Adaptabilidade e estabilidade da produtividade de vagens e grãos verdes em genótipos de feijão-caupi

Maurisrael de Moura Rocha¹, Erina Vitório Rodrigues², Fabrício Napoleão Andrade², Francisco Rodrigues Freire Filho¹, <u>Claudia Roberta Ribeiro de Oliveira</u>³ e Valdenir Queiroz Ribeiro¹

Introdução

O feijão-caupi é uma cultura bastante cultivada no semi-árido da região Nordeste do Brasil. A identificação e seleção de genótipos altamente estáveis ou que apresente interação positiva com os ambientes (alta produtividade), representa um dos principais objetivos dos programas de melhoramento. A produção de feijãocaupi para consumo na forma de vagens e grãos verdes (teor de umidade entre 60 e 70%), tradicionalmente conhecido como feijão-verde, representa um mercador bastante promissor na região Nordeste. Estudos investigando o potencial produtivo do feijão-verde têm sido conduzidos (Chattopadhyay et al. [1]; Serpa & Leal et al. [2]; Oliveira et al. [3, 4]; Nascimento et al. [5]). No entanto, trabalhos visando à identificação de genótipos com produtividades de vagens e grão verde estáveis é escasso na literatura. Em estudos de estabilidade da produtividade de grãos secos, a regressão linear de Eberhart & Russell [6] tem sido a metodologia mais utilizada em feijão-caupi (Freire Filho et al.[7]) e, mais recentemente, a análise AMMI (Freire Filho et al. [8]).

O método de Lin & Binns [9] estima a adaptabilidade e estabilidade por meio de um único parâmetro (P_i) . Neste, a medida de superioridade do desempenho de um genótipo nos vários ambientes de avaliação, indicada pelos valores $P_{i(f)}$ e $P_{i(d)}$, é medida pelo quadrado médio das distâncias entre o desempenho desse genótipo e o desempenho do melhor genótipo em cada ambiente.

O objetivo deste trabalho foi avaliar a adaptabilidade e estabilidade de 12 genótipos de feijão-caupi para produtividade de vagens e grãos verdes.

Material e Métodos

Foram avaliados 12 genótipos (linhagens e cultivares) da Coleção de Trabalho de feijão-caupi da Embrapa Meio-Norte em três experimentos conduzidos no período seco (julho a setembro) sob condições irrigadas (aspersão), nos anos agrícolas de 2004, 2005 e 2006. Todos os experimentos foram conduzidos no campo experimental da Embrapa Meio-Norte, em Teresina, PI. Utilizou-se o delineamento de blocos completos casualizados com quatro repetições. A

parcela experimental foi representada por quatro fileiras de 5m, no espaçamento 0,75 x 0,25 m.

Foram avaliados os seguintes caracteres: produtividade de vagens verdes (PVV), produtividade de grãos verdes (PGV) e índice de grãos verdes (IGV). O índice de grãos verdes mede a razão peso de grãos verdes/peso de vagens verdes

A análise de adaptabilidade e estabilidade foi realizada pelo método de Lin & Binns [9], com decomposição de Pi, como sugerida por Carneiro [10]. Nessa metodologia, a superioridade do desempenho de um genótipo nos vários ambientes de avaliação, indicada pelos valores $P_{i(f)}$ e $P_{i(d)}$, é medida pelo quadrado médio das distâncias entre o desempenho desse genótipo e o desempenho do melhor genótipo em cada ambiente. Para efeito desta análise, considerou-se como ambiente a combinação de local e ano, resultando em três ambientes (Teresina-2004, Teresina-2005 e Teresina-2006)

Na estimação de $P_{i(f)}$ e $P_{i(d)}$ os ambientes foram previamente classificados em favoráveis (f) e desfavoráveis (d), de acordo com os respectivos índices ambientais codificados, que correspondem à diferença entre a média dos genótipos em cada ambiente, e a média geral do ensaio. Nos ambientes favoráveis, cujos índices assumem valores maiores ou iguais a zero, o estimador $P_{i(f)}$ é definido como:

$$P_{i(f)} = \frac{\sum_{j=i}^{f} (Y_{ij} - M_j)^2}{2f}$$
 em que $P_{i(f)}$ é o estimador do

parâmetro de estabilidade e adaptabilidade do i-ésimo genótipo, Y_{ij} é a média dos k-ésimos blocos, referente ao i-ésimo genótipo, no j-ésimo ambiente; M_{ij} , a resposta máxima observada entre todos os genótipos no j-ésimo ambiente; f é o número de ambientes favoráveis.

Do modo análogo, é obtido P_{i(d)}, nos ambientes desfavoráveis, cujos índices são negativos e o estimador é

definido como:
$$P_{i(d)} = \frac{\displaystyle\sum_{j=i}^{d} (Y_{ij} - M_{j})^{2}}{2d}$$
 em que: d é

número de ambientes desfavoráveis

Uma vez que M_j é a resposta máxima e $P_{i(f)}$ e $P_{i(d)}$ são os quadrados médios das distâncias em relação a M_j , os

^{1.} Pesquisador da Embrapa Meio-Norte, Av. Duque de Caxias, 5650, B. Buenos Aires, Teresina, PI, CEP 64006-220. E-mail: mmrocha@cpamn.embrapa.br

^{2.} Estagiário(a) da Embrapa Meio-Norte e aluno(a) de Graduação/Agronomia/Universidade Federal do Piauí (UFPI), Campus Agrícola da Socopo, Teresina, PI, CEP 64049-550. E-mail: erinavict@yahoo.com.br; fabricionapoleao@yahoo.com.br

^{3.} Bolsista FACEPE da Embrapa Meio-Norte e aluno de Graduação/Biologia/UFPI, Campus Universitário Ministro Petrônio Portela, Teresina, PI, CEP 64049-550. E-mail: clacentenario@bol.com.br; gislannebio@yahoo.com.br
Apoio financeiro: FAPEPI e EMBRAPA.

genótipos que mostram os menores valores de $P_{i(t)}$ e $P_{i(d)}$ são os mais estáveis e adaptados a ambientes favoráveis e desfavoráveis, respectivamente.

Todas as análises foram realizadas por meio do programa computacional GENES (Cruz [11]).

Resultados e Discussão

A análise de variância para os caracteres produtividade de vagens verdes (PVV), produtividade de grãos verdes (PGV) e índice de grãos verdes (IGV) é apresentada na Tabela 1. Os efeitos de genótipos e ambientes apresentaram diferenças significativas (P < 0.01)e os genótipos comportaram-se diferencialmente frente aos efeitos ambientais. Isso indica a necessidade de se identificar aqueles genótipos que interagem menos com os ambientes (genótipos estáveis) ou aqueles com adaptações específicas positivas a determinado ambiente. Os valores dos coeficientes de variação indicam boa precisão experimental para os três caracteres, considerando que estes são complexas e sofreram alta influência do ambiente, conforme pode ser comprovado pela magnitude do quadrado médio de ambientes, relativamente aos efeitos de genótipos e da interação genótipos x ambientes (GxA).

As estimativas de médias e da adaptabilidade e estabilidade, segundo a metodologia de Lin & Binns [9] para os caracteres PVV, PGV e IGV, são apresentadas na Tabela 2. A cultivar BRS Paraguaçu destacou-se por apresentar maior produtividade de vagens verdes (4.366 kg ha⁻¹), produtividade de grãos verdes (2.775 kg ha⁻¹), indice de grãos (0,63%) e adaptabilidade e estabilidade (valores menores de Pi (geral) e Pi(f) e Pi(d)). Isso indica que essa cultivar pode ser cultivada em todos os ambientes estudados, particularmente às condições de Teresina, PI. Outros genótipos que também se destacaram foram: MNC99-541F-15, sendo mais indicada para ambientes favoráveis (segundo menor valor de P_{i(f)} para PVV e PGV); MNC99-541F-18, sendo mais indicado amb ientes para desfavoráveis, igualmente a cultivar BRS Guariba (menores valores de P_{i(d)}). Estes são os mais indicados para o pequeno produtor que, utilizam baixa tecnologia no sistema de produção. O genótipo TE96-290-12G destacou-se em adaptabilidade e estabilidade para o caráter IGV (segundo menor valor para as estimativas de P_i 's).

Os resultados indicam que a cultivar BRS Paraguaçu é altamente previsível, podendo ser cultivada em

diferentes ambientes, tanto pelo pequeno, como o médio e grande produtor de feijão-verde.

Agradecimentos

Os autores agradecem à FAPEPI, pelo auxílio financeiro de parte desta pesquisa; à EMBRAPA pela auxílio financeiro, infra-estrutura e recursos humanos; e à UFPI pelo auxílio em recursos humanos (alunos de graduação) na condução dos experimentos.

Referências

- [1] CHATTOPADHYAY, A.; CHAKRABORTY, K.; DASGUPTA, T.; HAZRA, P.; SOM, M. G. 1996. Evaluation of genotypes for agronomic and morphological characters in vegetable cowpea. Indian Journal of Horticulture, v.53, n. 4, p.304-308.
- [2] SERPA, J. E. & LEAL, M.L.S. 1999. Produtividade de vagens verdes e de grãos secos de linhagens de caupi, em áreas dos tabuleiros costeiros de Sergipe. Revista Científica Rural, v.4, n.1, p.92-101.
- [3] OLIVEIRA, A.P.; TAVRES-SOBRINHO, J.; NASCIMENTO, J.T.; ALVES, A.U.; ALBUQUERQUE, I.C.; BRUNO, G.B. 2002. Avaliação de linhagens e cultivares de feijão-caupi, em Areia, PB. Horticultura Brasileira, v.20, n.2, p.180-182.
- [4] OLIVEIRA, A.P.; SILVA, V.R.F.; ARRUDA, F. P.; NASCIMENTO, I.S. 2004. Rendimento de feijão-caupi em função de doses e formas de aplicação de nitrogênio. Horticultura Brasileira, v.21, n.1, p.77-80.
- [5] NASCIMENTO, J.T.; PEDROSA, M.M.; TAVARES-SOBRINHO, J. 2004. Efeito da variação de níveis de água disponível no solo sobre o crescimento e produção de feijãocaupi, vagens e grãos verdes. Horticultura Brasileira, v.22, n.2, p.174-177.
- [6] EBERHART, S.A. & RUSSELL, W.A. 1966. Stability parameters for comparing varieties. Crop Science, v.6, n.1, 36-40
- [7] FREIRE FILHO, F. R.; RIBEIRO, V.Q.; ROCHA, M.M.; LOPES, A.C.A. 2002. Adaptabilidade e estabilidade da produtividade de grãos de linhagens de caupi de porte enramador. Revista Ceres, v.49, n.284, p.383-393.
- [8] FREIRE FILHO, F. R.; ROCHA, M.M.; RIBEIRO, V.Q.; LOPES, A.C.A. 2002. Adaptabilidade e estabilidade produtiva de feijão-caupi. Ciência Rural, v.35, n.1, p.24-30.
- [9] LIN, C.S. & BINNS, M.R. 1988. A superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, v.68, n.1, p.1293-1298
- [10] CARNEIRO, P.C.S. 1998. Novas metodologias de análise de adaptabilidade e estabilidade de comportamento. Tese de Doutorado, Curso de Pós-Graduação em Genética e Melhoramento de Plantas, UFV, Viçosa, 168p.
- [11] CRUZ, C.D. 1997. Programa GENES: aplicativo computacional em genética e estatística. Viçosa, MG: UFV. 442p.

Tabela 1. Análise de variância conjunta para os caracteres produtividade de vagens verdes (PVV), produtividade de grãos verdes (GV) e índice de grãos verdes (IGV) de doze genótipos de feijão-caupi avaliados em três ambientes (Teresina-irrigado-2004, Teresina-irrigado-2006). Teresina, PI, 2006.

Fonte de Variação	GL	PVV (kg ha ⁻¹)			PGV (kg ha ⁻¹)			IGV (%)		
		Quadrado médio	Valor de F	$P_T > F$	Quadrado médio	Valor de F	Pr > F	Quadrado médio	Valor de F	Pr > F
Blocos/A	9	1.707.257	2,3	0,0235	565.034	2,1	0,0367	0,0071	6,8	0,0001

Genótipos (G)	11	7.358.185	9,9	0,0001	3.098.076	11,5	0,0001	0,0134	12,9	0,0001
Ambientes (A)	2	148.533.603	197,8	0,0001	52.436.402	194,6	0,0001	0,0857	81,6	0,0001
Interação G x A	22	4.938.618	6,5	0,0001	1.881.203	6,9	0,0001	0,0030	2,9	0,0002
Resíduo	99	752.537			269.437			0,0011		
CV (%)			24,31			25,17			5,71	

Tabela 2. Médias e estimativas de estabilidade (P_i), segundo metodologia de Lin &Binns (1988), para os caracteres produtividade de vagens verdes (PVV), produtividade de grãos verdes (GV) e índice de grãos verdes (IGV) de doze genótipos de feijão-caupi avaliados em três ambientes (irrigado-2004, irrigado 2005 e irrigado-2006). Teresina, PI, 2006.

Genótipos	PVV (kg ha ⁻¹)					PGV (kg ha ⁻¹)				IGV (%)			
	Média	Pi (geral)	Pi (f)	Pi (d)	Média	Pi (geral)	Pi (f)	Pi (d)	Média	Pi (geral)	Pi (f)	Pi (d)	
TE96-290-12G	3.552	1.524.011	2.219.968	132.098	2.230	366.670	514.285	71.442	0,62	0,000	0,0002	0,0003	
MNC99-541F-15	4.166	668.788	970.962	64.440	2.502	280.761	398.792	44.700	0,60	0,001 7	0,0043	0,0005	
MNC99-541F-18	4.350	728.006	1.075.369	33.282	2.423	358.374	511.801	51.520	0,56	0,003 6	0,0041	0,0034	
MNC99-541F-21	3.497	1.643.493	2.289.679	351.122	1.908	748.538	1.025.152	195.312	0,55	0,004 5	0,0043	0,0047	
MNC99-542F-5	4.059	758.328	1.110.102	54.780	2.241	357.633	506.521	59.858	0,55	0,004 4	0,0053	0,0039	
MNC99-542F-7	3.330	1.877.447	2.616.362	399.618	2.150	592.536	791.149	195.312	0,58	0,002	0,0045	0,0009	
BRS Paraguaçu	4.366	436.720	655.081	0	2.775	46.486	69.729	0	0,63	0,000 2	0,0000	0,0002	
Olho de Pomba-10	3.385	4.052.982	6.056.521	45.904	1.985	1.266.470	1.863.225	72.962	0,54	0,004 8	0,0025	0,0059	
BRS Guariba	3.934	1.214.664	1.818.516	6.962	2.253	432.652	633.102	31.752	0,55	0,003 4	0,0025	0,0039	
Vagem Roxa -JF	2.522	4.426.458	6.552.072	175,232	1.329	1.818.959	2.662.132	132.612	0,52	0,006 9	0,0102	0,0053	
Vagem Roxa The-2	1.667	7.892.607	11.689.52 9	298.764	896	2.845.921	4.179.182	179.400	0,53	0,007 1	0,0158	0,0028	
BRS Milênio	3.644	1.467.943	2.180.158	43.512	2.067	608.984	886.416	54.120	0,56	0,004	0,0075	0,0023	
Média geral	3.568				2.062				0,57				