Adaptabilidade e Estabilidade de Clones de Guaraná¹

F. J. do Nascimento Filho²; A. L. Atroch²; C. D. Cruz³; P. C. S. Carneiro³

Introdução

O estudo de adaptabilidade e estabilidade em relação à produção e, ou, produtividade das culturas é, de uma maneira geral, de grande importância devido ao interesse na obtenção de materiais genéticos que se desenvolvam não somente em um ambiente particular, mas também sob diferentes condições ambientais.

Portanto, com o objetivo de se atingir esse nível de informação é necessário realizar análises da performance genotípica dos materiais estudados, com base nos parâmetros de adaptabilidade e estabilidade. No que diz respeito à definição dos referidos termos, Mariotti et al. (1976) constataram dificuldades, embora existam várias outras definições dadas por diferentes autores. Estes primeiros autores sugerem que a adaptabilidade seria a capacidade dos genótipos responderem vantajosamente à melhoria do ambiente, enquanto a estabilidade refere-se à capacidade dos genótipos apresentarem comportamento altamente previsível, em função das variações de ambiente. Morais (1980) associa a definição de estabilidade como estabilidade do comportamento, que define uma característica varietal e não podendo ser confundida com estabilidade fenotípica, a qual refere-se à capacidade dos genótipos apresentarem somente pequenas diferenças em seu comportamento geral, quando testados em ambientes diversos.

Para Oliveira (1976), uma variedade estável é aquela que apresenta apenas pequenas variações no seu comportamento geral e, quando desenvolvida sob condições ambientais diversas, a potencialidade de ambiente não é importante em proporcionar altas ou baixas produções, isto é, a variedade estável tem mais ou menos a mesma produção, quer os ambientes sejam ou não favoráveis. Finlay e Wilkinson (1963) definiram a "estabilidade média" de uma forma dinâmica, para caracterizar uma variedade cuja produção varia de acordo com a capacidade dos ambientes, proporcionando altas ou baixas produtividades. Portanto, a variedade estável de acordo com a definição acima é de grande utilidade para os pequenos agricultores que

¹Trabalho extraído da tese de doutorado do primeiro autor.

²Pesquisador da Embrapa Amazônia Ocidental, Manaus-AM, firmino.filho@cpaa.embrapa.br

³Professor do Departamento de Biologia Geral da Universidade Federal de Viçosa, Viçosa-MG.

carecem de recursos para a aplicação de níveis adequados de tecnologia e, portanto, devem adotar variedades pouco exigentes ou pouco sensíveis às variações ambientais. Variedades sensíveis às variações ambientais, respondem bem às variações das condições de ambiente e devem ser indicadas aos agricultores que aplicam altos níveis de tecnologia.

No caso da adaptabilidade, o conceito mais atual evolvendo caracteres como produtividade de grãos é dado por Verma et al. (1978), os quais se referem ao genótipo ideal como padrão de adaptabilidade, àquele que apresenta produtividade alta e constante em ambientes considerados desfavoráveis, mas com capacidade de responder à melhoria das condições ambientais.

Em estudos com milho, vários autores, citados por Veronesi (1995), chegaram à conclusão que materiais menos homogêneos são mais estáveis em sua produção, enquanto outros chegaram a conclusões contrárias que, para ele, corrobora a importância de se conhecer a interação genótipos x ambientes, além da necessidade de caracterizar os genótipos estudados quanto à adaptabilidade e estabilidade de comportamento.

Para a cultura do guaranazeiro, até o momento não foi realizado este estudo, uma vez que os experimentos de avaliação e competição de clones ficaram restritos, na sua maioria, a um único local, não sendo possível detectar, de forma efetiva, os diferentes comportamentos fenotípicos dos indivíduos frente às variações ambientais. Para Carneiro (1998), a seleção de materiais genéticos produtivos, com boas características agronômicas e que não sofram interferências de variações ambientais, é o principal objetivo do melhoramento genético de qualquer espécie que se destina à exploração comercial. Em programas de melhoramento, os genótipos são avaliados em diferentes ambientes (anos, locais, épocas de semeadura e níveis de tecnologia) antes da seleção final, recomendação e distribuição para a exploração comercial. Porém, o conhecimento da existência da interação genótipos x anos ou genótipos x locais e outros tipos de interações, de sua magnitude e também de sua significância, apesar de contribuírem para melhorar a eficiência dos programas de melhoramento não fornecem informações detalhadas sobre o comportamento individual de cada genótipo em relação aos fatores ambientais previsíveis ou imprevisíveis, causadores de respostas diferenciadas às condições em que são submetidos.

Considerando-se que a cultura do guaraná encontra-se em expansão e, portanto, submetida a diferentes condições de cultivo, assim como as atuais recomendações pela pesquisa de novos clones para plantios pelos produtores visando, principalmente alta produção e resistência às doenças, houve a

necessidade do estabelecimento de um ensaio em rede para estudar o comportamento individual dos diferentes clones pré-selecionados. Espera-se com este estudo maiores informações sobre as inter-relações dos clones com as diferentes condições de cultivo consideradas, permitindo que a pesquisa garanta ao produtor uma maior rentabilidade por meio do uso da tecnologia clonal do guaranazeiro.

Este trabalho avaliou o desempenho produtivo de 27 clones de guaraná em diferentes condições de cultivo, no Estado do Amazonas, com base no estudo de estabilidade e adaptabilidade direcionando o uso dos mesmos pelos produtores.

Material e Métodos

Em 1996 implantou-se, em campos experimentais da Embrapa (Amazônia Ocidental), uma rede de ensaios com dez experimentos envolvendo três municípios do Estado do Amazonas. O objetivo foi testar 27 clones de guaraná pré-selecionados (Nascimento Filho e Garcia, 1993), sob diferentes condições ambientais. Para isso, consideraram-se as condições edafoclimatológicas nos Municípios de Manaus, Maués e Iranduba, os diferentes tipos de solo disponíveis aos produtores, caracterizados pela vegetação neles existentes antes da implantação da cultura (capoeira, mata primária e mata secundária), dois sistemas de cultivo (com e sem o uso de adubação), além dos ambientes temporais representados por quatro anos (1998, 1999, 2000 e 2001) de avaliação dos tratamentos considerados neste estudo.

Desta forma constituiu-se dez diferentes ambientes. O ambiente 01 representado pelo ensaio implantado em Iranduba, em solos com vegetação de mata secundária, no sistema de cultivo com adubação; 02 - Iranduba, mata secundária, sem adubação; 03 - Manaus, mata secundária, com adubação; 04 - Manaus, mata secundária, sem adubação; 05 - Manaus, capoeira, com adubação; 06 - Manaus, capoeira, sem adubação; 07 - Maués, mata primária, com adubação; 08 - Maués, mata primária, sem adubação; 09 - Maués, capoeira, com adubação; 10 - Maués, capoeira, sem adubação.

O delineamento utilizado foi o de blocos casualizados (Pimentel Gomes, 1981) com duas repetições e três plantas por parcela em espaçamento 5 m x 5 m.

A partir do segundo ano pós-plantio, início da fase produtiva, em 1998 iniciou-se a avaliação da produção de sementes secas por ramete. Esta avaliação foi feita com base no peso da biomassa fresca dos frutos maduros.

Neste peso esta incluída a ráquis (parte central do cacho) e as sementes com arilo. Para se obter apenas o peso das sementes secas fez-se a conversão do peso de toda aquela biomassa através da relação 6:1 (Smyth e Cravo, 1989).

Desta forma, a variável peso de sementes secas dos rametes foi coletada durante quatro anos consecutivos (1998, 1999, 2000 e 2001) em todos os ensaios e utilizadas nas análises envolvidas neste estudo.

Existem vários métodos para a caracterização dos clones quanto à adaptabilidade e estabilidade fenotípica com base na interação genótipos x ambientes. Porém, segundo Cruz e Regazzi (1997), a escolha dependerá dos dados experimentais, principalmente com o número de ambientes disponíveis, da precisão requerida e do tipo de informação desejada. Também, consideram que alguns métodos são alternativos, enquanto outros são complementares.

Neste trabalho a avaliação do desempenho produtivo e as variações do grupo de clones de guaraná, frente às diferentes condições de cultivo, foi realizada com base nas estimativas dos parâmetros de adaptabilidade e/ou de estabilidade, realizada por meio de quatro métodos: a) Tradicional (Yates e Cochran, 1938); b) Eberhart e Russell (1966); c) Cruz, Torres e Vencovsky (1989); e d) Modificado de Lin e Binns (1988), proposto por Carneiro (1998).

Resultados e Discussão

No Tabela 1 verifica-se que os índices ambientais alcançaram uma variação bastante acentuada em relação aos fatores previsíveis que constituíram as condições de cultivo do guaraná, assim como a influência de anos (fator imprevisível) sobre o comportamento produtivo do grupo de clones que foram testados.

Levando-se em consideração apenas a produção total, à exceção do ambiente 3 - Manaus (mata secundária, com adubação), todas as condições de cultivo onde se complementou a fertilidade através da adubação recomendada à cultura apresentaram índices ambientais positivos. O ambiente 4 - Manaus (mata secundária, sem adubação e com baixo teor de material orgânico), também apresentou índice ambiental positivo, assim como o ambiente 8 - Maués (mata primária, sem adubação), provavelmente devido ao fato deste conter maior quantidade de material orgânico. Os ambientes que apresentaram índice positivo constituíram-se em ambientes favoráveis à cultura e os de índice negativos em ambientes desfavoráveis em relação a maior ou menor produção geral média de sementes secas por ramete. Este

fato pode ser confirmado observando no Tabela 1 que nos ambientes favoráveis as produções médias de sementes secas por rametes se mantiveram acima da média geral.

Tabela 1. Ambientes estudados com a cultura do guaraná, respectivas médias de sementes secas alcançadas por rametes e os índices ambientais para a classificação dos ambientes favoráveis e desfavoráveis nos anos de 1998, 1999, 2000, 2001 e total.

Anos/Ambientes	1	998	1	1999		2000	
	Média	I. Amb.	Média	I. Amb.	Média	I. Amb.	
01-Iranduba.mata.secundária.com.adubo	267,57	-22,67	469,02	-25,06	425,44	-138,05	
02-Iranduba.mata.secundária.sem.adubo	238,25	-51,99	553,81	59,74	610,21	46,72	
03-Manaus.mata.secundária.com.adubo	246,76	-43,48	305,54	-188,53	685,66	122,17	
04-Manaus.mata.secundária.sem.adubo	265,09	-25,15	323,20	-170,87	824,23	260,74	
05-Manaus.capoeira.com.adubo	497,98	207,74	468,90	-25,17	518,31	-45,18	
06-Manaus.capoeira.sem.adubo	216,55	-73,69	438,50	-55,57	471,55	-91,95	
07-Maués.mata.primária.com.adubo	627,52	337,28	875,14	381,07	636,36	72,87	
08-Maués.mata.primária.sem.adubo	169,82	-120,42	654,14	160,07	690,44	126,95	
09-Maués.capoeira.com.adubo	270,55	-19,69	626,91	132,84	567,33	3,84	
10-Maués.capoeira.sem.adubo	102,31	-187,93	225,55	-268,52	205,39	-358,11	
Média Geral	290,24	0,00	494,07	0,00	563,49	0,00	
	2001		Total				
		200	01		Tota		
Anos/Ambientes		200 Média	01 I. Amb.	М	Total édias	I. Amb.	
		Média	I. Amb.		édias	I. Amb.	
01-Iranduba.mata.secundária.com.adubo	10	Média 67,73		55			
01-Iranduba.mata.secundária.com.adubo 02-Iranduba.mata.secundária.sem.adubo	10 4	Média 67,73 98,47	I. Amb.	55 45	édias	I. Amb.	
01-Iranduba.mata.secundária.com.adubo 02-Iranduba.mata.secundária.sem.adubo 03-Manaus.mata.secundária.com.adubo	10 4 5	Média 67,73 98,47	342,8 -226,46	55 45 43	édias 57,44 53,70	1. Amb. 174,49 -240,47	
01-Iranduba.mata.secundária.com.adubo 02-Iranduba.mata.secundária.sem.adubo 03-Manaus.mata.secundária.com.adubo 04-Manaus.mata.secundária.sem.adubo	10 4 5 9	Média 67,73 98,47 02,14	342,8 -226,46 -222,79	55 45 43 57	édias 57,44 53,70 85,03	1. Amb. 174,49 -240,47 -315,16	
01-Iranduba.mata.secundária.com.adubo 02-Iranduba.mata.secundária.sem.adubo 03-Manaus.mata.secundária.com.adubo 04-Manaus.mata.secundária.sem.adubo 05-Manaus.capoeira.com.adubo	10 4 5 9 6	Média 67,73 98,47 02,14 64,09 72,44	I. Amb. 342,8 -226,46 -222,79 239,17	55 45 43 57	édias 57,44 53,70 85,03 71,97	1. Amb. 174,49 -240,47 -315,16 232,61	
01-Iranduba.mata.secundária.com.adubo 02-Iranduba.mata.secundária.sem.adubo 03-Manaus.mata.secundária.com.adubo 04-Manaus.mata.secundária.sem.adubo 05-Manaus.capoeira.com.adubo 06-Manaus.capoeira.sem.adubo	10 4 5 9 6 5	Média 67,73 98,47 02,14 64,09 72,44	342,8 -226,46 -222,79 239,17 -52,49	55 45 43 57 53 42	67,44 53,70 85,03 71,97 39,41 26,41	1. Amb. 174,49 -240,47 -315,16 232,61 102,37	
01-Iranduba.mata.secundária.com.adubo 02-Iranduba.mata.secundária.sem.adubo 03-Manaus.mata.secundária.com.adubo 04-Manaus.mata.secundária.sem.adubo 05-Manaus.capoeira.com.adubo	10 4 5 9 6 5	Média 67,73 98,47 02,14 64,09 72,44 79,05	342,8 -226,46 -222,79 239,17 -52,49 -145,87	55 45 43 57 53 42 76	67,44 53,70 85,03 71,97 39,41 26,41	1. Amb. 174,49 -240,47 -315,16 232,61 102,37 -349,61	
01-Iranduba.mata.secundária.com.adubo 02-Iranduba.mata.secundária.sem.adubo 03-Manaus.mata.secundária.com.adubo 04-Manaus.mata.secundária.sem.adubo 05-Manaus.capoeira.com.adubo 06-Manaus.capoeira.sem.adubo 07-Maués.mata.primária.com.adubo	10 4 5 9 6 5 9	Média 67,73 98,47 02,14 64,09 72,44 79,05 21,03	1. Amb. 342,8 -226,46 -222,79 239,17 -52,49 -145,87 196,11	55 45 43 57 53 42 76	66dias 57,44 53,70 85,03 71,97 39,41 26,41 55,02	1, Amb. 174,49 -240,47 -315,16 232,61 102,37 -349,61 1004,80	
01-Iranduba.mata.secundária.com.adubo 02-Iranduba.mata.secundária.sem.adubo 03-Manaus.mata.secundária.com.adubo 04-Manaus.mata.secundária.sem.adubo 05-Manaus.capoeira.com.adubo 06-Manaus.capoeira.sem.adubo 07-Maués.mata.primária.com.adubo 08-Maués.mata.primária.sem.adubo	10 4 5 9 6 5 9 6	Média 67,73 98,47 02,14 64,09 72,44 79,05 21,03 97,85	1. Amb. 342,8 -226,46 -222,79 239,17 -52,49 -145,87 196,11 -27,08	55 45 43 57 53 42 76 55	66dias 57,44 53,70 35,03 71,97 39,41 26,41 65,02 53,06 76,07	1, Amb. 174,49 -240,47 -315,16 232,61 102,37 -349,61 1004,80 156,99	

Os ambientes com potencialidades máximas e mínimas para a cultura foram, respectivamente, o 7 - Maués, mata primária, com adubação e o 10 - Maués, capoeira, sem adubação, caracterizados por suas produções médias de 765,02 e 260,06 g de sementes secas por rametes, em relação aos 27 clones analisados durante quatro anos consecutivos. Nos Tabelas 2, 3, 4 e 5 pode-se verificar o comportamento dos clones em relação às análises dos quatro métodos utilizados no estudo de adaptabilidade e estabilidade dos clones com base na produção total.

Na Tabela 2 têm-se os resultados da análise pelo método Tradicional onde se verifica que entre os clones mais estáveis pode-se destacar CMU601, CMA228 e CMA223 os quais foram os menos produtivos, enquanto entre os

mais instáveis pode-se citar os clones CMU619, CMU871 e CMU631, exatamente os mais produtivos. Isto mostra que os clones que apresentaram variância mínima entre os ambientes foram em geral os menos produtivos e, portanto de alta estabilidade, porém sem interesse para o melhoramento visando o incremento de produtividade.

Tabela 2. Quadrados médios e estimativas do parâmetro de estabilidade obtidos pelo método tradicional (QMA/C_i) da produção (g) total por ramete de clones de guaraná, avaliados em dez ambientes, em solo com tipo de vegetação capoeira ou mata primária ou mata secundária, nos sistemas com adubação e sem adubação nos Municípios de Manaus, Maués e Iranduba-AM

Fontes de Variação	G.L.		Quadrados Médios
Ambiente (Amb.) Clone Clone x Ambiente Resíduo Amb./Clone	9 26 234 260 243		15005870,19** 8479502,89** 1583420,67** 693047,80 2080548,43
		Estimativa da Estabilidade	Média
Amb./CIR217 Amb./CMA222 Amb./CMU609 Amb./CMA225 Amb./CMA227 Amb./CMA228 Amb./CMA274 Amb./CMA276 Amb./CMU601 Amb./CMU605 Amb./CMU607 Amb./CMU610 Amb./CMU610 Amb./CMU624 Amb./CMU611 Amb./CMU611 Amb./CMU611 Amb./CMU611 Amb./CMU611 Amb./CMU611	9999999999999999999	2327631,60 2096001,27 924453,84 b 977640,86 b 1317709,76 553680,50 b 840977,97 b 1783916,15 406941,57 b 321454,09 b 972719,31 b 932070,65 b 938140,45 b 822632,48 b 1539002,84 1229348,99 2279899,02 8262060,39 a 1421439,09 3737832,53 a 3977706,66 a 7501859,69 a	647,08 407,56 363,61 348,06 431,89 316,40 421,60 518,02 320,02 416,65 428,41 551,72 554,68 325,26 386,28 422,30 574,67 764,39 595,37 707,88 658,80 1014,23
Amb./CMU882 Amb./CMU862 Amb./CMU375 Amb./CMU388 Amb./CMU300	9 9 9 9	2084945,15 998602,11 b 1957170,11 2674050,23 a 3294920,34 a	511,39 396,46 637,29 479,18 673,84
Média Geral			513,82

^{*, **}Significativos, a 5 % e 1 % deprobabilidade, respectivamente, pelo teste F. ns Não-significativo, a 5 %. Quadrados médios, na mesma coluna, marcados pelas letras a e b, representam grupos de clones menos estáveis e mais estáveis, respectivamente.

De acordo com a caracterização dos ambientes em favoráveis e desfavoráveis à produção de guaraná, pode-se verificar por meio dos resultados das estimativas dos parâmetros de adaptabilidade e estabilidade, expressos na estatística P_i, obtidas pelo método modificado de Lin e Binns (1988) proposto por Carneiro (1998), a existência de clones adaptados aos dois tipos de ambientes ou clones com especificidade a cada um deles conforme pode ser observado no Tabela 3.

Tabela 3. Estimativa dos parâmetros de adaptabilidade e estabilidade, expressos na estatística P_i, obtidas pelo método modificado de LIN & BINNS (1988), proposto por CARNEIRO (1998), referente ao total de produção de sementes secas (gramas/ramete) de clones de guaraná avaliados em dez ambientes, nos anos de 1998, 1999, 2000 e 2001.

Clones	Média Geral	Pi Geral	Clones	Média Fav,	Pi Favorável	Clones	Média Desfav,	Pi Desfavorável
CMU871	1014,23	772774,99	CMU871	1298,24	770331,96	CMU631	602,96	743676,08
CMU619	764,39	2505059,84	CMU619	1096,01	2081889,27	CMU871	588,22	776439,53
CMU300	673,84	3164491,08	CMU300	784,31	4077208,77	CMU861	532,01	968341,10
CIR217	647,08	3402645,18	CIR217	784,93	4469220,66	CMA276	564,61	1039128,80
CMU861	658,80	3691139,51	CMU861	743,33	5506338,45	CMU610	507,67	1115988,29
CMU375	637,29	3953749,94	CMU375	751,93	5651109,50	CMU375	465,34	1407710,61
CMU631	707,89	3956195,72	CMU626	670,68	5830787,09	CMU626	482,41	1678596,47
CMU626	595,37	4169910,84	CMU612	668,19	6083487,17	CMA224	415,48	1679821,44
CMU612	574,67	4530069,62	CMU631	777,84	6097875,48	CMU624	467,34	1750096,40
CMU610	551,72	4616042,30	CMU882	629,39	6580556,19	CMU300	508,14	1795414,54
CMU624	554,68	4782837,66	CMU624	612,91	6804665,18	CIR217	440,29	1802781,96
CMU882	511,39	5057969,53	CMU610	581,08	6949411,63	CMU609	442,09	1820482,78
CMA276	518,02	5562112,23	CMA227	521,88	7691953,68	CMU607	379,30	1994758,54
CMA227	431,89	5676538,93	CMU388	592,87	7800502,77	CMU605	379,52	2032917,33
CMU388	479,18	5810104,76	CMU611	518,63	7906934,90	CMU862	358,56	2195140,26
CMU611	422,30	5918139,84	CMA276	486,96	8577434,51	CMU612	434,39	2199943,30
CMA274	421,60	6123794,76	CMA274	479,16	8596851,22	CMA274	335,25	2414210,08
CMU605	416,65	6225424,38	CMA222	522,78	8619676,36	CMA227	296,91	2653416,81
CMA222	407,55	6474621,60	CMU605	441,40	9020429,08	CMU882	334,39	2774089,55
CMU607	428,42	6544839,41	CMU607	461,16	9578226,66	CMU388	308,64	2824507,74
CMU862	396,46	6661129,56	CMU862	421,72	9638455,76	CMA225	276,51	2929169,09
CMA224	386,28	6828538,48	CMA225	395,76	9757983,05	CMU611	277,82	2934947,24
CMA225	348,06	7026457,47	CMA224	366,82	10261016,50	CMU601	259,60	3114399,13
CMA228	316,40	7529962,34	CMA228	372,46	10348983,01	CMU619	266,96	3139815,70
CMA223	325,26	7534482,39	CMA223	381,34	10375308,56	CMA222	234,71	3257039,47
CMU601	320,02	7591423,35	CMU601	360,30	10576106,17	CMA223	241,16	3273243,14
CMU609	363,61	7866466,89	CMU609	311,29	11897122,96	CMA228	232,31	3301431,33
Média Geral	517,98			597,18			399,17	

Na Tabela 4, pela diferença de produção pode-se verificar os clones com maiores produções a ambiente favorável e desfavorável, os quais poderão proporcionar maiores vantagens econômicas aos produtores. O clone CMU619 foi o mais indicado para condições favoráveis, com uma média geral de 1.096,01 g de sementes secas por ramete seguido do clone CMU882 com praticamente o dobro da produção em relação à condição desfavorável de cultivo onde alcançou apenas 334,39 g.

Tabela 4. Médias da produção total em ambiente favorável e desfavorável e diferença entre as médias do ambiente favorável e desfavorável

Clones	Ambiente Favorável	Ambiente Desfavorável	Diferença entre Ambiente Favorável e Desfavorável
CMU871	1298,24	588,22	710,02
CMU619	1096,01	266,96	829,05
CMU300	784,31	508,14	276,17
CIR217	784,93	440,29	344,64
CMU861	743,33	532,01	211,32
CMU375	751,93	465,34	286,59
CMU626	670,68	482,41	188,27
CMU612	668,19	434,39	233,80
CMU631	777,84	602,96	174,88
CMU882	629,39	334,39	295,00
CMU624	612,91	467,34	145,57
CMU610	581,08	507,67	73,41
CMA227	521,88	296,91	224,97
CMU388	592,87	308,64	284,23
CMU611	518,63	277,82	240,81
CMA276	486,96	564,61	-77,65
CMA274	479,16	335,25	143,91
CMA222	522,78	234,71	288,07
CMU605	441,40	379,52	61,88
CMU607	461,16	379,30	81,86
CMU862	421,72	358,56	63,16
CMA225	395,76	276,51	119,25
CMA224	366,82	415,48	-48,66
CMA228	372,46	232,31	140,15
CMA223	381,34	241,16	140,18
CMU601	360,30	259,60	100,70
CMU609	311,29	442,09	-130,80
Média Gera	l 597,18	399,17	

Os clones CMU610, CMA276, CMA224 e o CMU609 apresentaram valores de produção acima da média geral em ambiente desfavorável e reduzida expressividade para esse caráter em ambiente favorável como pode ser verificado na Tabela 4, onde tiveram baixas produções. Na Tabela 5, pelo método de Eberhart e Russell (1966), verifica-se que tanto o clone CMU609 e o CMA224 foram de alta previsibilidade enquanto o CMA276 apresentou baixa previsibilidade e tanto este, como o clone CMA224, mostrou adaptabilidade geral, porém, baixa produção. Na Tabela 3, pela estatística P_i, pode-se verificar que os clones CMU871, CMU619 e CMU300 foram os mais produtivos e com adaptabilidade a ambientes favoráveis. Pelo método de Eberhart e Russell (1966) pode-se chegar à mesma conclusão.

Tabela 5. Estimativa dos parâmetros de adaptabilidade e estabilidade, obtidas pelo método de Eberhart & Russell (1966) referente à produção total por ramete de clone de guaraná, dos quatro anos de avaliação consecutiva, em solo com tipo de vegetação capoeira, mata primária e mata secundária, nos sistemas com adubação e sem adubação, nos Municípios de Manaus, Maués e Iranduba-AM.

Clone	Média (g)	$\hat{\beta_i}$	$\hat{\sigma}_{\it di}^{2}$	R_i^2
CIR217	647,08	1,44ns	312669,10ns	49,65
CMA222	407,56	1,19ns	391443,60*	37,41
CMU609	363,61	-0,28 * *	148959,20ns	4,72
CMA225	348,06	0,96ns	-85745,76ns	52,58
CMA227	431,89	1,32ns	-146517,97ns	73,02
CMA228	316,40	0,86ns	-264343,29ns	73,61
CMA274	421,60	0,89ns	-121944,25ns	52,53
CMA276	518,02	0,31ns	627508,12**	2,93
CMU601	320,02	0,56ns	-216141,02ns	43,04
CMU605	416,65	0,53ns	-254889,14ns	49,32
CMU607	428,41	0,13*	195471,94ns	0,94
CMU610	551,72	0,60ns	66076,85ns	21,30
CMU624	554,68	0,76ns	2652,90ns	33,83
CMA223	325,26	0,74ns	-53546,84ns	36,69
CMA224	386,28	0,79ns	322192,75ns	22,75
CMU611	422,30	0,96ns	57598,45ns	41,56
CMU612	574,67	1,28ns	425178,54*	39,83
CMU619	764,39	3,11 * *	1267739,16**	65,27
CMU626	595,37	0,56ns	355910,68*	12,15
CMU631	707,88	0,59ns	1646667,39**	5,20
CMU861	658,80	1,34ns	1326456,12**	25,23
CMU871	1014,23	3,25 * *	562919,29**	78,45
CMU882	511,39	1,20ns	377049,49*	38,30
CMU862	396,46	0,45ns	151690,77ns	11,30
CMU375	637,29	0,81ns	547522,31*	18,79
CMU388	479,18	0,80ns	959647,35**	13,16
CMU300	673,84	1,85*	433315,64*	57,92
Média Geral	513,82			

O grupo de clones CMA da série 200 (CMA222, CMA223, CMA224, CMA225, CMA227, CMA228, CMA274 e CMA276), selecionados em Manaus, que com exceção do clone CMA223, são similares geneticamente (Nascimento Filho, 2001), e que no presente trabalho, em 1998, tiveram produções acima da média, e adaptabilidade geral (Tabela 5), com exceção do CMA274, sendo que nos demais anos foram superados por clones com maiores potenciais de produção e mais adaptados às condições de cultivo utilizadas.

Este fato pode ser explicado pelas características vegetativas que na fase inicial do desenvolvimento e estabelecimento das plantas, no campo se beneficiaram em razão do maior número de ramos, considerados unidades produtivas e/ou pelo seu maior comprimento. Estas características proporcionam eficiente auto-sombreamento às plantas em desenvolvimento, minimizando o efeito prejudicial de alta temperatura do solo, em relação às raízes, enquanto os clones de outras séries apresentam menor número de ramos, a exemplo dos clones da série 800. O clone CMU871, que sobressaiu nos quatro anos de avaliação como o mais produtivo e adaptado a condições gerais, em 1998 pela estatística P, foi classificado abaixo dos clones CMA da série 200. A partir do ano de 1999 os clones da série 200 deixam de ser os mais produtivos, não constando no ranking dos mais produtivos, nos últimos anos de avaliação. Uma hipótese para esse comportamento se deve ao crescimento vegetativo inicial, principalmente, o número de ramos (unidades produtivas), que contribuem para maiores produções nos primeiros anos, já os demais clones apresentaram uma menor quantidade dessas unidades, nesta fase, sendo mais tardios em formar suas copas e, consequentemente, apresentaram baixas produções nas primeiras colheitas. Dessa forma, os clones mais precoces na formação da copa, com maior número de ramos chegam a produzir maiores quantidades de sementes nas primeiras colheitas e menores nas posteriores por apresentarem uma vegetação mais abundante podem favorecer a uma drenagem excessiva de fotoassimilados para o crescimento vegetativo, principalmente nas condições favoráveis de cultivo, em detrimento à produção de frutos. Esta hipótese concorda com o comportamento produtivo dos clones CMA224 e CMA276 (Tabela 4) onde a diferença de produção entre o ambiente favorável e desfavorável foi negativa.

Os clones CMA224 e CMA276, conforme acima mencionados, tiveram médias superiores à média geral em ambientes desfavoráveis (Tabela 4) podendo ser indicados para essas condições, fato que concorda com o desempenho destes nas condições de pequeno produtor, onde os mesmos foram selecionados. Na Tabela 6, verifica-se que o clone CMA224 foi o único que atendeu à maioria dos parâmetros da metodologia de Cruz, Torres e Vencovsky (1989), mas devido a sua baixa média de produção de sementes secas por ramete (β_0) não se constituiu em um clone ideal conforme preconiza os autores deste método.

Tabela 6. Estimativas dos parâmetros de adaptabilidade e estabilidade, obtidas pelo método de CRUZ et al. (1989) com base na média da produção total por ramete de clone de guaraná, avaliados em quatro anos consecutivos, em solo com tipo de vegetação capoeira ou mata primária ou mata secundária, nos sistemas com adubação e sem adubação, nos Municípios de Manaus, Maués e Iranduba-AM.

Clone		dia nos Amb Desfavorável		$(\underline{\mathbf{H_o: b_1}} = \hat{b_{1i}}$	\hat{b}_{2i}	$(H_0: \mathbf{b}_1 + \mathbf{b}_2 = \hat{b}_{1i} + \hat{b}_{2i})$	1) Desvio da Regressão	R² (%)
CIR217	647,08	440,29	784,94	1,75ns	-1,36	0,40ns	1273442,79ns	57,45
CMA222	407,56	234,71	522,78	1,7311s	-0,63	•	1635804,26*	39,30
CMU609	363,61	442,09	311,29	-0,24 * *	-0,03	-0,43ns	1127886,44ns	5,11
CMA225	348,06	276,51	395,76	0,60ns	1,56	•	286449,66ns	77,21
CMA227	431,89	296,91	521,88	1,21ns	0,45	1,66ns	431173,23ns	74,55
CMA228	316,40	232,31	372,46	0.74ns	0,43	1,00ns 1,25ns	154690.57ns	78.27
CMA274	421,60	335,25	479,16	0,74113 0,86ns	0,14		510700,85**	52.77
CMA274	518,02	564,61	486,96	0,00113 0,271s	0,14	0.42ns	2223629.43ns	3,05
CMU601	320,02	259,60	360,30	0,2711s	0,13	-, -	246694,40ns	52,85
CMU605	416,65	379,52	441,40	0,41113 0,38ns	0,67		152749,97ns	63,04
CMU603	428,41	379,30	461,15	0,38113 0,44ns	-1,34	-0,90*	1011071,71ns	19,16
CMU610	551,72	507,67	581,08	0,57ns	0,13		940926,73ns	21,48
CMU624	554,68	467,34	612,90	0,89 ns	-0,13	0,70ns 0,31ns	756440,97ns	37.29
CMA223	325,26	241,16	381,34	0,55ns	0,82		584116,76ns	44,77
CMA224	386,28	415,48	366,81	0,00118	3,03	•	362729,14ns	81,67
CMU611	422,30	277,82	518,63	1,12ns	-0,71	0,41ns	859851,14ns	45,60
CMU612	574,67	434,38	668,19	1,35ns	-0,33	1,03ns	1750364,57*	40,29
CMU612	764,39	266,96	1096,01	3,29 * *	-0,75	2,54*	3619323,75**	65,93
CMU626	595.37	482,40	670,68	0,42ns	0,61	1,02ns	1558791,16*	14,71
CMU631	707,88	602,96	777,84	1,13ns	-2,35	-1,22**	3856031,36**	19,76
CMU861	658,80	532,01	743,32	1,04ns	1,31	2,35ns	3607090,29**	29,47
CMU871	1014,23	•	1298,24	3.06 * *	0.85	3,91**	1987876,51**	79,39
CMU882	511,39		629,39	1,46ns	-1,13		1491461.13*	44,36
CMU862	396,46	358,56	421,72	0,45ns	-0,01	0,44ns	1138761,37ns	11,31
CMU375	637,29	465,34	751,93	1,23ns	-1,83	-0.59*	1620098,89*	35,62
CMU388	479,18	308,64	592,87	1,02ns	-0,98	0,04ns	2864527,47**	16,68
CMU300	673,84	508,14	784,30	1,55ns	1,31	2,86*	1566388,07*	63,02
Média Geral	513,82	393,80	593,83					

Para QM Desvio Regressão*, **Significativos, a 5% e 1% de probabilidade, respectivamente pelo teste F.

ns Não-significativo, a 5%. Para \hat{b}_{1i} e \hat{b}_{1i} + \hat{b}_{2i} \Rightarrow^* , ** Significativos, a 5% e 1% de probabilidade, respectivamente, pelo teste t. ns Não-significativo, a 5%.

Conclusões

De modo geral, o método tradicional não possibilitou identificar clones de guaraná com bom desempenho produtivo e boa estabilidade fenotípica, pois os clones classificados como estáveis foram os menos produtivos, enquanto os menos estáveis tiveram as maiores produções.

Na presente população de clones não foi identificado o clone ideal com base nos parâmetros de adaptabilidade e estabilidade do método de CRUZ, TORRES e VENCOVSKY (1989).

O método não-paramétrico modificado de LIN e BINNS (1988), proposto por CARNEIRO (1998), apresentou resultados satisfatórios e com maior facilidade de interpretação, discriminando os clones com melhor desempenho nos ambientes favoráveis e desfavoráveis, em ambos ambientes e também quanto aos níveis de estabilidade.

O clone CMU871 apresentou alta produção em ambiente desfavorável e boa estabilidade, além de se mostrar altamente responsivo à melhoria do ambiente, podendo ser considerado como o genótipo que mais se aproximou do ideal, de acordo com o conceito de VERMA et al. (1978).

O clone CMU619 exibiu especificidade em condições favoráveis, enquanto o CMU609 o fez em condições desfavoráveis.

Os clones CIR217, CMU861, CMU375, CMU626, CMU612, CMU631 e CMU624 apresentaram ampla adaptabilidade e boa estabilidade.

Literatura Consultada

- CARNEIRO, P.C.S. **Novas** metodologias de análise da adaptabilidade e estabilidade de comportamento. Viçosa: UFV, 1998. 168p. Tese (Doutorado em Genética e Melhoramento) Universidade Federal de Viçosa, 1998.
- CRUZ, C.D.; REGAZZI, A.J. **Modelos biométricos aplicados ao melhoramento genético**. 2.ed. Vicosa: Editora UFV. 1997. 390p.
- CRUZ, C.D.; TORRES, R.A.; VENCOVSKY, R. An alternative approach to the stability analysis proposed by Silva e Barreto. **Rev. Bras. Genet.**, v.12, p.567-80, 1989.
- EBERHART, S.A.; RUSSELL, W.A. Stability for a 10-line diallel of single-cross and double cross maize hybrids. **Crop Sci.**, v.9, n.3., p.357-61, 1966.

FINLAY, K.W.; WILKINSON, G.N. The analisis of adaptation in a plant breeding program. **Aust. J. of Agric. Res.**, v.14, n.6, p.742-54, 1963.

LIN, C.S., BINNS, M. R. A superiority measure of cultivar perfomance for cultivar x location data. **Canadian Journal of Plant Sci.ence**, v.68, n.3, p.193-8, 1988.

MARIOTTI, J.A., OYARZABAL, E.S., OSA, J.M., BULACIO, A.N.R., ALMADA, G.H. Analisis de estabilidad de genotipos de caña de azucar. I. Interacciones dentro de una localidad experimental. **Rev. Agron. N. O. Argent.**, v.13, n.1-4, p.405-12, 1976.

MORAIS, O.P. Adaptabilidade, estabilidade de comportamento e correlações fenotípicas, genotípicas e de ambiente em variedades e linhagens de arroz (*Oryza sativa* L.). Viçosa: UFV, 1980. 70p. Dissertação (Mestrado em Genética e Melhoramento de Plantas) - Universidade Federal de Vicosa, 1980.

NASCIMENTO FILHO, F.J. do; ATROCH, A.L.; SOUSA, N.R. de; GARCIA, T.B.; CRAVO, M. da S.; COUTINHO, E.F. Divergência genética entre clones de guaranazeiro. **Pesquisa Agropecuária Brasileira**, Brasília, v.36, n.3, p.501-506, mar. 2001.

NASCIMENTO FILHO, F.J. do; GARCIA, T.B. Competição e avaliação de clones de guaraná. Manaus: EMBRAPA-CPAA, 1993. 37p. (EMBRAPA-CPAA. Programa 7 Diversificação Agropecuária Guaraná. Projeto 8.07.83.005-4). Projeto concluído.

OLIVEIRA, A.C. Comparação de alguns métodos de determinação estabilidade em plantas cultivadas. Brasília: UnB, 1976. 64p. Dissertação Mestrado.

PIMENTEL GOMES, F. **Curso de estatística experimental.** Ed. 9, Piracicaba, Livraria Nobel S.A. 1981. 430p.

SMYTH, T.J. e CRAVO, M.S. Resposta do guaranazeiro a níveis de N, P, K e Mg. Embrapa Amazônia Ocidental, Relatório Final de Projeto . 1989.

VERMA, M.M.; CHAHAL, G.S.; MURTY, B.R. Limitations of convencional regression analysis: a proposed modification. **Theor. Appl. Genet.**, v.53, n.2, p.89-91, 1978.

VERONESI, J.A. Comparação de métodos e avaliação da adaptabilidade e estabilidade de comportamento de vinte genótipos de milho (*Zea mays* L.) em dez ambientes do Estado de Minas Gerais. Viçosa: UFV, 1995. 90p. Dissertação (Mestrado em Genética e Melhoramento de Plantas) - Universidade Federal de Viçosa, 1995.

YATES, F.; COCHRAN, W.G. The analysis of group of experiments. **J. Agric. Sci.**, v.28, n.3, p.556-80, 1938.