive literature review on methods used to deal with imprecise DEA data can be 
found in Zhu (2003), who classifies data uncertainties into three types: interval data, ordinal data 
and interval data ratios. The author run a model called Imprecise Data Envelopment Analysis 
(IDEA)  (Cooper  et  al.,  1999),  which  treats  the  three  types  of  data  uncertainties  using scale 
transformations.  Due to  the  problems regarding scale  transformations,  the  author  proposes  a 
simplified approach that converts the variables employed into exact data.

The IDEA model was used by Despotis and Smirlis (2002) to deal with uncertain data of two 
types: interval data and ordinal data. The use of such a linear model is carried out through a 
change of variable scales, turning the non-linear model into a linear programming model. As a 
result, upper and lower bounds are obtained for the efficiency of each DMU. According to the 
authors, the use of post DEA models allows a better discrimination among DMUs. The authors 
still proposed a post DEA model in order to determine target inputs for inefficient DMUs.

Cooper et al. (2001) proposed an extended IDEA model, which enables not only the use of 
imprecise data, but also the use of weight restrictions in the form of assurance regions or cone-
ratios. In that case, the variable limits are changed to data adjustments. Such a model was applied 
to the efficiency evaluation of a Korean mobile telecommunication company.

Lertworasirikul  et  al.  (2003)  considered  uncertain  inputs  and  outputs  as  fuzzy  sets. 
Efficiency computations  are  then carried out  by means  of  linear  fuzzy programming.  As an 
alternative approach, the same authors proposed the use of possibility DEA models.  A fuzzy 
variable is associated to a possibility distribution (Zadeh, 1978), where the fuzzy-DEA scores, 
although not unique, depend on the level of possibility used.

Entani et al. (2002) employed a DEA model to assess DMUs optimistically. These results 
were used to determine interval efficiencies by means of new DEA models. Consequently, the 
efficiency score is not represented by a number, but by an interval. On the other hand, Yamada et 
al. (1994) assessed each DMU pessimistically based on the Inverted DEA model and calculated 
interval efficiency scores. The authors still considered interval data and proposed a model to 
evaluate interval efficiency and inefficiency as carried out using crisp data.

Lopes  and  Lanzer  (2002)  carried  out  a  performance  evaluation  of  University  academic 
departments.  The DEA results on teaching, research and quality are set as fuzzy numbers. A 
unique performance score for each department was built using a weighted ordered aggregator.
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Guo and Tanaka (2001) extended the DEA CCR model with fuzzy inputs and outputs to a 
model named DEARA. This model uses regression analysis concepts and a Fuzzy-DEA model, 
in which the resulting efficiency scores are interval fuzzy evaluations.

Kao and Liu (2000) proposed a method to measure DMUs efficiencies with fuzzy variables. 
The fuzzy model then turns out to a family of conventional DEA models based on crisp data 
using the α-cut  approach.  According to the authors,  the fuzzy efficiency scores obtained are 
given by interval functions yielding more information to the decision-maker. This approach uses 
Fuzzy Linear Programming. A similar approach has been used by Lin (2006).

To measure  the  technical  efficiency of  DMUs,  Triantis  and  Eeckaut  (2000)  relaxed  the 
concept of production frontier and proposed a pair-wise comparison, checking the dominance or 
non-dominance of each DMU when compared to any other. The use of fuzzy variables to take 
into account imprecise data yields a fuzzy pair-wise comparison. Such results are represented in 
matrix form that shows two-way dominance. In other words, efficiency scores are not actually 
obtained, but only an indication of domination among DMUs. It should be stressed that should 
this model be used with crisp data, it would generate a model equivalent to the Free Disposal 
Hull (FDH) model (Deprins et al., 1984).

Hougaard (1999) used fuzzy intervals to combine the information given by DEA analytical 
efficiency scores with subjective efficiency scores. Qualitative and organizational aspects are in 
fuzzy intervals format. The relationship between this information is given by a fuzzy interval 
function. Ideally, the two sources of information related to the performance of a DMU can be 
joined in such a way that the objective DEA aspect is used to control the subjectivity in the 
expert  point of  view, and vice-versa.  That  leads to a modified score set in terms of a fuzzy 
interval. 

Triantis and Girod (1998) suggested a three-stage approach to measure technical efficiency 
in  a  fuzzy  environment.  This  approach  uses  classic  DEA  techniques  and  is  built  on  fuzzy 
parametric programming concepts (Carlsson e Korhonen, 1986).

Sengupta (1992) used fuzzy sets theory in a DEA context. The author uses three types of 
fuzzy  statistics  (fuzzy  mathematical  programming,  fuzzy  regression  and  fuzzy  entropy)  to 
illustrate the types of decision and solution that can be reached when we have imprecise data and 
a priori information is uncertain and imprecise. The same author (Sengupta, 2005) generalized 
the  nonparametric  approach  of  DEA in both  static  and  dynamic  directions  by incorporating 
uncertainties. He addressed an extension of the convex hull method of DEA for determining a 
production frontier in the presence of demand and supply uncertainty of outputs and inputs.

An approach based on randomized ranks is presented by Sant’Anna (2002).
When applications are concerned, we may cite a study on the location for the geographic 

situation of hydroelectric plants (Sant'Anna e Sant'Anna, 2008) and the study on the efficiency of 
Taiwan hotels (Shen e Hsieh, 2006).

3. FUZZY EFFICIENT FRONTIER

The approach developed here makes no assumption regarding the way each input or output 
varies. Only maximum and minimum values for each output and each input are required. Only 
geometric relationships are required to obtain the membership degree of each DMU to the fuzzy 
frontier.  The  algebraic  calculation  of  those  relations  uses  only  classic  DEA models.  If  the 
variables are in interval form, the exact location of the efficient frontier is unknown. It may be 
placed between upper and lower bounds. That is, the frontier is not a piecewise linear surface but 
a region of the space. In the case of one single input and one single output, such a frontier would 
be a strip. In other words, this frontier is a fuzzy set (Zadeh, 1965). To such sets, instead of 
stating that a single element belongs or not to the set, we consider that all elements belong to it 
with a certain degree of membership. 
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In the absence of objective reasons to choose among one of the various classical membership 
functions we will use some geometric measurements on the fuzzy efficient frontier. To do so, we 
need to introduce some concepts:
− Upper frontier: It is the frontier obtained by a classic DEA model (CCR or BCC) that 
considers the maximum value of the imprecise output for each DMU. As in terms of production 
this is the most desirable situation for all DMUs, the frontier so obtained may also be named 
Optimistic Frontier.
− Lower frontier: It is the frontier obtained by a classic DEA model (CCR or BCC) that 
considers  the  minimum  value  of  the  imprecise  output  for  each  DMU.  Since  in  terms  of 
production this is the least favorable situation for all DMUs, the frontier so obtained may also be 
named Pessimistic Frontier.

The definitions hereabove are concerning to the case when the variable in interval form is an 
output. Moreover, these concepts are similar to those defined by Kao and Liu (2000). Those 
authors have used Fuzzy Linear Programming,  and we will  use a geometrical approach. The 
relations derived from our geometrical approach are a generalization of the relation obtained by 
Soares de Mello et al (2005) and used by Gomes et al. (2006) and by Correia and Soares de 
Mello (2008). 

Figure 1 illustrates these concepts, considering the BCC DEA model (Banker et al., 1984). 
The interval data DEA frontier comprises the region between the lower and the upper frontiers. 
In  opposition  to  classic  DEA  frontier,  a  DMU  cannot  be  represented  as  a  point  in  a 
multidimensional  space.  Its  geometric  representation  must  be  a  line  segment  (even  in 
multidimensional cases).  In Figure 1, the DMU under analysis  is represented by the segment 
P1P2 . The point  P2 corresponds to the lower value of the imprecise output and the point  P1 
corresponds to the upper value of the imprecise output. 
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Figure 1: Optimistic and pessimistic frontiers.

Also in Figure 1,  POo and  POp are the projected output on the optimistic and pessimistic 
frontiers; c is the DMU length, i.e., the difference between the optimistic and pessimistic values 
of the output; l is the width of the strip connecting the DMU projections on both frontiers; p is the 
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difference between the  optimistic  output  of  each DMU and its  projection on the  pessimistic 
frontier.

To determine the DMU’s membership degrees to the frontier  we consider the following 
cases. 
1) Figure 2 shows that  DMUs A and F are totally inside the region defining the fuzzy 
frontier. Such DMUs must have a unitary membership degree the fuzzy frontier. 
2) DMUs B and C slightly touch the frontier and so their membership degrees are zero. 
3) Between those extreme situations, DMUs E and G would have intermediate membership 
degrees. 
a) The  segment  that  represents  DMU  G  covers  all  the  length  of  the  fuzzy  frontier. 
However, its membership degree cannot be one, as it still has a strip outside the fuzzy frontier. 
This means that although this DMU totally includes the frontier, it is not totally included there. 
The ratio cp  is  adequate to evaluate the membership degree in situations similar  to that  of 
DMU G.
b) An inverse  situation is  presented by DMU E,  which is  fully contained in  the  fuzzy 
frontier,  but  does  not  entirely  cover  it.  Like  DMU  G,  this  DMU  cannot  present  a  unitary 
membership degree to the frontier. For such situation the ratio  lp  adequately represents the 
membership degree.
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Figure 2: Interval data DEA frontier in a BCC model.

Both ratios above are only adequate in particular situations and lead to meaningless results 
when used in a different  situation.  In order to obtain a membership function with properties 
required in items 1), 2) and 3) (a and b), we need to combine the two ratios. 

Properties 1), 2) and 3) are satisfied if we defined a T Norm between the fuzzy set defined 
by the membership function lp  and the fuzzy set defined by the membership function cp .

We will use three ‘T Norm’ to evaluate the membership degree of a DMU to the Fuzzy 
Frontier: (i) The Product; (ii) the Drastic Product; (iii) the Min. The graphic representation of 
these three T Norms can be seen in Figure 3.
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(i) Expression (1): P℘  is the membership degree using the Product.

2

P
p
lc

℘ = (1)

(ii) Expression (2): D℘  is the membership degree using the Drastic Product.

D

0, if p<c  and  p<l
p c , if p=l
p l , if  p=c

℘ =





(2)

(iii) Expression (3): M℘  is the membership degree using the Min.

( )M Min p c , p l℘ = (3)

These expressions may be used only if the uncertainty of the output is not null, to avoid 
divisions by zero. In other words, expressions (1), (2) and (3) are not valid if a DMU has no 
uncertainty in its output. 
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Figure 3: Representations of the T Norms: (a) the Product; (b) the Drastic Product; (c) the Min.

Table 1 shows the results of membership degrees calculations for the DMUs of Figure 2, 
where Op and Oo are the output values for the pessimistic and optimistic frontiers, respectively, 
and I is the input value.

Table 1: Membership degrees regarding the fuzzy DEA frontier.
DMU I Op Oo c l p P℘ D℘ M℘

A 1 1 2 1 1 1 1,00 1,00 1,00
B 2 1 2 1 2 0 0,00 0,00 0,00
C 4 2 4 2 4 0 0,00 0,00 0,00
D 4 2 6 4 4 2 0,25 0,00 0,50
E 4 4 6 2 4 2 0,50 0,50 0,50
F 5 5 10 5 5 5 1,00 1,00 1,00
G 6 4 10 6 5 5 0,83 0,83 0,83

From the algebraic properties of the T Norms follows that D P M℘ ≤ ℘ ≤ ℘ .
If we want to choose only one of these norms, we should prefer the T Norm “Product”. The 

reason for this choice is that the  P℘  value is neither the largest, nor the smallest value of the 
membership degree. That is, it is not too much benevolent, or to much aggressive.
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4. ALGEBRAIC CALCULATION OF THE MEMBERSHIP DEGREE

The previous calculations are based on a geometrical definition, which is feasible only for 
very simple models. In order to obtain an expression that might be used for multidimensional 
general models, in which only one output is imprecise, it is essential to change the geometric 
terms in equation (1),  (2) and (3) into variables that might be derived from the classic DEA 
models. 

For the case of one imprecise output,  considering the classic DEA definitions for output 
oriented models, and also remembering that for that case the efficiencies are greater than one 
(BCC DEA model), equations (4) and (5) can be rewritten for  Op and  Oo, that are the output 
values for the pessimistic and optimistic frontiers, where 
− POp and POo are the output targets on the pessimistic and optimistic frontiers, i.e., the 
projected output on the optimistic and pessimistic frontiers; 
− Effp is the efficiency calculated using the lower output values, i.e., the efficiency related 
to the pessimistic frontier;
− Effo is the efficiency calculated using the upper output values, i.e., the efficiency related 
to the optimistic frontier.

p

p
p O

PO
Eff = (4)

o

o
o O

POEff = (5)

With  the  purpose  of  avoiding  misunderstandings,  Effo and  Effp should  not  be  named 
optimistic and pessimistic efficiencies, as there is no guarantee that po EffEff ≥ .

From the geometrical representation we easily obtain ppoopo EffOEffOPOPOl −=−=  and 

po OOc −= . In a situation where the DMU is partially contained by the fuzzy frontier,  p is the 
difference between the optimistic output and the output target on the pessimistic frontier, which 
is a positive number. If the DMU is totally outside the fuzzy frontier (except by a possible single 
point), the difference above is negative or zero. In this situation the membership degree must be 
zero, and p must also equal zero to obtain this result. Expression (6) formalizes the equation for 
p.

o p p o p pO O Eff ,   if O O Eff 0
p

0,   otherwise

− − ≥
=





(6)

From the previous relationships, it is possible to derive the expression that represents 
algebraically the membership degree  P℘ ,  D℘  and  M℘  which are shown in (7), (8) and (9), 
respectively. 

( )
( ) ( )

2

o p p
o p p

o o p p o pP

O O Eff
,   if O O Eff 0

O Eff O Eff O O

0,   otherwise

−
− ≥

− −




℘ = 



(7)
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( ) ( )( )p o o p p

o p p
D o

o p

o p p
p

o o p p

0, if Eff 1 and  Eff 1  or O O Eff 0

O O Eff
,  if  Eff = 1

O O
O O Eff

,  if  Eff =1
O Eff O Eff


 > > − <
 −℘ =  −
 −

−

(8)

o p p o p
o p p

M o p o o p po

O O Eff O O Eff
Min , ,if  O O Eff 0

  O O O Eff O Eff

0, otherwise

  − −
− ≥   ℘ = − −  




(9)

Table 2 details the algebraic calculation of P℘ , D℘  and M℘ . It should be noticed that, due 
to the output orientation model, the inefficient DMUs produce an efficient score greater than one.

Table 2: Computed values based on expressions (4) to (9).
DMU I Op Oo Effp Effo c l p P℘ D℘ M℘

A 1 1 2 1,00 1,00 1 1 1 1,00 1,00 1,00
B 2 1 2 2,00 2,00 1 2 0 0,00 0,00 0,00
C 4 2 4 2,00 2,00 2 4 0 0,00 0,00 0,00
D 4 2 6 2,00 1,33 4 4 2 0,25 0,00 0,50
E 4 4 6 1,00 1,33 2 4 2 0,50 0,50 0,50
F 5 5 10 1,00 1,00 5 5 5 1,00 1,00 1,00
G 6 4 10 1,25 1,00 6 5 5 0,83 0,83 0,83

5. FUZZY FRONTIER WITH ONE IMPRECISE INPUT

The case of one imprecise input may be analyzed in a way similar to that of one imprecise 
output. In that case, the optimistic input, Io, is the smallest value of the input, and the pessimistic 
input,  Ip is  the  largest  one.  An  optimistic  frontier  is  obtained  when  optimistic  inputs  are 
considered for all DMUs and, conversely, a pessimistic frontier is characterized when pessimistic 
inputs are assumed for all DMUs. 

Figure 4 depicts the optimistic and the pessimistic frontiers for the case of one imprecise 
input. In this figure oI , pI , oPI  and pPI  represent, respectively, the optimistic and pessimistic 
values  of  the  imprecise  input,  and  the  input  target  values  on  the  optimistic  and  pessimistic 
frontiers.  Conversely for  the output-oriented situation, now the line segment  representing the 
DMU with imprecise input value lies in the horizontal position. 
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Figure 4: Optimistic and pessimistic frontiers for the input oriented BCC model.

In  a  similar  way  to  the  imprecise  output  membership  degree,  we  show  following  the 
membership degree based on the T Norms for the imprecise input case. Expressions (10), (11) 
and (12) present the membership degrees for the situations P℘ , D℘  and M℘ .

( )
( ) ( )

2

p p o
p p o

p p o o p oP

I Eff I
,   if I Eff I 0

I Eff I Eff I I

0,   otherwise

−
− ≥

℘ = − −







(10)

( ) ( )( )p o p p o

p p o
D o

p o

p p o
p

p p o o

0, if Eff 1 and  Eff 1  or I Eff I 0

I Eff I
, if Eff = 1

I I
I Eff I

,, if  Eff 1
I Eff I Eff


 < < − <
 −℘ =  −
 − =

−

(11)

p p o p p o
p p o

M p p p o o

I Eff I I Eff I
Min , , if  I Eff I 0

  I I I Eff I Eff

0, otherwise

  − −
− ≥   ℘ = − −  




(12)
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6. CONCLUSION

The approach proposed in this paper, in order to incorporate uncertainties in classic DEA 
models, has the advantage of neither using any particular probability distribution for the variable 
uncertainties,  nor  a fuzzy function for  them.  Besides,  it  is  at  the  same  time  mathematically 
simple, since the results are obtained by simple algebraic calculations (after calculating DEA 
classic frontiers), in opposition to the change of variable used in Despotis and Smirlis  (2002), 
and without the need of using Inference Fuzzy System.

The location of the interval DEA frontier allows the geometrically building of a membership 
function and, consequently, obtaining a fuzzy result that uses the membership concept without 
the  need  of  using  the  classical  membership  functions.  As  a  matter  of  fact,  the  geometrical 
considerations used to define the membership index implicitly employed uniform membership 
functions. Those functions have constant values. One of them is equal to the inverse of the length 
of the DMU representative segment. The other one has his value inverse to the length of the 
segment determined by the pessimistic and optimistic targets. A generalization of this approach 
would consist  on admitting other forms of membership functions, like triangular membership 
functions, and replace the length of segments by integrals of the membership functions along 
these segments.
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