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Abstract
The pathogenic variability was evaluated of 48 Pseudo-
cercospora griseola isolates collected in the State of
Minas Gerais, Brazil. Isolates were inoculated to a set
of 12 international differential cultivars in a green-
house. Ten pathotypes (55-15, 63-7, 63-15, 63-23,
63-25, 63-27, 63-31, 63-47, 63-55 and 63-63) were iden-
tified, showing the great pathogenic variability of this
fungus in Minas Gerais State. Pathotypes 55-15, 63-15,
63-25 and 63-27 had not previously been reported in
the State. Of the 48 isolates, all except pathotype
55-1547 induced a compatible reaction with all
cultivars from the Andean group. Isolates were highly
pathogenic in both Andean and Mesoamerican
cultivars, thus being classified as Mesoamerican patho-
types. Pathotype 63-63 was the most widespread, and
overcame the resistance genes present in all differential
cultivars.

Introduction
Common bean (Phaseolus vulgaris L.) is susceptible to
several pathogens, including Pseudocercospora griseola
(Sacc.) Crous & U. Braun, previously known as Phae-
oisariopsis griseola, which causes angular leaf spot
(ALS) disease. This disease is responsible for signifi-
cant crop damage in Brazil and can result in yield
losses of up to 70%, depending on the susceptibility of
the cultivars, environmental conditions and the time of
the outbreak of the disease (Sartorato, 2004).

Control strategies mainly include foliar spraying
with fungicides which, however, can seriously reduce
profitability and threaten the environment (Sartorato,
2004; Miklas et al., 2006) and the development of
resistant cultivars. Consequently, the development of
resistant cultivars is pivotal to any effective, economi-
cal and environmental-friendly strategy used to control
ALS.

Guzmán et al. (1995) and Pastor-Corrales and Jara
(1995) provided evidence suggesting the coevolution of
P. vulgaris and P. griseola. Knowledge of the host–
pathogen interaction is essential for the development
of adequate strategies to obtain ALS-resistant
cultivars.
Genetic resistance to P. griseola can be monogenic

and ⁄ or oligogenic (Mahuku et al., 2004; Miklas et al.,
2006; Amaro et al., 2007). Due to the great pathogenic
variability, a combination of genes from different resis-
tance sources is needed to provide broad resistance to
an array of pathotypes prevalent in a region (Miklas
et al., 2006).
Constant evaluation of pathogenic variability and

the identification of new resistant genes are of crucial
importance for the development of adequate pathogen-
resistant cultivars. Variability has been studied using a
standard differential series with 12 cultivars proposed
by CIAT (Pastor-Corrales and Jara, 1995), and
divided into two sets (Mesoamerican and Andean),
with six cultivars each.
Genetic diversity in P. griseola was determined in

Minas Gerais State by Nietsche et al. (2001). Thirteen
different pathotypes were identified among the 30 iso-
lates studied, and the most frequently found patho-
types were 31-21, 31-23, 63-39, 63-55 and 63-23.
Sartorato (2002) studied 51 isolates of P. griseola from
five Brazilian states and observed the occurrence of
seven different pathotypes (31-23, 55-31, 63-15, 63-23,
63-31, 63-39 and 63-63). In Brazil, Nietsche et al.
(2002) detected high variability, totalling 26 different
pathotypes among 73 isolates. Great genetic variability
was also detected in other parts of the world (Mahuku
et al., 2002a; b; Pastor-Corrales et al., 2004; Wagara
et al., 2004; Orozco and Araya, 2005; Stenglein et al.,
2005; Stenglein and Balatti, 2006). The occurrence of
pathotype 63–63, which has a compatible reaction to
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all differential cultivars, was mentioned in all papers
cited above, which implies in a constant search for
new resistance sources.

Our objective was to evaluate the pathogenic vari-
ability of 48 isolates of P. griseola collected in Minas
Gerais State, Brazil.

Materials and Methods
Phaeoisariospsis griseola pathotype identification

Fungal isolates A collection of 48 isolates of P. griseola
was obtained from naturally infected bean leaves and
pods collected from experimental fields (Universidade
Federal de Lavras Breeding Programme) in the coun-
ties of Lavras and Ijaci, in the state of Minas Gerais,
MG, Brazil, while two isolates were collected in Alte-
rosa, MG (Table 1). After single-spore isolation, cul-
tures were transferred to Eppendorff tubes and kept at
4�C.

Spores for inoculation were obtained by culturing
the fungus on bean leaf-dextrose-agar medium (Silve-
ira, 1967) in a camera B.O.D. chamber (Fanem, São
Paulo, SP, Brazil) at 24 ± 2�C. After approxi-
mately14 days, inoculum was prepared by adding
5–10 ml of sterile distilled water to each plate and
scraping the surface of culture. The spore suspension
so obtained was filtered through a double layer of
cheese-cloth to remove the mycelial mass. The inocu-
lum concentration was adjusted to 2 · 104 conidia ⁄ml.

Pathotypes identification A set of 12 differential culti-
vars (Pastor-Corrales and Jara, 1995), plus cv. Rosinha
G-2 (susceptible) and cv. AND 277 (resistant), were
used to classify P. griseola pathotypes (Table 1). Seeds
of differential cultivars were sown in aluminium pots
at a density of five seeds per pot containing 2.0 kg of
soil.

The first trifoliate leaf from each differential culti-
vars was inoculated (on both sides) at the V3 develop-
ment stage (CIAT, 1987). The inoculated plants were
incubated in a moist chamber (>95% of relative
humidity, for 48 h with a 16-h photoperiod) and then
transferred to a greenhouse.

Disease reactions were scored 14–18 days after inoc-
ulation according to the 1–9 descriptive scale (CIAT,
1987), described as follows: 1, plants no symptoms; 3,
plants with 5–10% of the leaf area with lesions; 5,
plants with 20% of the leaf area with lesions and spor-
ulation; 7, plants with up to 60% of the leaf area with
lesions and sporulation, associated with chlorosis and
necrotic tissues; 9, 90% of the leaf area with lesions,
frequently associated with early loss of the leaves and
plant death. Plants rated 1–3 were considered resistant
(incompatible reaction), whereas plants with scores 4
or higher were considered susceptible (compatible reac-
tion). When inoculated, plants that showed symptoms
but no sporulation, were transferred to a moist cham-
ber for 20–24 h. After this period, plants with non-
sporulating lesions were considered resistant.

Pathotypes were classified according to the method-
ology proposed by the I Taller International Sobre la

Mancha Angular del Frijol, at CIAT in 1995, and
described by Sartorato (2004).

Results and Discussion
Identification of P. griseola pathotypes

Isolates had different patterns of virulence when inocu-
lated on 12 differential cultivars of P. griseola, and
were classified into 10 pathotypes (Table 2). These
results confirm the high variability of P. griseola and
are in agreement with studies conducted elsewhere
(Mahuku et al., 2002a; Nietsche et al., 2002; Sartorato,
2002, 2004; Orozco and Araya, 2005).

Nietsche et al. (2002) and Orozco and Araya (2005)
observed wide pathogenic variability among the iso-
lates of P. griseola, and identified a different pathotype

Table 1
Origin and pathotype of Pseudocercospora griseola isolates

Isolate Cultivar County Pathotype

Pg-01 CV-13 Ijacı́ 63-47
Pg-02 CV-78 Ijacı́ 63-15
Pg-03 ESAL 507 Ijacı́ 63-47
Pg-04 Z-22 Ijacı́ 63-63
Pg-05 CV-78 Ijacı́ 63-31
Pg-06 MAI – 8-13 Ijacı́ 63-31
Pg-07 LH-10 Ijacı́ 63-55
Pg-08 CI – 257 Ijacı́ 63-15
Pg-09 ERIPARSA Ijacı́ 63-31
Pg-10 ERIPARSA Ijacı́ 63-63
Pg-11 ERIPARSA Ijacı́ 63-63
Pg-12 RC-I-3 Ijacı́ 63-23
Pg-13 MAI-6-10 Ijacı́ 63-55
Pg-14 ANLAV-51 Ijacı́ 63-7
Pg-15 ESAL 502 Ijacı́ 63-31
Pg-16 – Ijacı́ 63-31
Pg-17 – Ijacı́ 63-31
Pg-18 – Ijacı́ 63-63
Pg-19 – Lavras 63-47
Pg-20 – Lavras 63-63
Pg-21 – Lavras 63-63
Pg-22 – Lavras 63-31
Pg-23 Batatinha Lavras 63-63
Pg-24 RCa Lavras 63-63
Pg-25 RC Lavras 63-63
Pg-26 Batatinha Lavras 63-31
Pg-27 RC · Talismã Lavras 63-31
Pg-28 Jalo Lavras 63-63
Pg-29 Jalo Lavras 63-31
Pg-30 Jalo Lavras 63-63
Pg-31 Jalo Lavras 63-63
Pg-32 Jalo Lavras 63-31
Pg-33 F1 (PA3) Lavras 63-63
Pg-34 RC Lavras 63-63
Pg-35 RC Lavras 63-63
Pg-36 RC Lavras 63-63
Pg-37 RC Lavras 63-63
Pg-38 Carioca Alterosa 63-27
Pg-39 Jalo Lavras 63-15
Pg-40 Small White Lavras 55-15
Pg-41 Mulatinho Vagem Roxa Lavras 63-31
Pg-42 CIII-R-3-19 Alterosa 63-63
Pg-43 Talismã Lavras 63-63
Pg-44 Talismã Lavras 63-25
Pg-45 Talismã Lavras 63-63
Pg-46 Talismã Lavras 63-63
Pg-47 Talismã Lavras 63-63
Pg-48 Talismã Ijacı́ 63-63

aRC, Progenies from angular leaf spot recurrent selection
programme.
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for each of the three isolates studied. Similar results
were reported by Mahuku et al. (2002a) and Sartorato
(2002, 2004) who observed, on average, the occurrence
of one pathotype for each two and seven isolates
respectively. Studies by Mahuku et al. (2002a) and
Orozco and Araya (2005) found larger variability than
those conducted by Sartorato (2002, 2004) probably
due to the great diversity of the sampled places and to
the hosts from both gene pools (Mesoamerican and
Andean).

Different patterns of virulence were observed in iso-
lates collected at the same location. For example, six
pathotypes were identified in the county of Lavras
(Table 2). This result confirmed the data previously
reported by Nietsche et al. (2002) and Sartorato (2002,
2004).

Likewise, Sartorato (2004) verified the existence of
high pathogenic variation of P. griseola isolates from
two locations in the State of Goiás, GO, Brazil (Dam-
olândia and Inhumas). Ten distinct pathotypes were
identified in each of these locations.

Pathotype 63-63 was the most widespread it was
detected in all counties studied. The wide distribution
of the variability of P. griseola was confirmed to occur
worldwide. Jara et al. (2001) verified the occurrence of
120 pathotypes in 22 countries and, among the patho-
types identified, 71 were discovered specifically in Bra-
zil. In Brazil, Nietsche et al. (2002) and Sartorato
(2002) also reported the wide distribution of this
pathogen.

Pathotype 63-15 was found in Lavras–MG and in
the county of Ijacı́–MG. Pathotypes 55-15 and 63-25
were identified, exclusively, in the county of Lavras–

MG. Pathotype 63-27 occurred exclusively in the
county of Alterosa–MG. Patothypes 55-15, 63-15,
63-25 and 63-27 had not been previously reported in
Minas Gerais State. Furthermore, this is the first
report on the occurrence of pathotypes 55-15, 63-25
and 63-27 in Brazil.
All the pathotypes (63-7, 63-15, 63-23, 63-25, 63-27,

63-31, 63-47, 63-55 and 63-63) identified in this study,
except pathotype 55-15, induced compatibility reac-
tions to all Andean cultivars (Table 2), and were clas-
sified as of the Mesoamerican group. Highly
pathogenic isolates in both differential cultivars gene
pools (Andean and Mesoamerican) were observed. In
Minas Gerais State, most of the farmers cultivate Cari-
oca type grains, favouring strong directional selection
on the pathogen population. The occurrence of isolates
from Mesoamerican origin has also been demonstrated
in Brazil (Nietsche et al., 2001, 2002; Sartorato, 2002,
2004; Vital, 2006).
Pathogen–host coevolution affects resistance gene

deployment strategies (McDonald and Linde, 2002;
Miklas et al., 2006). Dynamic processes that affect
plant pathogen populations can reduce the effective-
ness of resistant genes to allow the change of genes in
a population; the introduction of genes in a population
through gene flow; the random change in the allele fre-
quency of a population by genetic drift and the pre-
dominance of genotypes due to more adapted
individual selection (Mizubuti, 2002).
Pyramiding resistance alleles from both gene pools

can be an efficient control strategy, considering that
ALS genetic resistance is monogenic (Mahuku et al.,
2002a; Sartorato, 2004; Miklas et al., 2006). However,

Table 2
Pathotype identification and reaction of differential cultivars to the isolates of Pseudocercospora griseola collected in Minas Gerais State

Pathotype

Differential cultivars

Number of isolates
Andeana Mesoamericanb

20 21 22 23 24 25 20 21 22 23 24 25

Lavras 27
55-15 +c + + )d + + + + + + ) ) 1
63-15 + + + + + + + + + + ) ) 1
63-25 + + + + + + + ) ) + + ) 1
63-31 + + + + + + + + + + + ) 6
63-47 + + + + + + + + + + ) + 1
63-63 + + + + + + + + + + + + 17
Ijacı́ 19
63-07 + + + + + + + + + ) ) ) 1
63-15 + + + + + + + + + + ) ) 2
63-23 + + + + + + + + + ) + ) 1
63-31 + + + + + + + + + + + ) 6
63-47 + + + + + + + + + + ) + 2
63-55 + + + + + + + + + ) + + 2
63-63 + + + + + + + + + + + + 5
Alterosa 2
63-27 + + + + + + + + ) + + ) 1
63-63 + + + + + + + + + + + + 1

Total 48 48 48 47 48 48 48 47 46 44 40 28 48

a20, Don Timóteo; 21, G11796; 22, Bolón Bayo; 23, Montcalm; 24, Amendoin; 25, G5686.
b20, Pan 72; 21, G2858; 22, Flor de Mayo; 23, Mexico 54; 24, BAT 332; 25, Cornell 49–242.
cCompatible reaction (+).
dIncompatible reaction ()).
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inheritance of this trait is more complex. Taking into
account that the ALS genetic resistance is a quantita-
tive trait, different strategies should be prioritized.
Recurrent selection is a good alternative, because it
provides an increasing number of favourable resis-
tance alleles to the same lineage (Ramalho et al.,
2001).

The most frequent pathotypes found in Lavras and
Ijaci were 63-31 and 63-63 (Fig. 1), with 25% and
47.9% respectively. In Lavras-MG and in Ijacı́-MG,
pathotypes 63-63 and 63-31 were the most frequent
respectively. Similar results were obtained by Nietsche
et al. (2002), Sartorato (2002, 2004) and Sartorato and
Alzate-Marin (2004) These pathotypes presented wide

adaptation to different regions, generated by the free
grain trade within the state. In addition, the reutiliza-
tion of grains as seeds increased the probability of
contamination in crop production fields. The high fre-
quency of the pathotype 63-63 we observed poses a
risk due to a wide pathogenicity spectrum, revealing
the need for a continuous search for new ALS resis-
tance (Nietsche et al., 2001; Sartorato, 2004).

Nietsche et al. (2002) observed larger frequency of
the pathotype 63-39 (29.41%) than pathotypes 63-31
and 63-63 in Lavras–MG. We did not observe the
presence of this pathotype (63-39), stressing the impor-
tance of carrying out periodic observations in produc-
tion fields, since each place has unique cultivar
management characteristics and specific environmental
conditions. Results of Nietsche et al. (2002) and those
observed in the present work suggest a change in
pathogen population structure.

To determine whether the pattern of infection of the
differential cultivars by P. griseola isolates is a general
pattern, a comparison was made between infection
patterns from all pathotypes reported in Minas Gerais
state in the last years (Fig. 2; Nietsche et al., 2001;
Sartorato, 2002; Nietsche et al., 2002). Results showed
small changes in the pattern of infection in the differ-
ential cultivars, altering population structure of
P. griseola fungus. Among all comparisons made
between our results and those of others, the largest
percentages of compatible reactions were those
reported for the isolates used in the present study.
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Figure 2 shows that the differential cultivars BAT
332 (Phg-62) and Cornell 49-242 (Phg-3) are important
sources of resistance for a breeding programme to con-
trol ALS. The association of alleles present in these
two resistant sources could become an alternative for
ALS control. McDonald and Linde (2002) suggest pos-
sibilities (pyramiding resistance alleles, disruptive selec-
tion and genes rotation) that can change the way
selection operates on the pathogen population.
According to these authors, the most common alterna-
tive is the pyramiding of resistance alleles.

Selection has been the most studied evolutionary
force and probably the most easily managed factor in
agroecosystems. When a resistance gene becomes
widely distributed, strong directional selection occurs,
causing an increase in the frequency of the virulent
mutant until the resistance gene is broken (McDonald
and Linde, 2002). Major selective forces may be
imposed by the degree of specialization in host–patho-
gen interactions, control measures or more general
environmental constraints (Mahuku et al., 2002a).
These factors generate differences in the distribution of
genotypic and phenotypic variations among plant
pathogen populations that can lead to high genetic
variation. Any of these, alone or in combination, may
be interacting to give rise to new pathotype, leading to
high levels of genetic diversity (Mahuku et al., 2002a).

A large variability among P. griseola isolates has
been demonstrated, emphasizing the great potential of
this fungus to generate variability. Information gained
from this study has significant implications for regio-
nal ALS resistance breeding and resistance gene
deployment.
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bia, CIAT, 1987, 54 pp.

Guzmán P, Gilbertson RL, Nodari R et al. (1995) Characterization
of variability in the fungus Phaeoisariopsis griseola suggests coevo-
lution with the common bean (Phaseolus vulgaris). Phytopathology
85:600–607.

Jara C, Castellano G, Mahuku G. (2001) Estado actual y proyección
de la investigación relacionada com la mancha angular del frijol
(Phaeoisariopsis griseola). Fitopatol Colomb 25:1–6.

Mahuku GS, Henrı́quez MA, Muñoz J, Buruchara RA. (2002a)
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Inglis MC. (eds), Recursos genéticos e melhoramento de plantas.,
Rondonópolis, Brazil, Fundação MT, 2001, pp. 201–230.

Sartorato A. (2002) Identification of Phaeoisariopsis griseola patho-
types from five states in Brazil. Fitopatol Bras 27:78–81.

Sartorato A. (2004) Pathogenic variability and genetic diversity of
Phaeoisariopsis griseola isolates from two counties in the State of
Goias, Brazil. J Phytopathol 152:385–390.

Sartorato A, Alzate-Marin AL. (2004) Analysis of the pathogenic
variability of Phaeoisariopsis griseola in Brazil. Annu Rep Bean
Improv Coop 47:235–236.

Silveira GAEvaluación de la resistencia de frijol a la mancha angular:
algunos aspectos fisiológicos de Isariopsis griseola Sacc. y patogenic-
idad de algunas cepas colectadas en Costa Rica. Master Thesis,
Turrialba, Costa Rica, Instituto Interamericano de Ciencias Agrı́c-
olas da OEA, . (1967) 60 pp.

Stenglein SA, Balatti PA. (2006) Genetic diversity of Phaeoisariopsis
griseola in Argentina as revealed by pathogenic and molecular
markers. Physiol Mol Plant Pathol 68:158–167.

Stenglein SA, Fermoselle GE, Balatti PA. (2005) Pathogenic and
molecular studies of Phaeoisariopsis griseola in Argentina. Annu
Rep Bean Improv Coop 48:92–93.

Vital WMPhaeoisariopsis griseola: caracterização fisiológica, fontes de
resistência e reação do feijoeiro. Master Thesis, Campinas, Brazil,
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