Rendimento e composição química do óleo essencial de folhas de dois morfotipos de sacaca (*Croton cajucara* Benth.)

Chaves, F.C.M.¹; Bizzo, H.R.²; Angelo, P.C.S.¹; Xavier,J.J.B.N.¹; Sá Sobrinho, A.F.¹

¹ Embrapa Amazônia Ocidental, Rod. AM-010 – km 29, Caixa Postal 319, 69011-970 Manaus, AM. ² Embrapa Agroindústria de Alimento, E-mail: celio@cpaa.embrapa.br.

RESUMO: O objetivo deste trabalho foi analisar o rendimento (em base seca), e a composição química do óleo essencial das folhas de dois morfotipos, branca e vermelha, de sacaca (*Croton cajucara* Benth.) da Coleção de Germoplasma desta espécie da Embrapa Amazônia Ocidental. O óleo essencial foi extraído por hidrodestilação em aparelho de Clevenger por 4 horas e analisado por cromatografia gasosa. O maior rendimento de óleo essencial foi verificado para a sacaca vermelha (0,97%) enquanto a branca rendeu 0,65%. Os componentes majoritários do óleo essencial de sacaca branca foram o linalol (28,7%), o beta-cariofileno (13,0%) e o nerolidol (9,3%). No óleo de sacaca vermelha, 5-hidroxi-calameneno (25,5%), linalol (18,9%) e delta-cadineno (7,1%) foram encontrados em maior quantidade.

Palavras-chave: Croton cajucara, diversidade fenotípica, linalol, 5-hidroxi-calameneno

ABSTRACT: Yield and chemical composition of the essential oil from the leaves of two varieties of sacaca (*Croton cajucara* Benth.). The yield and composition of the essential oil from leaves of two varieties of sacaca; namely red and white, according to the color of the leaves; from the Germplasm Bank of Embrapa Amazonia Ocidental, near Manaus, Amazon, were investigated. For the red variety, the oil yield was of 0.97% (on a dry basis), and major compounds were 5-hydroxi-calamenene (25.5%), linalool (18.9%) and deltacadinene (7.1%). For the white variety oil was obtained at a yield of 0.65%, and its main components were linalool (28.7%), beta-caryophyllene (13.0%) and nerolidol (9,3%).

Key words: Croton cajucara, phenotypic diversity, linalool, 5-hydroxi-calamenene

INTRODUÇÃO

A coleção de germoplasma de sacaca (Croton cajucara Benth.), da Embrapa Amazônia Ocidental, iniciou-se em 1997, com acessos coletados em 15 localidades da Região Norte, com o objetivos de realizar o estudo de variabilidade entre eles, de conservar o germoplasma da espécie, e de selecionar genótipos superiores para a produção de biomassa (folhas) com maior potencial para a produção de óleo essencial, rico em linalol, composto utilizado na indústria de perfumaria (Araújo et al., 1971; Kalil Filho et al., 1998 e Lopes et al., 2000). Outras aplicações do óleo essencial das folhas têm sido estudadas. verificando-se atividade contra formas de leishmaniose (Rosa et al., 2003), efeito citotóxico (contra células leucêmicas) Freire et al. (2003). Essa coleção de sacaca foi integrada, em 2002, à Rede Nacional de Recursos Genéticos, coordenada pela Embrapa Recursos Genéticos e Biotecnologia, criada para atender às prioridades de melhor aproveitamento da biodiversidade resguardada em Bancos Ativos de Germoplasma de todo o País. Existe, portanto, a necessidade de avançar no conhecimento sobre a sacaca e de valorizar a coleção que já está estabelecida. Dois morfotipos podem ser identificados na coleção, e foram denominados sacaca branca e sacaca vermelha, definidos principalmente pela diferença na coloração das folhas.

Recebido para publicação em 01/03/2004. Aceito para publicação em 31/10/2006.

O objetivo deste trabalho foi verificar a existência de diversidade na composição química do óleo essencial das folhas destes dois morfotipos.

MATERIAL E MÉTODO

Ramos das matrizes dos dois morfotipos foram colhidos entre 8h e 9h e levados para o Laboratório de Recursos Genéticos da Embrapa Amazônia Ocidental. Em seguida as folhas foram separadas e extraiu-se o óleo essencial por hidrodestilação em aparelho de Clevenger por 4 horas. Após a extração, o óleo essencial foi acondicionado em frasco âmbar e armazenado em freezer até a análise. A análise por cromatografia com fase gasosa (CG) foi efetuada em aparelho Perkin Elmer Autosystem, equipado com uma coluna capilar de sílica fundida de 20 m x 0.18 mm, recoberta internamente com filme 5% fenil 95% metilsilicona (PE-5) de 0,4 mm de espessura. O gás de arraste utilizado foi o hidrogênio com fluxo de 1 mL/min. A temperatura do injetor foi 250 °C e a do detetor (ionização por chama) 280 °C. Os óleos foram injetados puros (0,05 mL), com divisão de fluxo de 1:100. A programação de temperatura foi de 60 a 240 °C, a 3°C.min⁻¹. A espectrometria de massas foi realizada em cromatógrafo Agilent 6890 acoplado a detetor de massas (CG/EM) Agilent 5973N, operando no modo impacto de elétrons com energia de 70eV. Utilizou-se uma coluna capilar de sílica fundida de 30 m x 0,25 mm, recoberta internamente com filme 55 fenil 95% metilsilicona (HP5-MS) de 0,25 mm de espessura e hélio como gás de arraste (1mL/min).

As demais condições de análise foram as mesmas empregadas para a cromatografia gasosa.

A identificação dos constituintes foi efetuada por comparação dos espectros de massas obtidos com os dados da espectroteca (Wiley 6th ed.) e dos índices de retenção, calculados a partir da injeção de uma série de n-alcanos, e comparados com valores da literatura. Duas amostras de 20,0 g de folhas foram utilizadas para determinação da umidade em estufa a 65°C até peso constante. O rendimento de óleo essencial foi calculado em base seca.

RESULTADO E DISCUSSÃO

O maior rendimento de óleo essencial, calculado em base seca, foi verificado para a sacaca vermelha (0,97%), enquanto a branca rendeu 0,65% (Tabela 1). O componente químico majoritário do óleo essencial de sacaca branca foi o linalol (28,7%), enquanto da vermelha, o 5-hidroxi-calameneno (25,5%), tendo apresentado um percentual de 18,9% de linalol (Tabela 2).

TABELA 1. Rendimento de óleo essencial encontrado para dois morfotipos de sacaca, da Coleção de Germoplasma da Embrapa Amazônia Ocidental, Manaus, AM.

Morfotipo	Óleo essencial (Rendimento - %)	
Sacaca branca	0,97	
Sacaca vermelha	0,65	

As variações qualitativa e quantitativa na composição química do óleo essencial obtido de morfotipos diferentes é bem documentada na literatura (Pauleti et al., 2003, Arrigoni-Blank et al., 2003, Oliveira et al. 2003) e parecem demonstrar que os morfotipos brancos e vermelhos de sacaca podem ser, também, neste caso, quimiotipos do gênero Croton. A variação na composição química dos óleos essenciais analisados é uma informação relevante para orientar a escolha do germoplasma que se deseja cultivar para a obtenção de um óleo rico em linalol.

Deve ser observado, também, que, em estudos de atividade biológica do óleo essencial desta espécie, uma caracterização química preliminar fazse necessária, posto que a simples classificação botânica gênero/espécie não é mais suficiente para permitir inferências em estudos da relação composição química/atividade biológica.

REFERÊNCIA BIBLIOGRÁFICA

ARAÚJO, V.C.; CORRÊA, G.C.; MAIA, J.G.S.; SILVA, M.L.; GOTTLIEB, O.R.; MARX, C.R.; MAGALHÃES, M.T. Óleos essenciais da Amazônia contendo linalol. **Acta Amazonica**, v.1, n.3, p. 45-47, 1971.

ARRIGONI-BLANK, M.F.; ALVES, P.B.; CAETANO, L.C.; SANT'ANA, A.E.G.; SILVA-MANN, R.; SANTOS, M.A.F.; COSTA, A.G.; BLANK, A.F. Caracterização química do óleo essencial de acessos de sambacaita [Hyptis pectinata (L.) Poit] provenientes do banco ativo de germoplasma da UFS. Campinas: Instituto Agronômico, 2003. p.156. (Documentos, IAC, 74)

FREIRE, A.C.G.; MELO, P.D.; AOYAMA, H.; HAUN, M.; DURAN, N.; FERREIRA, C.V. Cytotoxic effect of the diterpene lactone dehydrocrotonin from *Croton cajucara* on human promyelocytic leukemia cells. **Planta Medica**, v. 69, n.1, p.67-69, 2003.

KALIL FILHO, A.N.; LUZ, A.I.R.; SÁ SOBRINHO, A.F.; WOLTER, E.L.A.; PEREIRA Jr., O.L. Conservação de germoplasma de sacaca (*Croton cajucara* Benth.), uma nova fonte de linalol para a Amazônia Ocidental. Manaus: Embrapa Amazônia Ocidental, 1998. (Pesquisa em Andamento, 39)

LOPES, D.; BIZZO, H. R.; SÁ SOBRINHO, A. F.; PEREIRA, M.V.G. Linalol-rich essential oil from leaves of *Croton cajucara* Benth. **Journal of Essential Oil Research**, v.12, n. 6, p. 705-709, 2000.

OLIVEIRA, D.R.; LEITÃO, G.G.; BIZZO, H.R.; LOPES, D.; ALVIANO, D.; LEITÃO, S.G. Composição química e atividade antimicrobiana do óleo essencial de duas espécies de *Lippia* do Município de Oriximiná-Pará. Campinas: Instituto Agronômico, 2003. p.153. (Documentos IAC, 74)

PAULETI, G.F.; ROTA, L.D.; SANTOS, A.C. A.; PANSERA, M.R.; ZATERRA, F.; SERAFINI, L.A. Avaliação do óleo essencial de nove genótipos de manjericão (*Ocimum basilicum* L.). Campinas: Instituto Agronômico, 2003. p.54. (Documentos IAC, 74)

ROSA, M.S.S.; MENDONÇA-FILHO, R.R.; BIZZO, H.R.; RODRIGUES, I.A.; SOARES, R.M.A.; SOUTO-PADRÓN, T.; ALVIANO, C.S.; LOPES, A.H.C.S. Antileishmanial activity of a linalool-rich essential oil from *Croton cajucara*. **Antimicrobial Agents and Chemotherapy**, v. 47, n.6, p.1895-1901, 2003

TABELA 2. Composição química (%) do óleo essencial de folhas de dois morfotipos de sacaca, da Coleção de Germoplasma da Embrapa Amazônia Ocidental, Manaus, AM.

Componente químico (%)	Morfotipo		
	Sacaca branca	Sacaca vermelha	
alfa-pineno	-	2,7	
mirceno	0,2	0,2	
p-cimeno 	0,1	0,1	
limoneno	0,3	0,4	
trans-ocimeno	0,3	0,2	
linalol	28,7	18,9	
alfa-terpineol	0,3	0,3	
delta-elemeno	2,2	0,4	
alfa-copaeno	1,1	2,5	
beta-bourboneno	2,7	1,5	
beta-elemeno	1,5	0,7	
beta-cariofileno	13,0	4,0	
beta-gurjuneno	2,0	0,6	
gama-elemeno	2,5	0,9	
alfa-humuleno	2,6	1,5	
allo aromadendreno	0,9	2,4	
gama-muuroleno	0,7	1,2	
germacreno D	6,8	3,3	
biciclogermacreno	2,8	0,8	
alfa-muuroleno	2,3	0,9	
delta-cadineno	3,1	7,1	
alfa-calacoreno	0,3	0,9	
elemol	0,5	0,3	
(E)-nerolidol	9,3	1,4	
espatulenol	1,0	0,9	
oxido de cariofileno	1,0	0,9	
viridiflorol	0,4	1,5	
cubenol	0,3	1,5	
torreiol	1,1	0,6	
alfa-cadinol	1,1	1,8	
alfa-bisabolol	0,3	4,5	
drimenol	0,3 2,1	4,5 0,9	
5-hidroxi-calameneno Total identificado	2,1 93,6	25,5 91,3	