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Abstract

Diagnostic reasoning either automated or conducted by diagnosticians relies on having a set of 
symptoms and trying to match them against a (sparse) matrix containing the complete set of 
diseases and their corresponding symptoms. Whenever a symptom manifests itself, the diagnostician 
activates in this matrix several possible diseases which could manifest that symptom. The reasoning 
proceeds up to the point in which a very small subset of diseases (ideally one) are known to cause 
those symptoms. The reasoning process that goes from the causes to the consequences has received 
increasing attention since the proposition of Parsimonious Covering Theory by Peng and Reggia 
in early 90’s, in opposition to the one commonly found in expert systems that were based from the 
consequences to the causes. As the number of symptoms is usually large it is necessary to group 
similar diseases together in such a way that the most frequent symptoms are asked first. In this way, 
the reasoning further reduces the space of possible diseases by excluding those that do not manifest 
that symptom. This paper evaluates similarities among diseases considering the set of common and 
distinct symptoms and proposes a method for structuring the space of search.
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Introduction

Diagnostic reasoning either conducted by diagnosticians or by automated systems is a complex 
cognitive process. Basically, it involves the matching of a set of symptoms with their possible 
diseases (or malfunctions in case of machines). Another complication is the fact that some symptoms 
occur at certain time frames and intensities (Massruhá et al., 2004). Automated diagnostic systems, or 
expert systems, require the construction of a knowledge base containing the most possible complete 
set symptoms and diseases, which is used together with an inference engine.
Expert systems, like Mycin (Buchanan and Shortliffe, 1984) for example, usually perform 
inference from the consequences to the causes. Others, like the one proposed by Massruhá (2003) 
and Massruhá et al. (2003) is based on a theoretical model that formalises abductive reasoning 
in diagnosis, the Parsimonious Covering Theory (Peng and Reggia, 1990). Abductive reasoning 
performs from the causes to the consequences. To explain the difference, in deductive inference, 
given the fact A and the rule A→ B, then B is true. In abductive reasoning, given the fact B and the 
rule A→ B, then A is plausible, because A may be one of the possible causes of B. In diagnosis, A 
may be one of the diseases causing the symptom B, provided that symptom B is present.
As the number diseases of causing a certain symptom may be large, Parsimonious Covering Theory 
organises the set of hypothesis such that they be large enough to explain the totality of the symptoms 
(coverage) and yet small enough to minimise the complexity of the explanation (parsimony).
This paper proposes the use of Formal Concept Analysis (FCA), a data analysis technique based 
on Lattice Theory and Propositional Calculus (Wille, 1982), as a supporting tool to help the 
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identification of hidden relations among data. FCA is especially suitable for exploration of symbolic 
knowledge (concepts) contained in a formal context, such as a corpus, a database, or an ontology.
For the application of FCA, the mathematical relation <diseases, symptoms> expressed in the above 
matrix is mapped to FCA’s <objects, attributes>. As a result, the ordering algorithm produces a 
mathematical structure called concept lattice, which shows on the top the most common symptoms 
and in the bottom the least frequent ones. Diseases are attached to the point (node) that encompasses, 
in the lattice hierarchy, all respective symptoms. Using the lattice, a similarity measure evaluates 
how close diseases are by counting the number of structuring elements they have in common.
The application of FCA to this problem gave interesting results, as for instance, sets of symptoms 
that never occur in isolation, which indicate that perhaps the system should ask for only one of them 
since the other is implied. Another result was that diseases with greater similarity value coincided 
with those grouped together by a human expert (phyto-pathologist), an indication of the quality 
of the similarity measure.
The paper is organised as follows. Sections 2 and 3 explains in general lines how Parsimonious 
Covering Theory and Formal Concept Analysis. Each of these formalisms are grounded in solid 
mathematical basis and would require much more space for a complete explanation. Please refer to 
Reggia and Peng (1986) and Wille (1982) for further details. Then, Section 4 presents the application 
of the similarity measure developed in Souza and Davis (2004). Finally, the results obtained by the 
application of FCA to the problem presented in Reggia and Peng (1986) are discussed Section 5.

Parsimonious covering theory

The formal method of diagnostic reasoning in the Parsimonious Covering Theory represents 
knowledge via a network of causal associations (Reggia and Peng, 1986). In this theory, an 
explanation E+ for S+ is a set of diseases such that:
1.  S+ is a subset of Symptoms(E+);
2.  E+ is parsimonious with respect to the Irredundancy criterion in which no proper subset of E+ 

covers S+.

These concepts can be better explained with a working example. This example was adapted from 
(Reggia and Peng, 1986) and will be used during the whole paper.
Figure 1 shows a set of diseases d1, ... d9, and a set of symptoms, s1,...,s6. In Parsimonious Covering 
Theory, given the set of symptoms {s1, s4, s5}, there are 12 possible combinations of diseases which 
could manifest them:

{(d1,d7), (d1,d8), (d1,d9), (d2,d7), (d2,d8), (d2,d9), (d3,d8), (d4,d8), (d3,d5,d7), (d3,d5,d9), (d4,d5,d7), (d4,d5,d9)}
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In this case, one has to further investigate in order to come to a conclusion, and that is carried 
out by an inference engine.  However, if the symptom were only s6, there would be only two 
possible hypothesis, d4 and d8, and the inference process would stop. 

Two factors greatly influence the precision of an inference system:  the size of the knowledge 
base and how well the system matches the set of given symptoms with the knowledge stored.  
Unfortunately, considering the whole set of possible combinations of diseases and symptoms 
at every step of diagnostic process also implies the increase of computational complexity of 
the underlying algorithms.  The combinatorial explosion would eventually require exponential 
execution time, what would not be acceptable from the user point of view. 

Reggia and Peng (1986) pointed out that two problems have to be addressed during problem-
solving to obtain a diagnosis, namely how questions should be generated to obtain additional 
information, and when problem-solving should terminate.  There are many extensions of the 
theory to address these problems.  Conditional probability and an entropy minimising metric 
have served as a basis for many of them.  For further details, please refer to (Reggia and Peng, 
1986; Peng and Reggia, 1990; Massruhá et. al. 2004). 

3 Applying Formal Concept Analysis 

Formal Concept Analysis (FCA) is a technique based on lattice theory and propositional 
calculus, producing what is called a Concept Lattice. FCA has been applied in many domains, 
such as structuring of information systems, knowledge discovery in databases, political 
science and psychology. Due to space limitations, this paper cannot provide details of the 
application of FCA, because it involves a great amount of mathematics. Please see (Souza and 
Davis, 2004) for further information. However, a brief explanation of the process will be 
provided in the sequel.  

FCA involves the analysis of a set of attributes S={si}, corresponding to the symptoms of the 
example adapted from (Reggia and Peng, 1986), a set of objects D={ di } (diseases) which 
contain these attributes (manifest these symptoms), and a binary relation R between D and S. 
The first step in the application of FCA is to create a formal context, displayed in Table 1. 
Taking Figure 1 as a representation of the relation between D and S, this context is created in 
such a way that whenever there is an arrow from a disease to a symptom the intersection 
between the two is marked with an “x”. 

 
Figure 1: graph relating diseases and symptoms Figure 1. Graph relating diseases and symptoms.
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In this case, one has to further investigate in order to come to a conclusion, and that is carried out 
by an inference engine. However, if the symptom were only s6, there would be only two possible 
hypothesis, d4 and d8, and the inference process would stop.
Two factors greatly influence the precision of an inference system: the size of the knowledge 
base and how well the system matches the set of given symptoms with the knowledge stored. 
Unfortunately, considering the whole set of possible combinations of diseases and symptoms 
at every step of diagnostic process also implies the increase of computational complexity of the 
underlying algorithms. The combinatorial explosion would eventually require exponential execution 
time, what would not be acceptable from the user point of view.
Reggia and Peng (1986) pointed out that two problems have to be addressed during problem-solving 
to obtain a diagnosis, namely how questions should be generated to obtain additional information, 
and when problem-solving should terminate. There are many extensions of the theory to address 
these problems. Conditional probability and an entropy minimising metric have served as a basis 
for many of them. For further details, please refer to (Reggia and Peng, 1986; Peng and Reggia, 
1990; Massruhá et al., 2004).

Applying formal concept analysis

Formal Concept Analysis (FCA) is a technique based on lattice theory and propositional calculus, 
producing what is called a Concept Lattice. FCA has been applied in many domains, such as 
structuring of information systems, knowledge discovery in databases, political science and 
psychology. Due to space limitations, this paper cannot provide details of the application of FCA, 
because it involves a great amount of mathematics. Please see (Souza and Davis, 2004) for further 
information. However, a brief explanation of the process will be provided in the sequel.
FCA involves the analysis of a set of attributes S={si}, corresponding to the symptoms of the 
example adapted from (Reggia and Peng, 1986), a set of objects D={ di } (diseases) which contain 
these attributes (manifest these symptoms), and a binary relation R between D and S. The first step 
in the application of FCA is to create a formal context, displayed in Table 1. Taking Figure 1 as a 
representation of the relation between D and S, this context is created in such a way that whenever 
there is an arrow from a disease to a symptom the intersection between the two is marked with an ‘x’.

Table 1. Objects and attributes represented in the lattice of Figure 2.

Objects Attributes

s1 s2 s3 s4 s5 s6

d1 x x
d2 x x x
d3 x x
d4 x x
d5 x x x
d6 x x
d7 x x
d8 x x x
d9 x x
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FCA analyzes which subsets of the set of objects have the same attributes and, conversely, which 
subset of attributes is shared by the same objects. For example, the subset {s2,s3} is present both in 
d5 and in d6, and s4 exists only in d5. So, {s2,s3} is related to {d5,d6} and {s2,s3,s4} is related to {d5}.
In Formal Concept Analysis, the abstraction of concepts present in human thoughts, in which 
concepts are classes of things having certain attributes, is structured in a lattice, the concept lattice. 
In this lattice, if a concept A is above a concept B, and the two are linked, concept A is more general 
than B and, as being such, it carries part of attributes of B. As a consequence, one can say that 
whenever B happens, A is also happening, which suggests a logical entailment. In the lattice, one 
can not only see a hierarchy of concepts, but also the whole set of binary relations present among 
concepts. That makes the visual analysis of data superior to the one can be obtained by looking at 
a hierarchy of classes. In Figure 2, every node in the graph is a concept.
In the concept lattice of Figure 2, the circles 1,...,17 are nodes, the strings besides the circles are 
attributes (symptoms), and the rectangles represent objects. In this lattice, s1, s2 and s3 are attributes 
of object d2, because they are positioned in nodes from the node labeled 14, at which d2 is positioned, 
up to the root node. Object d5 has also attributes s2 and s3, but not s1. In this way, one can say that 
d2 shares two attributes with d5 and that it has one attribute that d5 does not have. It is using this 
information that the similarity evaluation is performed, as show in next section.

The similarity measure

If two objects are positioned in the same node (concept), they have the same attributes and are, 
therefore, instances of the same class of objects that have that set of attributes. The number of 
attributes in common can then be weighted against the number of attributes that are present only 
in one of the objects to measure the similarity between two objects. However, most times attributes 
may appear in pair or triplets with the consequence of being positioned in the same node in the 
lattice. That means that from the structural point of view the attributes are not adding relevant 
information to differentiate objects.
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In order to circumvent this problem, a structural similarity measure was proposed in (Souza 
and Davis, 2004).  It considers some special elements of the lattice called meet-irreducible 
elements.  These elements can be identified easily in the lattice as those nodes having only 
one edge linking them to the upper layers of the lattice. In the lattice of Figure 2, nodes 2 
through 7 are all meet-irreducible elements.   All the six symptoms are positioned in the top of 
the lattice in this case. The similarity measure considers the number of meet-irreducible 
elements in common and the number of such elements that each node (ni) has separately, as 
follows: 

S(ni, nj) = Struct(ni∩nj) / (Struct(ni∩nj) + 0.5 Struct(ni-nj) + 0.5 Struct(nj-ni))              (2) 

In Equation 1, Struct(ni∩nj) represents the number of structural elements shared by ni and nj, 

 
Figure 2: Hasse diagram corresponding to the lattice obtained from Table 2. 
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In order to circumvent this problem, a structural similarity measure was proposed in (Souza and 
Davis, 2004). It considers some special elements of the lattice called meet-irreducible elements. 
These elements can be identified easily in the lattice as those nodes having only one edge linking 
them to the upper layers of the lattice. In the lattice of Figure 2, nodes 2 through 7 are all meet-
irreducible elements. All the six symptoms are positioned in the top of the lattice in this case. The 
similarity measure considers the number of meet-irreducible elements in common and the number 
of such elements that each node (ni) has separately, as follows:

S(ni, nj) = Struct(ni∩nj) / (Struct(ni∩nj) + 0.5 Struct(ni-nj) + 0.5 Struct(nj-ni)) (1)

In Equation 1, Struct(ni∩nj) represents the number of structural elements shared by ni and nj, 
and Struct(ni-nj) represents the number of structural elements in ni but not in nj. For example, the 
similarity between nodes 14 and 16 is calculated as:
Struct(n14∩n16) = 2, which correspond to nodes 6 and 7;
Struct(n14-n16) = 1, which corresponds to node 5;
Struct(n16-n14) = 1, which corresponds to node 2.
Then, S(n14∩n16) = 2/(2 + 0.5 + 0.5) = 0.67.

Table 2 shows the results of the calculation of the similarity measure for each pair of nodes of the 
lattice of Figure 2.

Table 2. Similarities among nodes in the lattice of Figure 2.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.50 0.29
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.50 0.00 0.29
4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.50 0.00 0.29
5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.67 0.67 0.00 0.67 0.50 0.00 0.00 0.29
6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.67 0.00 0.00 0.00 0.67 0.50 0.50 0.50 0.29
7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.67 0.67 0.00 0.67 0.00 0.00 0.50 0.00 0.50 0.29
8 0.00 0.67 0.00 0.00 0.00 0.00 0.67 1.00 0.50 0.00 0.50 0.50 0.00 0.40 0.00 0.80 0.50
9 0.00 0.00 0.00 0.00 0.00 0.67 0.67 0.50 1.00 0.00 0.50 0.00 0.50 0.80 0.40 0.80 0.50

10 0.00 0.00 0.00 0.67 0.00 0.67 0.00 0.00 0.00 1.00 0.50 0.00 0.50 0.40 0.40 0.00 0.50
11 0.00 0.00 0.00 0.00 0.67 0.00 0.67 0.50 0.50 0.50 1.00 0.00 0.50 0.80 0.00 0.40 0.50
12 0.00 0.67 0.00 0.67 0.00 0.00 0.00 0.50 0.00 0.00 0.00 1.00 0.00 0.00 0.40 0.40 0.50
13 0.00 0.00 0.00 0.00 0.67 0.67 0.00 0.00 0.50 0.50 0.50 0.00 1.00 0.80 0.40 0.40 0.50
14 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.40 0.80 0.40 0.80 0.00 0.80 1.00 0.33 0.67 0.67
15 0.00 0.00 0.50 0.50 0.00 0.50 0.00 0.00 0.40 0.40 0.00 0.40 0.40 0.33 1.00 0.33 0.67
16 0.00 0.50 0.00 0.00 0.00 0.50 0.50 0.80 0.80 0.00 0.40 0.40 0.40 0.67 0.33 1.00 0.67
17 0.00 0.29 0.29 0.29 0.29 0.29 0.29 0.50 0.50 0.50 0.50 0.50 0.50 0.67 0.67 0.67 1.00
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Analysis of the results

One important fact about Concept Lattices (proved in Theorem 1 in Ganter and Wille (1999)) is 
that the infimum (meet) and supremum (join) between every pair of objects are defined in terms of 
the usual set operators (∩, ∪, ⊂, ⊃). Moreover, the supremum of two elements serves as a basis 
of comparison between them because it contains all the common attributes of these two elements. 
For example, the objects d2 and d5 have in common the attributes s4 and s3, because join(n14, n16) 
= n9 and n9 accumulates the attributes coming from n6 and n7, which are s4 and s3, respectively.
Conversely, it is also possible to discover by inspection on the lattice which objects share a set of 
attributes by using the meet operation. For instance, the objects that have s1 and s3 as attributes 
are d3 and d2, because meet(n5,n7) = n11 and the objects bellow n11 in lattice hierarchy are d3 and d2.
Concept Lattices also have been used in data mining because its direct inspection allows for the 
calculation of support and confidence measures. For example, the support of attribute s4 is 4/9, 
because from the total of 9 objects there are 4 objects bellow n6 in the lattice. This results from the 
fact that the Concept Lattice considers all the possible combinations of the attributes (Powerset of 
the set of attributes) before calculating the existing infima and suprema. This information can be 
used to improve the selection of the next question by the inference engine.
The exploration of combinations of attributes and objects of Concept Lattices makes them especially 
useful together with Parsimonious Covering Theory. In accordance with Reggia and Peng (1986), 
the 12 combinations obtained by the application of Parsimonious Covering Theory in Section 
2, when the symptoms {s1, s4, s5} were present, could be generated by the following generators:

{d1, d2} × {d7, d8, d9}
and
{d8} × {d3, d4}
and
{d5} × {d3, d4} × {d7, d9}

These generators could also be obtained from the lattice of Figure 2. The edges marked with darker 
lines represent those activated by the same symptoms. One immediate information that can be seen 
in the lattice is that all the diseases, except d6, show these symptoms, because they are positioned 
from the meet-irreducible elements 4, 5 and 6. These are precisely the nodes at which s1, s5 and s4 
are positioned, respectively.
Moreover, node 13 associates nodes 5 and 6 (meet operation on the lattice). From that, one can say 
that d1 and d2, which are positioned at or bellow 13, manifest symptoms s1 and s4. Since s1 and s4 
have been considered, one has to look at the other paths in the lattice to determine what is missing 
to account for s5 in order com complete the symptoms. The answer comes from nodes 12 and 15 
and its diseases attached: d7, d8 and d9. Now, if one makes the cross product between d1, d2 and d7, 
d8, d9 the first generator above is obtained.
Table 2 give the similarities among nodes in the lattice of Figure 2. From this table, one can see that 
diseases d2 and d5, which are near from each other, are 0.67% similar, whereas d5 and d4 are 0.00% 
similar. In the latter case, this happens because the two diseases have no attributes in common. Tests 
carried out with corn diseases showed very good results when comparing the similarities calculated 
using this similarity measure and a decision tree designed by a phyto-patologist. Currently, the 
diagnostic system designed and built in Embrapa Agricultural Informatics, which uses an entropy 
measure to select the next question in the diagnosis process is evaluating the use of this similarity 
measure to improve its performance.
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Conclusion

This paper proposed an evaluation of the use of similarities for structuring the space of search in a 
diagnosis system. The similarity measure is based on Formal Concept Analysis, a method grounded 
on Lattice Theory. This method considered the set of common and distinct symptoms and grouped 
similar diseases together in such a way that diseases that do not manifest symptoms are avoided 
whereas those sharing same symptoms are considered first. The exploration of combinations 
of attributes and objects over Concept Lattices makes them especially useful for joint use with 
Parsimonious Covering Theory, because the generators calculated in the latter could also be 
obtained from the Concept Lattice. Tests carried out with corn diseases showed very good results 
comparing the decision tree constructed by the expert, which is based on grouping of symptoms, 
with the similarity among nodes calculated from the Concept Lattice.
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