5° CONGRESSO BRASILEIRO DE PLANTAS OLEAGINOSAS, ÓLEOS, GORDURAS E BIODIESEL

"BIODIESEL: TECNOLOGIA LIMPA"

Editores:

Pedro Castro Neto Antônio Carlos Fraga

REVISTA DE RESUMOS

Lavras, 07 a 11 de Julho de 2008 Minas Gerais – Brasil

Ficha Catalográfica preparada pela Divisão de Processos Técnicos da Biblioteca Central da Universidade Federal de Lavras

Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel (5.: 2008: Lavras, MG)

Resumos do 5º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel - "Biodiesel: Tecnologia Limpa", Lavras, 07 a 11 de julho de 2008 / editores, Pedro Castro Neto, Antônio Carlos Fraga – Lavras: UFLA, 2008. 423p.

1. Plantas Oleaginosas. 2. Óleos. 3. Gorduras. 4. Biodiesel. I. Universidade Federal de Lavras. II. Título

CDD-633.85

AVALIAÇÃO DO CRESCIMENTO DE MUDAS DE PINHÃO-MANSO

(Jatropha curcas L.) EM RECIPIENTES DE DIFERENTES VOLUMES

Maria das Graças Rodrigues Ferreira, Embrapa - RO, mgraca@cpafro.embrapa.br

Rodrigo Barros Rocha, Embrapa - RO, rodrigo@cpafro.embrapa.br

Helena Pereira Leite, UNIR, helenauna@yahoo.com.br

André Rostand Ramalho, Embrapa - RO, rostand@cpafro.embrapa.br

Victor Ferreira de Souza, Embrapa - RO, victor@cpafro.embrapa.br

RESUMO: No Brasil, entre as espécies vegetais promissoras que estão sendo prospectadas

para produção de biodiesel, o pinhão-manso (Jatropha curcas L.) têm se destacado como uma

das oleaginosas com as características agroindustriais necessárias para a produção de

biodiesel. Considerando o seu cultivo relativamente recente, o aprimoramento de práticas

apropriadas para a produção de mudas impacta diretamente nos custos variáveis de produção.

O objetivo deste trabalho foi de avaliar a influência do volume em sacolas de polietileno na

formação de mudas de pinhão-manso. Delineamento inteiramente casualizado, com quatro

repetições de 25 plantas, e seis tratamentos (recipientes com volumes – 0,4; 1,6; 1,7; 1,9; 2,1 e

3,9 dm³) foram utilizados para avaliar os efeitos iniciais na formação de mudas de pinhão-

manso. O aumento gradual do volume de substrato no recipiente afetou positivamente no

crescimento e desenvolvimento inicial de todas as características vegetativas avaliadas.

Sendo que recipientes de 2L em volume de substratos proporcionaram a formação de mudas

semelhantes as dos recipientes de 4L indicando que o menor recipiente não limitou o

crescimento e desenvolvimento das mudas até nos 35 dias em viveiro.

Palavras-Chave: Produção de mudas; Sobrevivência; Replantio; Qualidade da Muda.

5º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel

2013

INTRODUÇÃO

Entre as espécies que estão sendo prospectadas para produção de biodiesel, o pinhão-manso (*Jatropha curcas*) têm se destacado como planta uma oleaginosa com as qualidades necessárias para a produção de biodiesel. Planta perene da família das Euforbiáceas, resistente às condições adversas de clima e solo cujo potencial para produção de óleo tem sido considerado elevado. (ARRUDA et al., 2004, HELLER 1996). O plantio pode ser realizado através de mudas formadas a partir de sementes ou estacas enraizadas, ou também, semeio direto no campo. Sendo que, o plantio de mudas é a prática que resulta em melhores condições para o crescimento inicial, colaborando para o aumento da homogeneidade da lavoura, sanidade e redução da mortalidade.

O volume de substrato utilizado na produção de mudas é um dos fatores mais importantes para a atividade, uma vez que impacta diretamente os custos variáveis de produção, transporte e de viveiro. A avaliação da melhor relação de custo/benefício para a produção de mudas consiste em determinar o recipiente de volume mínimo ideal que não limite o vigor das plantas durante o tempo em que devem permanecer em viveiro. (SOUZA et al., 1997).

O objetivo deste trabalho foi de avaliar a influência do volume do recipiente na formação de mudas de pinhão-manso.

MATERIAL E MÉTODOS

O experimento foi conduzido no viveiro da Embrapa Rondônia, Porto Velho – RO, no período de fevereiro a maio de 2008 em delineamento inteiramente casualizado com quatro repetições de vinte e cinco plantas e seis recipientes de tamanhos diferentes. Na montagem do experimento as mudas foram dispostas em parcelas quadradas sendo que as bordaduras desta configuração foram descartadas na avaliação. Os tratamentos consistiram de seis recipientes disponíveis no comércio local, com dimensões e volumes de substrato diferenciados (Tabela1).

Tabela 1: Dimensões e volumes dos recipientes utilizadas na produção de mudas de pinhãomanso.

Tratamentos	Altura	Diâmetro	Volume (dm ³)
T_1	15	6	0.4
T ₂	20	10	1.6
T ₃	22	10	1.7
T ₄	20	11	1.9
T ₅	22	11	2.1
T ₆	22	15	3.9

O substrato padronizado para o enchimento das sacolas de polietileno, continha três partes de terra de barranco peneirada, uma parte de areia lavada e uma parte de esterco de curral curtido. Em cada m³ do substrato (3:1:1) utilizado, foram adicionados 2000 g de calcário dolomítico (PRNT 75%), 700g de cloreto de potássio e 700g de superfosfato triplo, conforme recomendação de Souza et al. (1997).

Aos 30 dias após a emergência (DAE) foram avaliados a altura das plantas, diâmetro caulinar, número de folhas adultas (totalmente expandidas), área foliar e matéria seca da parte aérea e caulinar. As avaliações foram realizadas por meio da análise de variância, teste de agrupamento de média de Scott Knott e ajuste do modelo de regressão para a produção de matéria seca total em função do volume do recipiente. Foram apresentados apenas os coeficientes de regressão linear e quadrático significativos a 1% de probabilidade.

RESULTADOS E DISCUSSÃO

Os volumes dos substratos condicionados pelas dimensões dos recipientes avaliados, resultaram em diferenças significativas pelo teste F a 1% de probabilidade para todas as características de crescimento avaliadas (Tabela 1). Os valores dos coeficientes de variação são compatíveis com a condução do experimento e indicam uma boa precisão experimental (SEVERINO et al., 2007; AVELAR et al., 2006).

O aumento no volume do recipiente afetou positivamente no desenvolvimento de todas as características avaliadas (Tabela 2). O incremento obtido pela utilização do maior

recipiente em relação ao menor é de 19,67g na massa da matéria seca total, 18,75 na massa seca da parte aérea e 1,20 na massa seca da raiz. Resultados semelhantes foram obtidos por Severino et al. (2007) e Avelar et al. (2006).

O diâmetro do coleto foi à característica menos responsiva a alteração do volume do recipiente, sendo por este motivo a menos indicada para inferir o vigor diferencial das mudas nos 30 dias de desenvolvimento em viveiro. Em relação à maioria das características de crescimento avaliadas, recipientes de 2L de volume proporcionaram crescimento semelhante ao dos recipientes de 4L de volume, indicando que o recipiente de 2L não limitou o crescimento das plantas no período de 30 dias após DAE.

Tabela 2: Resumo da análise do diâmetro do coleto (DC), altura (ALT), comprimento de raiz (CR), matéria verde parte aérea (MVPA), matéria verde raiz (MVR), matéria seca parte aérea (MSPA), matéria seca raiz (MSR).

ANOVA	G.L	DC	ALT	CR	MVPA	MVR	MSP	MSR	MS
							A		T
		F							
Tratamento	5	4,11*	11,31*	14,34*	38,90*	7,39*	7,30*	2,91	7,1
S		*	*	*	*	*	*	*	0**
Resíduo	18								
Total	23								
Média		0,725	21,21	19,06	158,11	27,74	32,16	6,22	38,
Geral									38
C.V.%		10,53	7,50	9,21	10,54	13,36	16,52	9,89	14,
									84

Tabela 3: Agrupamento de médias de tratamentos pelo teste de Scott Knott a 5% de probabilidade das características diâmetro do coleto (DC), altura (ALT), comprimento de raiz (CR), matéria verde parte aérea (MVPA), matéria verde raiz (MVR), matéria seca parte aérea (MSPA), matéria seca raiz (MSR), matéria seca total (MST).

Tratamentos	vol.	DC	ALT	CR	MVPA	MVR	MSPA	MSR	MST
T_1	0.4	0,60b	18,90b	13,88c	99,43c	21,48b	26,00c	5,73b	31,70c
T ₂	1.6	0,68b	19,60b	17,68b	127,08b	26,48b	27,40c	5,83b	33,23c
T ₃	1.7	0,73a	19,93b	17,30b	131,18b	24,10b	27,20c	5,94b	33,05c
T ₄	1.9	0,75a	19,60b	21,85a	146,60b	26,93b	31,75c	6,40a	38,15c
T ₅	2.1	0,80a	24,00a	22,38a	217,93a	34,275a	35,90b	6,67a	42,83b
T ₆	3.9	0,80a	25,22a	21,28a	226,48a	33,175a	44,75a	6,92a	51,37a

Tabela 4: Equações de regressão de peso seco total (PST), peso seco parte aérea (PSPA) e peso seco de raiz (PSR) de mudas de pinhão-manso em função do tamanho do recipiente.

Variável dependente	Equação	R^2
(Y)		
PST	Y=6,159x+26,481	0.85
PSPA	Y=5,861x+20,836	0.86
PSR	Y=0,376x+5,518	0.75

CONCLUSÃO

Recipientes de 2L de volume proporcionaram crescimento semelhante ao crescimento dos recipientes de 4L de volume.

Recipientes com volume de 2L são compatíveis com o desenvolvimento das plantas em viveiro por período de 30 dias.

AGRADECIMENTOS

Os autores gostariam de agradecer ao CNPq pelo apoio financeiro concedido a este trabalho através do projeto "Desenvolvimento de tecnologia para a produção agrícola energética no Estado de Rondônia".

REFERÊNCIAS BIBLIOGRÁFICAS

ARRUDA, F. P.; BELTRÃO, N. E. M.; ANDRADE, A. P.; PEREIRA, W. E.; SEVERINO, L. S. Cultivo de pinhão manso (*Jatropha curcas*) como alternativa para o semi-árido nordestino. Revista Brasileira de Oleaginosas e Fibrosas, v. 8, n. 1, p. 789-799, 2004.

AVELAR, R.C., DEPERON J.R., CARVALHO J.P.F. **Produção de mudas de pinhão-manso** (*Jatropha curcas*) em tubetes. In: Congresso da rede brasileira de tecnologia de biodiesel, 1., 2006, Brasília, Anais....Brasília: ABIPTI, 2006, p.137-139.

HELLER, J. Physic nut (*Jatropha curcas*): promoting the conservation and use of underutilized and neglected crops. Rome: Institute of Plant Genetics and Crop Plant Research, 1996. 66p.

SEVERINO L.S., LIMA R.L.S., BELTRÃO N.E.M. **Avaliação de mudas de pinhão-manso em recipientes de diferentes volumes.** Embrapa Algodão, Campina Grande, 2007, 14p. (EMBRAPA ALGODÃO – Boletim de Pesquisa, n.81).

SOUZA V.F., RIBEIRO G.D., MONTEIRO R.P., **Produção de mudas de cupuaçu.** Embrapa Rondônia, Porto Velho, 1997. 3p. (EMBRAPA RONDÔNIA – Recomendação Técnica, n.01)