Interação Antagônica entre Chromobacterium violaceum e Colletotrichum guaranicola, o Agente Causador da Antracnose do Guaranazeiro

P. C. da S. Angelo¹; M. T. Sena²; L. A. C. Moraes¹; M. G. de Souza¹; A. das G. C. de Souza¹; J. L. L. Lozano³

Introdução

O Colletotrichum guaranicola é o fungo causador da antracnose do guaranazeiro (Paullinia cupana var. sorbilis), doença que, no Estado do Amazonas, causa perda de produtividade significativa para os produtores de guaraná. A Cromobacterium violaceum, bactéria saprófita pigmentada ou não, de vida livre em ambientes edáficos e aquáticos, gram-negativa e aeróbica facultativa, está presente numa ampla variedade de ecossistemas, em regiões tropicais e subtropicais, como na bacia do Rio Negro, na Amazônia Brasileira.

Em 2003, o "Brazilian National Genome Project Consortium" (2003) reportou a sequência completa do genoma de *C. violaceum*, que consiste de um único cromossoma circular de 4.751.080 pares de bases, codificando 4.431 proteínas putativas. A disponibilidade do genoma seqüenciado abre perspectivas de estudo, entre elas a análise da estrutura e função das suas proteínas (Klose, 1999). Por isto, entre outros motivos, a *C. violaceum* foi escolhida como objeto da análise da Rede Proteômica do Estado do Amazonas.

Como membro da Rede Proteômica, o Laboratório de Biologia Molecular da Embrapa Amazônia Ocidental tem interesse na identificação de polipeptídeos da bactéria que apresentem ação controladora sobre o crescimento de fungos fitopatogênicos. Como primeiros passos para atingir este objetivo está-se verificando se há interação entre a bactéria e alguns daqueles fungos, quando são co-cultivados.

Objetivo

Verificar a existência de interação entre *Chromobacterium violaceum* e *Colletotrichum guaranicola* co-cultivados em meio M9.

¹Pesquisador da Embrapa Amazônia Ocidental, Manaus-AM, paula.angelo@cpaa.embrapa.br

²Bolsista Pibic/Embrapa Amazônia Ocidental/CNPq, Manaus-AM.

³Pesquisador FMTAM, Coordenador do Projeto Proteômica do Estado do Amazonas, Manaus-AM.

Material e Métodos

Isolados de microrganismos: o isolado ATCC12472 de *C. violaceum* foi obtido no Laboratório de Tecnologia de DNA da Universidade Federal do Amazonas. O isolado de *C. guaranicola* foi obtido no Laboratório de Fitopatologia da Embrapa Amazônia Ocidental e é proveniente de Maués.

Meios e condições de cultura pré-interação: colônia isolada de *C. violaceum* ATCC12472 foi inoculada em 5 ml de meio LB líquido (Sambrook et al., 1989) e cultivada por 16 horas, a 35 °C e 240 rpm. Esta cultura foi centrifugada e ressuspendida em 1,6 ml de meio M9 (Sambrook et al., 1989) líquido. O número de *ufc*s (unidades formadoras de colônias) na suspensão de células foi titulado por plaqueamento em LB sólido. O micélio do isolado de *C. guaranicola* foi repicado para meio LB fresco sete dias antes do co-cultivo. Estes experimentos foram realizados como preparação para o co-cultivo dos microrganismos e foram repetidos por três semanas consecutivas, no Laboratório de Biologia Molecular da Embrapa Amazônia Ocidental, ao longo do mês de abril de 2005.

Meios e condições de cultura dos experimentos de co-cultivo e controle: 100 μL da suspensão de *C. violaceum* em M9 foram espalhados em placas de Petri de 90 mm e cultivados por 16 horas a 35 °C. Um disco de 6 mm de diâmetro de meio LB colonizado por micélio de *C. guaranicola* foi, em seguida, indroduzido no centro de cada placa de Petri (tratamento de cocultivo). Simultaneamente foram inoculados discos de 6 mm de diâmetro, colonizados pelo mesmo micélio de *C. guaranicola*, em placas de M9 não colonizadas por *C. violaceum* (tratamento controle). Os microrganismos foram co-cultivados por sete dias à temperatura ambiente e fotoperíodo natural, com luminosidade incidente de cerca de 100 Lux. Os experimentos de co-cultivo e controle foram repetidos por três semanas consecutivas, com 15 repetições por semana, no Laboratório de Biologia Molecular da Embrapa Amazônia Ocidental, ao longo do mês de abril de 2005.

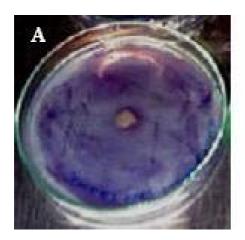
Coleta de dados e análises estatísticas: foram coletados, semanalmente, os títulos das culturas de pré-interação de *C. violaceum* (ufc/ml de cultura) e a medida do diâmetro do micélio de *C. guaranicola* (cm) submetido e não submetido a co-cultivo com *C. Violaceum*.

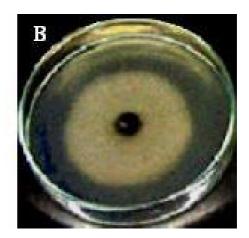
Resultados e Discussão

O título das culturas de C. violaceum permaneceu dentro da mesma ordem de grandeza ao longo de todo o experimento (Tabela 1). Considerou-se que foram plaqueadas no M9 para os experimentos de co-cultivo cerca de 2 x 10^5 ufc/cm² de placa de Petri, em todas as repeticões.

Tabela 1. Título estimado para culturas de *C. violaceum* ao longo dos experimentos de pré-interação (Embrapa Amazônia Ocidental, 2005).

Semana	ufc/ml (x 108)	
I	4,7	
II	4,7 4,5 6,0	
III	6,0	
Média	5,1 ± 0,8	


Considerou-se que a velocidade de crescimento dos micélios de *C. guaranicola*, repicados uma semana antes do início de cada repetição dos experimentos, permaneceu estável, o que foi demonstrado pela ausência de variação estatisticamente significativa entre repetições do tratamento controle. Como não houve também efeito significativo de repetições sobre o co-cultivo (Tabela 2, efeito de repetição não significativo), a estabilização do vigor de crescimento alcançada para os dois microrganismos permitiu realizar o co-cultivo padronizadamente nas três repetições.


Tabela 2. Quadro de análise de variância da medida do micélio de *C. guaranicola* co-cultivado ou não com *C. violaceum* (Embrapa Amazônia Ocidental, 2005).

Fontes variação	GL	QM	Probabilidade
Blocos (repetições) Tratamentos	2 1	0,0066 46,4816	< 0,001
Resíduo	2	0,0066	

Houve diferença significativa entre os dois tratamentos e o crescimento do fungo foi inibido pela presença da bactéria em todas as placas de todas as repetições. O diâmetro médio do micélio foi de de 1,1 \pm 0,4 cm quando co-cultivado com C. violaceum e de 5,3 \pm 0,5 cm no tratamento controle, ou seja, na ausência da bactéria.

Verificou-se produção de violaceína (Fig. 1) com formação de um hemi-halo próximo ao disco colonizado por micélio de *C. guaranicola* em diversas placas. Este pigmento é produzido pela bactéria por conjugação de duas moléculas do aminoácido triptofano modificadas e tem atividade antimicrobiana (Rettori & Duran, 1998; August et al., 2000), não testada especificamente para *C. guaranicola*, até o momento.

Fig. 1. Placas de Petri fotografadas após uma semana de crescimento do *C. guaranicola* em meio de cultura M9 em co-cultivo com *C. violaceum* (A) e na ausência da bactéria (B). Observe-se, em A, a produção de pigmento violáceo e de um hemihalo discreto do pigmento em torno do disco de micélio inoculado no centro da placa de Petri (Embrapa Amazônia Ocidental, 2005).

É possível aventar duas hipóteses para explicar que efeito antagônico está em curso durante o co-cultivo: 1) há competição por nutrientes e a bactéria é mais eficiente para colonizar o meio e/ou, 2) há um mecanismo de suporte ao antagonismo envolvendo a violaceína e este não se limita a competição.

Em experimentos anteriores, comparou-se a inibição do crescimento do fungo em co-cultivo com a bactéria, nos meios de cultura M9 (meio "mínimo") e LB (meio "enriquecido"). Verificou-se que a inibição foi mais efetiva em meio LB, onde o diâmetro médio do micélio foi 1,07 \pm 0,38 cm, contra 1,31 \pm 0,64 cm encontrado no M9. Supõe-se que, tratando-se de competição por nutrientes, ainda que sofrendo inibição de crescimento por competição com a bactéria, o micélio do fungo pudesse ter apresentado diâmetro médio maior no meio "enriquecido", o que não ocorreu.

Quanto a mecanismo de suporte ao antagonismo que envolva a violaceína, é reconhecida a existência de uma função "quorum sensing" que dispara a produção deste pigmento em culturas de *C. violaceum*. Ocorre que em resposta ao sinal de "quorum", a molécula indutora (HHL) da síntese de violaceína ativa, simultaneamente, a produção de quitinases que apresentam atividade quitinolítica extracelular (Chernin et al., 1998). A quitina é polissacarídeo presente na parede celular de muitos fungos filamentosos. Não existe descrição detalhada da constituição da parede celular de *C. guaranicola*, mas a utilização de quitinases para o controle do crescimento de

fungos do gênero *Colletotrichum* é estratégia que tem sido perseguida (Viswanathan e Samiyappan, 2001; Sandhya et al., 2005).

Conclusão

Ocorre antagonismo entre *Colletotrichum guaranicola* e *Chromobacterium violaceum* em meio de cultura M9, interação que envolveria competição por nutrientes e/ou produção de fungistáticos pela bactéria.

Agradecimentos

À FAPEAM, pelo suporte financeiro, ao CNPq pela bolsa ao estagiário Márcio Tenório Sena e a Jeferson Chagas da Cruz, técnico do Laboratório de Biologia Molecular da Embrapa Amazônia Ocidental.

Literatura Consultada

AUGUST, P.R.; GROSSMAN, T.H.; MINOR, C.; DRAPER, M.P.; MacNEIL, I.A.; PEMBERTON, J.M.; CALL, K.M.; HOLT, D.; OSBURNE, M.S. (2000). Sequence analysis and functional characterization pathway from *Chromobacterium violaceum.* **J. Mol. Microbiol. Biotechnol**, 2: 5-13.

BRAZILIAN NATIONAL GENOME PROJECT CONSORTIUM. (2003). The complete genome senquence of Chromobacterium violaceum reveals remakable and exploitable bacterial adaptability. **Proc. Nat. Acad. Sciences**, 100: 11660-11665.

CHERNIN, L.S.; WINSON, M.K.; THOMPSON, J.M.; HARAN, S.; BYCROFT, B.W.; CHET, I.; WILLIAMS, P.; STEWART, G.S.A.B. (1998). Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J. Bacteriol., 180: 4435-41.

KLOSE, J. (1999). Genotypes and phenotypes. Electrophoresis, 20: 642-52.

RETTORI, D.; DURAN, N. (1998). Production, extraction and purification of violacein: an antibiotic pigment produced by *Chromobacterium violaceum*. **J. Mol. Microbiol. Biotechnol.**, 14: 685-8.

SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T. (1989). **Molecular cloning: a laboratory manual.** Cold Spring Harbor Laboratory Press, NY, USA.

SANDHYA, C.; BINOD, P.; NAMPOOTHIRI, K.M.; SZAKACS, G.; PANDEY, A. (2005). Microbial synthesis of chitinases in solid cultures and its potential as a biocontrol against phytopathogenic fungus *Colletotrichum gloesporioides*. **Appl. Biochem. Biotechnol.**, 127: 1-15.

VISWANATHAN, R.; SAMIYAPPAN, R. (2001). Antifungal activity of chitinases produced by some fluorescent pseudomonads against *Colletotrichum falcatum* Went causing red rot disease in sugarcane. **Microbial.** Res., 155: 309-14.