CARACTERÍSTICAS DA COPA DA CASTANHA-DO-BRASIL E SUAS RELAÇÕES COM O DIÂMETRO DO TRONCO

BRAZIL NUT CROWN CARACTERISTICS AND STEM DIAMETER RELATIONSHIPS

Helio Tonini¹ Luiz Augusto Melo Shwengber² Rafael Turcatel²

RESUMO

Este trabalho foi realizado com o objetivo de estudar as características da copa em árvores nativas de castanha-do-brasil e estabelecer relações entre estas características e o diâmetro do tronco. Os dados foram coletados em uma floresta com ocorrência natural de castanha-do-brasil no sul do estado de Roraima em parcelas permanentes instaladas pela Embrapa Roraima com o objetivo de monitorar a dinâmica da população e a produção de frutos em florestas naturais. As árvores amostras foram selecionadas em função da classe de diâmetro e produção de frutos totalizando 88 árvores. Em cada árvore foi medido o diâmetro à altura do peito (DAP), a altura total (h) e a altura de inserção da copa (hic), o comprimento da copa (L) e o diâmetro da copa (Dc). Após foram calculados a proporção de copa (PC) e a relação entre o diâmetro da copa com diâmetro do tronco (IS), com a altura (IA) e com o comprimento da copa (FC). As relações entre as variáveis da copa e o DAP foram avaliadas mediante a análise de regressão linear através do procedimento estatístico "stepwise". A eficiência dos modelos foi verificada através do coeficiente de determinação (R²), erro padrão de estimativa (syx), valor e significância de F para o modelo, valor e significância de t para os coeficientes e análise da distribuição dos resíduos. Como resultado observou-se uma grande variação em todas as características da copa, que se deveu, provavelmente, aos diferentes níveis de competição a que as árvores estavam sujeitas. Em florestas naturais a castanha-do-brasil apresentou uma copa 19 vezes maior do que o seu DAP, sendo esta relação bem inferior a verificada em plantios. O comprimento e o diâmetro da copa puderam ser estimados com grande precisão a partir do DAP

Palavras-chave: Amazônia, Roraima, castanha-do-brasil, frutos, produção.

ABSTRACT

This work was carried out with the objective of studying crown characteristics of native trees of brazil nut and establish relationships between these characteristics and stem diameter. The data were collected in a forest with natural occurrence of brasil-nut in the south of the Roraima state in permanent sample plots installed by Embrapa Roraima with the objective of monitoring population dynamics and fruit production in natural forests. Eighty eight sample trees were selected in function of the diameter and fruit production classes. In each tree was measured the diameter at breast height (DBH), total height (h) and crown insert height (hic). After were calculated the crown length (L), crown diameter (Dc), crown proportion (PC), and crown diameter/ DBH (IS), crow diameter/total height (IA) and crown diameter/crown length (FC) relationships. The relationships between the crown variables and DBH were appraised by regression analysis through the statistical procedure "stepwise". The models efficiency was verified by the coefficient of determination (R²), standard error of estimative (syx), F value and significance for the model, t value and significance for the coefficients and residual distribution analysis. As result it was observed a great variation in all crown characteristics that was due, at the different competition levels that the trees were subject. In natural forests brazil-nut presented a crown 19 times larger than your DBH, being this relationship smaller than the verified in homogeneous stands. The length and the crown diameter could be predict with great precision from DBH.

Key words: Amazônia, Roraima, castanha-do-brasil, fruit, production

INTRODUÇÃO

Dentre os produtos florestais não madeireiros, a castanha-do-brasil se caracteriza como um dos mais importantes recursos econômicos da Amazônia (Clay, 1997; Myers et al, 2000), e tem importância fundamental para a economia de diversas localidades e populações extrativistas em regiões produtoras na Bolívia, no Peru e na Amazônia Brasileira (Willians e Wilson 1999; Mori e Prance, 1990, Simões 2003).

A castanha-do-brasil pode ser considerada um alimento altamente nutritivo e excelente complemento na dieta alimentar de crianças e adultos, sendo rica em lipídios, vitaminas, minerais e proteínas. Da amêndoa, pode se extrair o óleo com bom coeficiente de digestibilidade. Do resíduo desta extração, pode ser obtido a torta e o farelo de uso na

Eng.Florestal. Dr.Embrapa Roraima, Br 174, Km 08, Distrito Industrial, CEP: 693101-970, Boa Vista, RR. helio@cpafrr.embrapa.br

² Acadêmico do Curso de Agronomia, Universidade Federal de Roraima. Campus Cauamé: BR 174, Km 12. Bairro Monte Cristo. CEP: 69300-000 Boa Vista / RR

alimentação humana e animal. Os frutos podem ser utilizados como combustível (carvão) ou na confecção de diversos objetos de artesanato e utensílios de cozinha (Souza et al, 2004)

Os métodos tradicionais de coleta da castanha-do-brasil tem relativamente pouco impacto ambiental, sendo alternativa para a conservação dos recursos florestais mediante o manejo florestal sustentado (Peters et al, 1989; Nepstad e Schwartzman, 1992). No entanto, estudos relacionados ao manejo da espécie em florestas naturais são recentes ainda existindo carências de tecnologias que possibilitem o aumento da produtividade dos castanhais nativos.

Estudos como os de Viana et al., (1998), Zuidema & Boot (2002), Wadt et al., (2005) e Kainer et al., (2006 e 2007) observaram que a produção de frutos de árvores de castanha-do-brasil é muito variável e os fatores que determinam esta variabilidade são: o tamanho da árvore (principalmente o DAP); atributos da copa como a posição sociológica, a forma e a infestação por cipós; variações temporais inerentes a própria planta; fatores climáticos como a precipitação; fatores genéticos; nutrição (níveis de fósforo) e as interações com polinizadores, predadores e dispersores.

O clima de luz e a forma da copa apresentam uma relação direta com a produção de frutos em árvores nativas de castanha-do-brasil (Wadt et al, 2005 e Kainer et al, 2007). Segundo Bohlman e O' Brien (2006), a alta disponibilidade de luz em uma floresta, normalmente, estimula o crescimento em altura das árvores. Já a baixa disponibilidade, estimula a expansão da copa uma vez que as árvores tendem a criar uma maior superfície para capturar a luz escassa.

O tamanho da copa esta diretamente relacionado à capacidade fotossintética sendo um parâmetro importante nos estudos de crescimento das árvores (Hemery et al, 2005) além de refletir um nível cumulativo de competição no tempo (Hasenauer e Monserud, 1996).

Segundo Durlo e Denardi (1998), a morfometria de uma árvore e as variáveis derivadas são utilizadas para transmitir uma idéia das relações interdimensionais; reconstituir o espaço ocupado por cada árvore; julgar o grau de concorrência, além de permitir inferências sobre a estabilidade, a vitalidade e a produtividade de cada indivíduo.

Portanto, servem como instrumento prático para subsidiar intervenções silviculturais, especialmente, quando não se conhece a idade das plantas, como é o caso das florestas naturais.

Segundo Hemery (et al., 2005), o conhecimento das relações entre a copa e o diâmetro do tronco é de grande importância e pode ser utilizado na definição de regimes de desbastes, determinação de espaçamentos em plantios mistos ou sistemas agroflorestais, definição de tratamentos silviculturais como a liberação em florestas naturais, seleção genética e na modelagem do crescimento das árvores.

Este trabalho foi desenvolvido com o objetivo de estudar as características da copa de árvores de castanha-dobrasil em florestas naturais e estabelecer relações entre estas características e o diâmetro do tronco (DAP).

MATERIAL E MÉTODO

Características do local

Os dados foram coletados em uma floresta com ocorrência natural de castanha-do-brasil no sul do estado de Roraima, no município de Caracarai , nas coordenadas 01º 48' 58 " de latitude norte e 61º 07' 41" de longitude oeste, distante 135 km da capital do Estado, Boa Vista.

A área em estudo apresenta relevo plano a ondulado com a vegetação predominante considerada como floresta tropical húmida (Brasil, 1975). O clima na região é classificado como Ami (tropical chuvoso com pequeno período de seca) com precipitação média anual entre 1700-2000 mm. O período chuvoso ocorre com maior freqüência de abril a agosto com totais mensais superiores a 100 mm. A partir de setembro ocorre uma sensível redução, com período caracteristicamente seco ocorrendo mais freqüentemente de novembro a março. A temperatura média anual é de 27 °C (Femact, 1993).

Seleção das árvores amostra

Os dados para a realização deste estudo foram obtidos em parcelas permanentes instaladas pela Embrapa Roraima com o objetivo de monitorar a dinâmica da população e a produção de frutos em árvores de castanha-do-brasil em florestas naturais.

Em função da classe de diâmetro e produção de frutos foram, selecionadas 88 árvores, sendo em cada árvore medido o diâmetro à altura do peito (DAP) em cm, a altura total (h) e a altura de inserção da copa (hic) em metros, tomadas com o Vertex. Após, foram calculados o comprimento da copa (L), definido como a diferença entre h e hic e o diâmetro da copa (Dc), tomando-se 4 raios nas direções N,S, L e O com a utilização de uma bússola, clinômetro Suunto e o Vertex, para a determinação das distâncias (raios).

Os índices morfométricos utilizados foram definidos por Durlo e Denardi (1998), sendo expressos por:

$$PC = \frac{L}{h} x 100$$
 $IS = \frac{Dc}{DAP}$ $IA = \frac{Dc}{h}$ $FC = \frac{Dc}{L}$

Sendo: PC= proporção de copa (%); IS= Índice de Saliência; IA= Índice de abrangência; FC = formal da copa; L=comprimento da copa (m); h = altura total (m); DAP = diâmetro tomado a 1,30 m (m); Dc = diâmetro da copa (m)

Uma vez que o DAP é a variável mais frequentemente medida em inventários florestais (Machado & Figueiredo Filho, 2003), apresenta uma relação direta com variáveis da copa como o diâmetro e a superfície (Nuto 2001), e se correlaciona positivamente com a produção de frutos e sementes de castanha-do-brasil (Zuidema, 2003; Wadt et al., 2005 e Kainer et al., 2007) torna-se necessário inferir sobre as relações entre as variáveis da copa e o DAP. Para isto utilizou-se a análise regressão linear através do procedimento estatístico "stepwise", no qual as variáveis independentes potenciais utilizadas foram o diâmetro do tronco na forma simples, quadrática, inversa e logarítmica, selecionadas para um nível de significância de 0,05.

A eficiência dos modelos foi verificada através do coeficiente de determinação (R²), erro padrão de estimativa (syx), valor e significância de F para o modelo, valor e significância de t para os coeficientes, análise da distribuição dos resíduos e controle de multicolinearidade.

O controle para multicolinearidade foi obtido mediante o emprego do fator de inflação da variância (FIV), sendo descartados os modelos com valor de FIV maiores do que 10 (Myers, 1990).

A homogeneidade de variância foi verificada plotando-se os resíduos padronizados contra os valores estimados padronizados; a independência dos erros foi verificada empregando-se o teste de Durbim-Watson e os desvios em relação a normalidade foram verificados com a utilização de gráficos de probabilidade normal (P-P plots).

RESULTADOS E DISCUSSÃO

Na Tabela 1 são apresentados os valores médios, mínimos e máximos para cada variável da copa estudada, onde observou-se uma grande variação em todas as variáveis. O comprimento da copa em média foi de 18 m, com uma proporção em relação a altura total correspondente a 41%, e uma variação entre 14 e 65%.

Esta grande amplitude está provavelmente relacionada aos diferentes graus de concorrência a que estavam submetidas às árvores.

Durlo (2001) ao estudar as características da copa de árvores nativas de canjerana (*Cabralea canjerana*) observou um comprimento de copa médio de 6,5 m, com uma proporção em relação a altura total de 49,2%.

O índice de Saliência médio observado (IS) indicou que a castanha-do-brasil em florestas naturais apresenta uma copa cerca de 19 vezes maior do que o seu DAP. Em plantios e sistemas agroflorestais Tonini e Arco-verde (2005) observaram um IS igual a 50,3, ou seja, em plantios, onde a espécie encontra plena luz e condições adequadas para desenvolver seu máximo potencial de copa, o seu diâmetro é 38% superior.

Segundo Durlo e Denardi (1998) este índice pode ser utilizado para indicar o espaço vital necessário para uma determinada árvore atingir um determinado diâmetro, supondo copas circulares e um IS constante no tempo e fazer inferências sobre espaçamentos em plantios, regimes de desbaste e liberação em florestas naturais.

Porém se o objetivo for evitar a competição e maximizar o incremento diamétrico, deve-se utilizar somente árvores isoladas, ou na inexistência, arvores em plantios sujeitas a nenhuma ou pouca concorrência.

O índice de abrangência (IA) também pode ser utilizado como um indicador da necessidade de intervenções silviculturais, se optarmos por manejar uma floresta com base na sua altura, supondo que o IA não varie com a mesma (Durlo e Denardi,1998).

Os valores observados para o formal da copa indicam que existem castanheiras com copas de forma mais achatada (formal de copa alto) e esbelta (formal de copa baixo). Uma vez que a forma da copa tem influência significativa sobre a produção de frutos em árvores nativas de castanha-do-brasil (Wadt et al, 2005 e Kainer et al, 2007) este índice pode ser importante na seleção de árvores mais produtivas em castanhais.

TABELA 1: Valores médios, máximos e mínimos para as variáveis de copa em árvores de castanha-do-brasil em florestas naturais

Variável	Média	Desvio padrão	Valor máximo	Valor mínimo	
Comprimento da copa (L)	18,04	7,58	39,5	3,5	
Diâmetro da copa (Dc)	16,79	6,67	28,12	1,50	
Proporção da copa (PC)	41,09	10,72	64,60	14,29	
Ìndice de saliência (IS)	18,65	4,01	26,82	10,39	
Ìndice de abrangência (IA)	0,39	0,14	0,85	0,08	
Formal da copa (FC)	0,98	0,37	2,41	0,25	

As relações entre a morfometria da copa e o DAP, obtidos com o procedimento stepwise podem ser observados na Tabela 2. Os valores observados e estimados são apresentados na Figura 1.

Os melhores ajustes foram obtidos para o comprimento (l) e o diâmetro da copa. Para estas variáveis os modelos explicaram 99% e 84% da variação, respectivamente, indicando que estas duas variáveis podem ser estimadas com grande precisão a partir do DAP.

Os piores ajustes foram observados para o formal da copa e o índice de saliência, que não se relacionou de forma significativa com o DAP. Este resultado indica que para estimar estas variáveis com precisão devem ser incluídas outras variáveis no modelo como a altura, o comprimento e o diâmetro da copa.

TABELA 2: Modelos obtidos com o procedimento stepwise e o seu ajuste

Variável	Modelo A		Aj	juste	
dependente		\mathbb{R}^2	syx	F	P>F
Comprimento da	ln l = 0,635 ln DAP	0,99	0,305	7286,0	0,001
copa					
Diâmetro da copa	$dc = -2,823 + 0,309DAP - 0,00089DAP^2$		0,230	459,21	0,001
Proporção da copa	Pc = 26,118 + 0,164DAP	0,31	8,95	37,75	0,001
Índice de saliência	$\ln IS = 3,019 - 0,027 \ln DAP$	0,004	0,226	0,36	0,55
Índice de abrangência	$\ln IA = -3,622 + 0,591 \ln DAP$	0,59	0,27	122,89	0,00
Formal da copa	$\ln Fc = 0.004 + 0.221 \ln DAP$	0,11	0,35	10,31	0,002

O comprimento da copa, a proporção da copa, o índice de abrangência e o formal da copa aumentaram de forma linear com o DAP (Figura 1). Já o diâmetro da copa aumentou de forma quadrática.

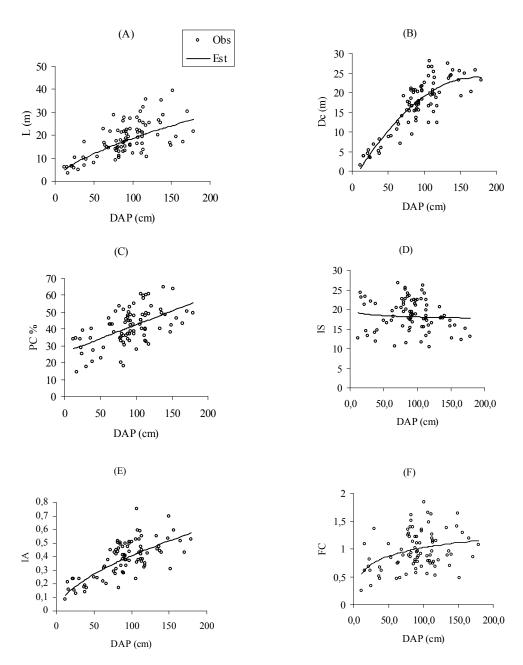


FIGURA 1: Valores observados e estimados para o comprimento da copa (A), diâmetro da copa (B), proporção da copa (C), índice de Saliência (D), índice de abrangência (E) e o Formal da copa (F)

As árvores normalmente exibem uma relação significativa entre o diâmetro da copa e o diâmetro do tronco. Na maioria dos estudos esta relação é linear (Schneider, 1993). No entanto, segundo Hemery (2005), a verdadeira relação entre o diâmetro da copa e o diâmetro do tronco é sigmoidal, devido às distorções na parte inferior da curva ao serem realizadas medições ao DAP e a um possível achatamento na parte superior devido à senilidade.

A relação quadrática observada neste estudo pode ser explicada por deformações ou quebras de galhos nas árvores mais grossas, normalmente senescentes.

A proporção de copa tendeu a aumentar com o diâmetro do tronco, ou seja, quanto maior o diâmetro, menor a altura de inserção dos galhos e maior o comprimento da copa. Este resultado concorda com Monserud (1975), que considerou a proporção de copa como um bom indicador da habilidade de uma árvore em utilizar os recursos disponíveis para o crescimento.

A relação entre o diâmetro da copa e a altura (IA) aumentou com o diâmetro, o que significa que na medida em que as árvores engrossam a expansão da copa é maior do que o crescimento em altura. Este resultado concorda com Zuidema (2003) ao afirmar que árvores jovens de castanha-do-brasil priorizam o crescimento em altura de forma a alcançar as posições superiores do dossel o mais rápido possível. O pleno desenvolvimento da copa para a espécie só é alcançado quando as árvores alcançam as posições superiores do dossel.

O aumento do formal da copa com o diâmetro do tronco indica que as menores árvores possuem copas mais estreitas e compridas.

CONCLUSÕES

- a) Observou-se uma grande variação em todos os parâmetros morfométricos estudados, o que se deve, provavelmente, aos diferentes níveis de competição a que as árvores estão sujeitas.
- b) Em florestas naturais a castanha-do-brasil apresenta uma copa 19 vezes maior do que o seu DAP, sendo esta relação bem inferior ao verificado em plantios.
 - c) O comprimento e o diâmetro da copa podem ser estimados com grande precisão a partir do DAP

AGRADECIMENTOS

Os autores agradecem ao CNPq pelo auxílio financeiro

REFERENCIAS BIBLIOGRAFICAS

BOHMAN S.; O'BRIEN S.Allometry, adul stature and regeneration requirement of 65 tree species on Barro Colorado island, Panama. **Journal of Tropical Ecology**, v. 22, P.123-136, 2006

CLAY, J.W; Brazil nuts: the use of a keystone species for conservation and development. In: FREESE, C.H. Harvesting wild species implications for biodiversity conservation. Baltimore: John Hopkins University Press, 1987, p. 246-282.

DURLO, M.A. Relações morfométricas para *Cabralea canjerana*(Well.) Mart. **Ciência Florestal**, v.11, p.141-149, 2001.

DURLO, M.A.; DENARDI, L. Morfometria de *Cabralea canjerana*, em mata secundária nativa do Rio Grande do Sul. **Ciência Florestal**, v. 8, p. 55-56, 1998.

HASENAUER,H.; MONSERUD, R.A. A crown ratio model for Austrian forests. **Forest Ecology and Management**, v.84, p.49-60, 1996.

HEMERY, G.E.; SAVILL, P.S.;PRYOR, S,N.Applications of the crown diameter-stem diameter relationship for different species of broadleaved trees. **Forest Ecology and Management**, v.215, p.285-294, 2005.

KAINER, K.A.; WADT, L.H.O.; GOMES-SILVA, D.A.P.; CAPANU, M.Liana loads and their association with Bertholletia excelsa fruit and nut production, diameter growth and crown atributes. **Forest Ecology and Management**, v.250, p.244-255, 2006

KAINER, K.A.; WADT, L.H.O.; STAUDHAMMER, C.L. Explaining variation in Brazil nut fruit production. **Journal of tropical ecology**, v.22, p.147-154, 2007.

MACHADO, S.A., FIQUEIREDO FILHO, A. Dendrometria. Curitiba: UFPR, 2003. 309p.

MONSERUD, R.A. Methodology for simulating Wiscosim Northern hardwood stand dynamics. Ph.d Thesis, University of wiscosin, Madison, 156p.1975.

MORI, S.A; PRANCE, G.T. Taxonomy, ecology and economic botany of the brazil nut (*Bertholletia excelsa* Humb & Bonpl: Lecythidaceae).In: PRANCE,G, T.; BALICK, M, J. New directions in the study of plants and people. Advances in Economy Botany, v.8, p.130 -150, 1990.

MYERS, G.P; NEWTON, A.C; MELGAREJO, O. The influence of canopy gap size on natural regeneration of brazil nut (*Bertholletia excelsa*) in Bolivia. **Forest Ecology and Management,** v.127, p.199-128, 2000.

NEPSTAD, D.C; SCHWARTMAN,S. Nontimber products from tropicals forests: Evaluation of a conservation and development strategy. New York: The new York Botanical Garden, n.11, 1992.

NUTTO, L. Manejo do crescimento diamétrico de *Araucaria angustifolia* (Bert.) O. Ktze. baseado na árvore individual. **Ciência Florestal**, v.11, p.9-25, 2001.

PETERS, C.M; GENTRY, A.H, MENDEL, J.R.O. Valuation of an amazonia rainforest. **Nature**, v.359, p.655-656, 1989

SCHNEIDER, P.R. Introdução ao manejo florestal. Santa Maria: Ed. UFSM, 1993. 348p.

SIMÕES, A.V. Impactos de tecnologias alternativas e do manejo da castanha-do-brasil (*Bertholletia excelsa* Humb & Bonpl.,) no controle da contaminação por aflotoxinas em sua cadeia produtiva. 2003. 50 p. Dissertação (Mestrado) – Universidade do Amazonas, Manaus.

SOUZA, J.M.L; CARTAXO, C.B.C; LEITE, F.M.N; REIS, F.S. Avaliação microbiológica de amêndoas de castanhado-brasil em usinas de beneficiamento no Acre. Rio Branco: Embrapa Acre, 2004, 24 p. (Embrapa Acre, Boletim de Pesquisa e desenvolvimento, 39).

TONINI, H.; ARCOVERDE, M.F. Morfologia da copa para avaliar o espaço vital de quatro espécies nativas da Amazônia. **Pesquisa Agropecuária Brasileira**, v.40, n.7,p.633-638, 2005.

VIANA, V.M.; MELLO, R.A.; MORAES, L.M, et al. Ecologia e manejo de populações de castanha-do-Pará em reservas extrativistas, Xapuri, Estado do Acre. In: GASCON, C.; MOUTINHO, P. Floresta Amazônica, dinâmica, regeneração e manejo. Manaus: INPA, 1998, 373p.

ZUIDEMA, P.A; BOOT,R.G.A. Demography of the brazil nut tree (*Bertholletia excelsa*) in the bolivian amazon:Impact of seed extraction on recruitment and population dynamics. **Journal of Tropical Ecology**, v.18, p.1-31, 2002.

ZUIDEMA, P.A. Demography and management of the Brazil nut tree (*Bertholletia excelsa*). PROMAB Scientific Series, n.6, 2003,111p.

WADT, L.H.O.; KAINER, K.A.; GOMES-SILVA, D.A.P. Population structure and nut yield of a *Bertholletia excelsa* stand in Southwestern Amazonia. **Forest Ecology and Management,** v.211, p.371-384, 2005.

WILLIAMS, J; WILSON, D. Informe sobre el problema de aflotoxinas de la castaña (*Bertholletia excelsa*) em Bolivia. Universidade da Geórgia, Documento técnico, n.71, 1999, 20 p.