

Repetibilidade de caracteres associados à produção de cachos de híbridos de caiaué com dendezeiro

Ricardo Lopes¹, Raimundo Nonato Vieira da Cunha², Maria do Rosário Lobato Rodrigues³, Paulo César Teixeira⁴ e Raimundo Nonato Carvalho da Rocha⁵

Introdução

No processo de seleção espera-se que o desempenho dos genótipos seja mantido indefinidamente. A veracidade dessa expectativa pode ser verificada pela estimativa do coeficiente de repetibilidade da característica avaliada, a partir do qual, obtêm-se a estimativa do número de medições necessárias no genótipo para se predizer seu valor real, com certo grau de probabilidade (Cruz) [1]. Para estimar o coeficiente de repetibilidade é necessário dispor de medidas repetidas do caráter no tempo ou no espaço em um mesmo genótipo.

A Embrapa Amazônia Ocidental está conduzindo um programa de melhoramento interespecífico por meio do cruzamento entre o dendezeiro (Elaeis guineensis Jacq.) e o caiaué (E. oleifera (Kunth) Cortés), visando obter híbridos tão produtivos quanto o dendê e com características presentes no caiaué, como resistência a pragas e doenças, reduzido crescimento vertical do tronco e óleo mais insaturado (Barcelos et al.) [2]. Ainda não existem informações sobre o controle genético dos caracteres relacionados à produção dos híbridos e estimativas do coeficiente de repetibilidade serão úteis para determinar o número de avaliações que devem ser feitas nos genótipos para que a seleção seja feita de forma mais eficiente com o menor dispêndio de recursos.

O objetivo do presente trabalho foi estimar o coeficiente de repetibilidade e o número de medições necessárias em caracteres associados à produção de cachos de híbridos interespecíficos obtidos entre o caiaué e o dendezeiro para se predizer o valor real dos híbridos.

Material e métodos

A. Local de condução do experimento

O experimento foi conduzido no Campo Experimental do Rio Urubu (CERU) localizado 150 km ao Norte de Manaus, latitude 2°35′ S, longitude 59°28′ W e altitude 200 m, no ramal ZF-07 do distrito agropecuário da Superintendência da Zona Franca de Manaus – SUFRAMA.

De acordo com a classificação de Köppen o clima é do tipo Ami, quente e úmido, tropical chuvoso, com variação anual de temperatura inferior a 5 °C sem

definição das estações verão e inverno. A temperatura média anual varia em torno de 27 °C, com média de máximas de 32 °C e das mínimas 21 °C. A umidade relativa do ar varia em torno de 85 %. A média de insolação total anual é de 1.940 horas. A pluviosidade anual média é de aproximadamente 2.100 mm. Na área predomina um latossolo amarelo de textura muito argilosa.

Emgapa

B. Genótipos avaliados

Foram avaliadas 15 progênies híbridas interespecíficas do tipo tenera obtidas do cruzamento entre genitores de dendê do tipo pisífera e plantas de caiaué, cada progênie representada por 9 a 11 plantas. O plantio das progênies foi realizado em abril de 1991, em linhas, no espaçamento de 9m x 9m em triângulo eqüilátero, sem uso de delineamento experimental.

C. Avaliações fenotípicas

As avaliações foram realizadas do sétimo ao décimo terceiro ano após o plantio. Foram realizadas colheitas quinzenais durante todos os meses do ano e avaliado o número total, peso total e peso médio de cachos.

D. Análises biométricas

As estimativas dos coeficientes de repetibilidade foram obtidas pelos métodos: análise de variância (ANOVA); componentes principais, com base na matriz de correlações (CPR) e de covariâncias (CPCV); e análise estrutural com base na matriz de correlações (AER). Foram obtidas também as estimativas do número de avaliações necessárias para se predizer o valor real das progênies com o valor de determinação genotípica desejado.

As estimativas foram obtidas através do procedimento repetibilidade do programa GENES (Cruz) [1].

Resultados e Discussão

Os resultados da análise de variância usando o modelo com dois fatores de variação (progênies e anos de produção), provenientes das avaliações realizadas durante sete anos nas 15 progênies híbridas, dos caracteres número de cachos (NC), peso total de cachos (PTC) e peso médio de cachos (PMC) são apresentados na Tabela 1. O teste F para o efeito de progênies foi significativo (P<0,01) para os

Apoio financeiro: Embrapa Transferência de Tecnologia/Escritório de Negócios do Amazonas e CNPq.

8490

^{1.} Pesquisador A da Embrapa Amazônia Ocidental, Km 29 da Rodovia AM 010, Manaus, AM, CEP 69011-970. E-mail: ricardo@cpaa.embrapa.br

^{2.} Pesquisador A da Embrapa Amazônia Ocidental, Km 29 da Rodovia AM 010, Manaus, AM, CEP 69011-970. E-mail: monato@cpaa.embrapa.br

^{3.} Pesquisador A da Embrapa Amazônia Ocidental, Km 29 da Rodovia AM 010, Manaus, AM, CEP 69011-970. E-mail: mrosario@cpaa.embrapa.br

^{4.} Pesquisador A da Embrapa Amazônia Ocidental, Km 29 da Rodovia AM 010, Manaus, AM, CEP 69011-970. E-mail: paulo@cpaa.embrapa.br

^{5.} Analista A da Embrapa Amazônia Ocidental, Km 29 da Rodovia AM 010, Manaus, AM, CEP 69011-970. E-mail: rocha@cpaa.embrapa.br

três caracteres avaliados evidenciando a existência de variabilidade genética desses caracteres entre as progênies.

As estimativas dos coeficientes de repetibilidade, coeficiente de determinação e no número de avaliações necessárias para obter diferentes coeficientes de determinação, obtidas por quatro diferentes métodos para os três caracteres avaliados são apresentadas na Tabela 2.

A estimativa do coeficiente de repetibilidade, com base na avaliação de sete anos de produção, para número de cachos variou de 0,67 (ANOVA) a 0,81 (CPCV), para peso total de cachos de 0,55 (ANOVA) a 0,67 (CPCV) e para peso médio de cachos de 0,62 (ANOVA) a 0,75 (CPCV). As estimativas obtidas pelo método da ANOVA foram sempre inferiores aos demais métodos e as obtidas pelo método do CPCV superiores aos demais.

Em geral, os trabalhos disponíveis na literatura comparando estimativas do coeficiente repetibilidade de características de plantas perenes pelo método da ANOVA e métodos multivariados (análise estrutural e componentes principais), como seringueira (Vasconcellos et al.) [3], Pinus (Cornacchia et al.) [4] e acerola (Lopes et al.) [5], mostraram que as estimativas obtidas pelo método da ANOVA foram sempre inferiores às obtidas pela análise multivariada. Esses resultados podem ser explicados pelo fato do método da ANOVA não permitir o isolamento do fator periodicidade, que, quando ocorre, fica incluído no erro experimental, elevando seu valor, e então, a repetibilidade é subestimada (Vasconcellos et al.) [3]. Neste caso, o coeficiente de repetibilidade é mais eficientemente estimado pelo método dos componentes principais, que leva em consideração o comportamento cíclico do caráter (Kendall) [6].

O coeficiente de determinação obtido para número de cachos variou de 72,43% (CPCV) a 95,58% (CPR), para peso total de 89,58% (ANOVA) a 93,33% (CPCV) e para peso médio de cachos de 91,94% (ANOVA) a 95,49% (CPCV). A estimativa do número de anos de avaliação para obter coeficiente de determinação de 85% foi de dois anos para número de cachos, com exceção do método da ANOVA, que indicou três anos de avaliação, variando de três a cinco anos para peso total de cachos e de dois a quatro anos para peso médio de cachos. Os resultados demonstraram maior acurácia das medições realizadas e regularidade da superioridade das progênies de um ciclo para outro para as características NC e menor para

PTC, e que a expressão das características tem bom controle genético.

A repetibilidade representa o valor máximo que a herdabilidade no sentido amplo pode atingir (Cruz & Regazzi) [7]. A diferença entre a repetibilidade e a herdabilidade se deve ao fato de que a variância genotípica utilizada para estimar a repetibilidade não é somente de origem genética, uma vez que o componente de variância do ambiente permanente entre genótipos permanece confundido com esta. Assim, a repetibilidade aproxima-se da herdabilidade à medida que a variância proporcionada pelos efeitos permanentes do ambiente é minimizada. Se a variância genotípica estimada fosse puramente de natureza genética, os coeficientes de repetibilidade estimados corresponderiam à herdabilidade das características.

Considerando os resultados obtidos para os três caracteres pelos diferentes métodos pode-se concluir que quatro anos de avaliação da produção das progênies são suficientes para selecionar as melhores progênies com boa acurácia.

Agradecimentos

Aos funcionários do Campo Experimental do Rio Urubu que desenvolvem as atividades de campo necessárias a manutenção e avaliação dos experimentos.

Referências

- CRUZ, C.D. 2001. Programa Genes: Versão Windows; aplicativo computacional em genética e estatística. Viçosa: UFV. 648p.
- [2] BARCELOS, E.; NUNES, C.D.M.; CUNHA, R.N.V. da. 2000. Melhoramento Genético e produção de sementes comerciais de dendezeiro. In.: VIÉGAS, I.J.; MÜLLER, A.A (Eds.). A cultura do dendezeiro na Amazônia brasileira. Embrapa Amazônia Oriental, Belém/Embrapa Amazônia Ocidental, Manaus. p.145-174.
- [3] VASCONCELLOS, M. E. C.; GONÇALVES, P. S.; PAIVA, J. R.; VALOIS, A. C. C. 1985. Métodos de estimação do coeficiente de repetibilidade no melhoramento da seringueira. Pesquisa Agropecuária Brasileira, Brasília, n. 4, p. 433-437.
- [4] CORNACCHIA, G.; CRUZ, C. D.; LOBO, P. R.; PIRES, I. E. 1995. Estimativas do coeficiente de repetibilidade para características fenotípicas de procedências de Pinus tecunumanii (Schw.) Eguiluz, Perry e Pinus caribaea var. hondurensis Barret, Golfari. Revista Árvore, Viçosa, n. 3, p. 333-345.
- [5] LOPES, R; BRUCKNER, C.H.; CRUZ, C.D.; LOPES, M.T.G.; FREITAS, G.B. de. 2001. Repetibilidade de características do fruto de aceroleira. Pesquisa Agropecuária Brasileira, Brasília, n.5, p.507-513.
- [6] KENDALL, M. G. 1975. Multivariate analysis. New York: MacMillan. 210 p.
- [7] CRUZ, C. D. & REGAZZI, A. J. 1997. Modelos biométricos aplicados ao melhoramento genético. 2. ed. Viçosa: UFV. 390 p.

Tabela 1. Análise de variância do número de cachos (NC), peso total de cachos (PTC) e peso médio de cachos (PMC) avaliados durante sete anos em 15 progênies de híbridos interespecíficos de caiaué com dendezeiro e estimativas dos componentes de variância genética e ambiental.

Fonte de Variação	Quadrado Médio					
	Graus de Liberdade	Número de Cachos	Peso Total de Cachos	Peso Médio de Cachos		
Ano de produção	6	84,49	15276,63	133,71		
Progênie	14	26,22**	3909,67**	26,71**		
Resíduo	84	1,71	407,20	2,15		
Média		6,91	100,25	14,50		
CV (%)		18,93	20,13	10,12		
Variância genética		3,5	500,35	3,51		
Variância ambiental		1,71	407,20	2,15		

^{**} e ns, sgnificativo e não significativo a 1% de probabilidade.

Tabela 2. Estimativas do coeficiente de repetibilidade (\hat{r}), coeficiente de determinação e número de avaliações necessárias (n) para obter diferentes coeficientes de determinação (R^2) para os caracteres número de cachos (NC), peso total de cachos (PTC) e peso médio de cachos (PMC), estimados usando os métodos da análise de variância (ANOVA), componentes principais baseado na matriz de covariâncias (CPCV) e de correlações (CPR) e análise estrutural baseado na matriz de correlações (AEC).

Caráter	Estimativa	Método				
		ANOVA	CPCV	CPR	AER	
NC						
	\widehat{r}	0,67	0,81	0,76	0,75	
	R2 (%)	93,48	72,43	95,58	95,56	
	n para R2 = 85%	2,77	1,36	1,84	1,84	
	n para R2 = 90%	4,39	2,16	2,91	2,92	
	n para R2 = 95%	9,28	4,55	6,15	6,17	
PTC						
	\hat{r}	0,55	0.67	0,62	0,62	
	R2 (%)	89,58	93,33	91,98	91,93	
	n para R2 = 85%	4,61	2,83	3,45	3,48	
	n para R2 = 90%	7,32	4,50	5,49	5,53	
	n para R2 = 95%	15,46	9,50	11,59	11,68	
PMC	*					
	r	0,62	0,75	0,70	0,69	
	R2 (%)	91,94	95,49	94,24	93,92	
	n para R2 = 85%	3,48	1,87	2,42	2,57	
	n para R2 = 90%	5,52	2,97	3,85	4,08	
	n para R2 = 95%	11,67	6,27	8,12	8,62	