

PERFIL VOLTAMÉTRICO DE GALACTOSE EM SUPERFÍCIE DE OURO MODIFICADA QUIMICAMENTE COM LECTINAS

Roselayne Ferro Furtado (PQ)¹, Maria Gardenny Ribeiro Pimenta (PG)³, <u>Vitor Paulo Andrade</u> da Silva (IC)² João Bosco de Carvalho (IC)², Maria Izabel Florindo Guedes (PQ)³, Rosa Fireman Dutra (PQ)⁴, Carlucio Roberto Alves (PQ)²

¹Embrapa Agroindústria Tropical, CNPAT, Fortaleza - CE, Brasil ²Departamento de Química, UECE, Fortaleza - CE, Brasil ³Departamento de Nutrição, UECE, Fortaleza - CE, Brasil ⁴Departamento de Ciências Biológicas, UPE, Recife - PE, Brasil

Resumo - A galactose é eletroativa em superfície de ouro na forma linear para a relação corrente-concentração. As lectinas são proteínas encontradas em vegetais e são passíveis de deposição química em ouro. A superfície quimicamente modificada pode ser usada na detecção de galactose a partir da interação proteína-açúcar. Este trabalho teve o objetivo de avaliar a interação galactose com as lectinas Ricina e Ricinus em meio tamponado. O perfil voltamétrico da galactose em superfície de ouro modificada com as lectinas demonstrou comportamento diferente da superfície de ouro limpa, sugerindo propriedades importantes das lectinas em relação à seletividade a carboidratos.

Palavras-chaves: lectina, galactose, voltametria de pulso diferencial

INTRODUÇÃO

Lectinas são encontradas em vegetais, bactérias e animais e apresentam afinidade a carboidratos específicos. Em virtude desta característica, estas proteínas podem se ligar a células do organismo promovendo aglutinação ou facilitar a entrada de enzimas nocivas nas células [1] Em sementes e torta de mamona, co-produto do biodiesel, duas lectinas com afinidade a galactose, Ricina e Ricinus aglutinina, podem ser facilmente purificadas e utilizadas para diferentes aplicações clínicas e industriais a custo baixo.

Estudos envolvendo a interação lectina e carboidratos são focados, sobretudo, na área de bioquímica e pouco se conhece a respeito da interação eletroquímica entre carboidratos e lectinas. O estudo da ligação química entre lectina e carboidrato apresenta dificuldades devido à ocorrência paralela de oxidação eletrocatalítica de açúcares em soluções alcalinas e ácidas [2-4]. Neste contexto, a análise de voltamogramas não deve ser realizada apenas considerando o eletrodo modificado com a lectina sob o risco de interpretações equivocadas dos resultados. É necessário também um estudo comparativo entre a superfície do eletrodo limpa e o carboidrato.

Este trabalho teve o objetivo de analisar a ligação das lectinas galactose específicas Ricina e Ricinus Aglutinina imobilizadas em superfície de ouro em diferentes concentrações de D-galactose.

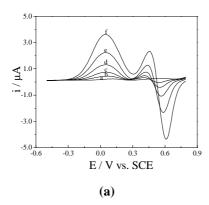
PROCEDIMENTO EXPERIMENTAL

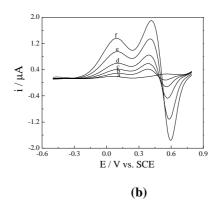
O perfil voltamétrico empregando o método de voltametria de pulso diferencial da D-galactose foi obtido com o uso de célula eletroquímica, contendo solução do carboidrato em tampão fosfato (Na₂HPO₄) 0,1 M, pH 8, com eletrodos de trabalho de disco de ouro (área geométrica de 0,05 cm²), auxiliar de fio de platina (área geométrica de 1,0 cm²) e de referência o de Ag/AgCl.

As soluções de açúcar foram preparadas com água deionizada em sistema Milli-Q (resistência de 18,4 MΩ) em concentrações de 5, 10, 20, 50 e 100 mM para avaliar o perfil voltamétrico em superfície de ouro.

Antes de cada medida, o eletrodo de trabalho foi submetido à limpeza superficial química com polimento (alumina 0,03 μ m) e sucessivas imersões em H_2O_2 e H_2SO_4 (1:3) e HNO_3 (concentrado) com conseqüente banho ultrassônico em água deionizada. Seguidamente, o filme proteico foi depositado por imersão em soluções de ricina 1,0 μ g/mL, por 30 minutos.

As medidas eletroquímicas foram obtidas em potenciostato Autolab Potenciostato/Galvanostato PGSTAT 302N. Antes da obtenção de cada medida voltamétrica, as soluções eram desaeradas na presença de N_2 por 15 minutos.


N. I


XVII SIMPÓSIO BRASILEIRO DE ELETROQUÍMICA E ELETROANALÍTICA

RESULTADOS E DISCUSSÃO

O perfil voltamétrico das curvas de galactose para concentrações de 5, 10, 20, 50 e 100 mM, em superfície de ouro limpa e modificada com as lectinas (pH 8), é observado na Figura 1. As curvas são referentes à resposta voltamétrica de pulso diferencial.

Na avaliação da oxidação da galactose em superfície de ouro limpa foram verificados dois picos os quais ocorreram nos potenciais 0,045 e 0,44 V (Figura 1a). Houve redução na amplitude da corrente dos picos catódicos após a imobilização das lectinas, porém a amplitude do pico do potencial de 0,42 V foi maior que o do potencial 0,046 V para todas as concentrações do carboidrato (Figura 1b). Este fato não foi verificado na superfície de ouro limpa, onde uma maior amplitude na corrente é verificada no potencial de 0,045 V. Isso demonstra um indício de interação entre as lectinas e o carboidrato evidenciado no potencial 0,42 V. Para as concentrações de galactose avaliadas, nota-se o crescimento linear (R = 0,98) da corrente de pico com a concentração do açúcar.

Figura 1. Oxidação de galactose em superfície de ouro (a), superfície de ouro com lectinas imobilizadas por adsorção física (b). As letras sobre cada pico catódico referem-se ao aumento gradativo das concentrações: 5 mM (a), 10 mM (b), 20 mM (c), 50 mM (d), 100 mM (e).

CONCLUSÕES

O perfil voltamétrico da galactose em superfície de ouro modificada com as lectinas demonstrou comportamento diferente da superfície de ouro limpa, sugerindo propriedades importantes das lectinas em relação à seletividade a carboidratos.

AGRADECIMENTO: EMBRAPA, CNPq e FUNCAP

REFERÊNCIA

[1] HUANG, Y; HUANG, J; XIE, Q., YAO, S. Carbohydrate-protein interactions. **Progress in Chemistry**, v. 20, n. 6, p. 942-950. 2008.

[2] AOUN, S.B.; BANG, G.S.; KOGA, T.; NONAKA, Y.; SOTOMURA, T.; TANIUCHI, I. Electrocatalytic oxidation of sugar on silver- UPD single crystal gold electrodes in alkaline solutions. **Electrochemistry Communications**, v.5, p. 317-320.2003.

[3] PARPOT, P; PIRES, S.G.; BETTENCOURT, A.P. Electrocatalytic oxidation of D- galactose in alkaline medium. **Journal of electroanalytical chemistry**, v.566, p.401-408. 2004.

[4] PARPOT, P; NUNES, E.; BETTENCOURT, A.P. Electroanalytical oxidation of monosaccharides on gold electrode in alkaline medium: structure-reactivity relationship. **Journal of electroanalytical chemistry**, v.596, p. 65-73. 2006.

E-mail do autor principal: roselayne@cnpat.embrapa.br