Emprego de ácido diluído e sistemas de alta pressão para determinação de minerais em amostras complexas

<u>Caio Fernando Gromboni</u>¹; Juliana Gracielle Gonzaga Gromboni²; Silmara Bianchi¹; Ana Rita Araujo Nogueira³

Em uma análise química, a amostra deve ser submetida a um tratamento adequado para a sua preparação para a determinação dos analitos. Nesse trabalho foi avaliada a possibilidade da utilização de ácidos diluídos na digestão de amostras complexas (músculo bovino e castanhas) com o emprego de sistemas de alta pressão (HPA). Para otimização do sistema, o teor de carbono original da amostra de músculo bovino comercial foi determinado em analisador elementar. Foi montado um planejamento experimental 2³ fixando-se a massa de amostra em 1g e variando-se o volume de HNO₃ adicionado em 3 e 5 mL, a concentração ácida em 7 e 14 mol L⁻¹, e a adição ou não de 2 mL de H₂O₂ 30% m/v. Os teores de carbono residual (TCR) foram determinados por espectrometria de emissão óptica com plasma indutivamente acoplado (ICP OES). Os menores valores de TCR foram obtidos com a utilização de ácido concentrado com H₂O₂. No experimento com 3 mL de HNO₃ 7 mol L⁻¹ não houve decomposição. Foram realizados testes univariados para a concentração 5 mol L-1 HNO₃. Foram observados TCR <3% com o uso de 5 mL de ácido nítrico 5 mol L⁻¹ e 5 e 2 mL de H₂O₂; na ausência de H₂O₂ não ocorreu digestão. Comparando-se a eficiência de decomposição dos diferentes experimentos com o ácido juntamente com peróxido na digestão de amostra de músculo bovino certificado (NIST 8414), observa-se que não há diferença significativa entre as concentrações ácidas, que apresentaram eficiência de decomposição acima de 97%. Já para a recuperação dos analitos certificados, utilizando o ácido 5 mol L⁻¹ HNO₃ as recuperações variaram entre 91 e 119%; para 7 mol L⁻¹ HNO₃ as recuperações ficaram entre 90,6 e 107% e para o ácido concentrado (14 mol L⁻¹) ficaram entre 95 e 123%. Após esses experimentos foram digeridas amostras de diferentes castanhas, com o emprego de 5 mL de ácido 7 mol L⁻¹ e 2 ml de H₂O₂, e determinadas as concentrações de Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Si, Se, Sr, V e Zn. Empregou-se quimiometria para tratar os dados e observou-se a similaridade entre amostras de castanhas de cotia, amendoim e amêndoa e os metais que caracterizam cada amostra.

Apoio financeiro: Embrapa, CNPq e FAPESP.

Área: Instrumentação

¹Alunos de doutorado em Química Analítica, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, caioquimica@yahoo.com.br;

³Aluna de graduação em Biologia, Centro Universitário Central Paulista, São Carlos, SP;

²Pesquisadora, Embrapa Pecuária Sudeste, São Carlos, SP.