135

6TH INTERNATIONAL TRITICALE SYMPOSIUM

Proceedings of oral and poster presentations

3 – 7 September 2006 Stellenbosch, South Africa

Organized and hosted by

Stellenbosch University Plant Breeding Laboratory (SU-PBL)

and

International Triticale Association (ITA)

Sponsors

The ITA and the organizing committee of the the 6th International Triticale Symposium would like to thank the following companies for sponsorships:

Platinum: Wintersteiger, Stellenbosch University Plant Breeding Laboratory -Welgevallen *Gold:* Allens Real Estate, BASF SA, UAP Crop Care

Silver: SSK, Afgri Seed

International Triticale Association (2002 – 2006)

Executive

President	H. Roux	Executive Secretary	N. Darvey
Treasurer/Newsletter	R. Jessop	Past President	E. Arseniuk
Honorary President	N. Borlaug	· · · · · · · · · · · · · · · · · · ·	

	Country Re	presentatives	
Algeria	A. Benbelkacem	Benelux	G. Haesaert
Brazil	A. Nascimento (Jr.)	Canada	D. Salmon
China	S.Y. Shu	Germany	G. Oettler
India	S. Dhindsa	Mexico	I. Ortiz-Monasterio
Poland	E. Arseniuk	Romania	G. Butnaru
South Africa	H. Roux	U.S.A.	R. Myer

6th International Triticale Symposium

Organizi	ng Committee	
H. Roux (Chair)	W.C. Botes	
L. Snyman	K.W. Pakendorf	
G.F. Marais		

	Editorial Committee
W.C. Botes	D. Boros
N. Darvey	P. Gustafson
R. Jessop	G.F. Marais
G. Oettler	D. Salmon

Edited by SU-PBL, Welgevallen Experimental Farm, Stellenbosch, South Africa Phone: +27-21-808-4860, Fax: +27-21-808-3767, E-mail: <u>wcb@sun.ac.za</u>, Website: http://www.sun.ac.za/genetics

Copyright © 2006 Stellenbosch University Plant Breeding Laboratory & International Triticale Association

ISBN 0-620-37008-4

Table of contents

2

In memorial

.

In memoriam of Professor Tadeusz Wolski

Oral presentations

The association of managed drought stress regimes in Mexico with global triticale yield evaluation environments	
R. M. Trethowan, K. Ammar, M. P. Reynolds and J. Crossa	7
Aluminum tolerance in Triticale as compared to its parental species	
A. Anioł	15
Pollen grain expression for osmotic adjustment in triticale genotypes	
M. Barary, N.W.M. Warwick, A.M. Taji and R.S. Jessop	19
Thinopyrum distichum - can it be used to improve the salt tolerance of triticale?	
G.F. Marais, A.S. Marais and M. Ghai	25
Occurrence and relative importance of triticale diseases in Poland	
E. Arseniuk, T.Oleksiak, A. Strzembicka, E. Reszka and W. Poznan	28
Geomyza tripunctata in Belgium	
V. Derycke, G. Haesaert, J. Latré and B. Heremans	33
An approach to developing a marker assisted selection system for tolerance to pre-harvest sprouting in Triticale	
S. De Laethauwer, K. Messens, V. Derycke, N. Gryson, D. Reheul and G. Haesaert	39
Creation of new initial material for triticale breeding	
U. K. Kurkiev, K. U. Kurkiev	45
Genetic mapping and marker assisted breeding in Australian triticale	
J.L. Reinheimer, R.L. Fox and H. Kuchel	48
Evolution of disease pressure on triticale under Belgian growing conditions: overview of the last 20 years	
G. Haesaert, V. Derycke, J. Latré and B. Heremans	53
Triticale fodder and grain production by small-scale dairy farmers in North West Bangladesh	
Z.I. Sarker, S.R. Waddington, M.A. Sufian, M.E. Haque and M.A. Hoque	59
Developing a hybrid seed production system and evaluation of heterosis levels in hybrids from CIMMYT's spring	
triticale germplasm	
K. Ammar, J. Crossa, W.H. Pfeiffer and G. Alvarado	65
The Pampa rye cytoplasm as a male sterilizing agent for hybrid breeding of triticale	
B. Łapiński and J. Fryczkowska	68
Progress in CMS development for hybrid triticale	
R. Warzecha and K. Salak –Warzecha	72
Microspore regeneration system for triticale transformation via agrobacterium	
S.Oleszczuk, S.Sowa and J. Zimny	76
Isolated microspore culture in a cyclical breeding system for the production of inbred lines and hybrids	
N.L. Darvey, X.Zhao and R. Trethowan	77
The South African Triticale breeding programme; current status	
H.S. Roux, G.F. Marais, J.E. Snyman and W.C. Botes	80
Canadian Triticale Biorefinery Initiative	
F. Eudes.	85
Genetic variation for ethanol production in winter triticale	
E.M. Thiemt, T. Senn and G. Oettler	89

Proceedings of the 6th International Triticale Symposium

Evaluations of triticale grain in pig diets	
R.O. Myer and M.J. Azain	94
Triticale is a quality fodder, feed and food for small-scale farmers in Bangladesh	
M.E. Haque, M.A. Sufian, S.R. Waddington, Z.I. Sarker, N.R. Sarker and C.A. Meisner	99
Triticale production and possible use as milk for small ruminants in Algeria	
A.Benbelkacem, Y.Dib and K.Ammar	104
Triticale fodder and grain utilization by dairy cattle and poultry in Bangladesh	
N.R. Sarker, M.E. Haque, K.S. Huque, Q.M.E. Huque and S.R. Waddington	108
Antioxidants in triticale grains	
L. Bona, N. Adányi, D. Hussein, R. Farkas, E. Szabó, Gy. Hajós, E. Acs and L. Purnhauser	113
Triticale of high end-use quality enhances opportunities to increase its value in world cereals market	
D Boros	118

Poster presentations

Effect of genotype (G) and genotype-environment interaction (GE) of yield components in triticale, rye and durum	
wheat across South Banat conditions	
G. Butnaru, I. Sarac and S. Ciulca	12
Mitotic analysis of triticale, wheat and rye	
A.P. Guisso, J. Viégas, A. Nascimento Junior, M.G.S. Corrêa, P.F. Vaz de Ávila, S.P. Brammer and A.C.S.	
Albuquerque	12
Direct somatic embryogenesis and regeneration in triticale: application to genetic engineering	
F. Eudes	12
Anthocyanin expression in transgenic triticale embryos	
K.M. Doshi, F. Eudes, A. Laroche and D. Gaudet	13
The influence of D(R) substitutions on uptake and utilization of nitrogen and phosphorus in hexaploid triticale	
T. Oracka and B. Łapiński	13
Resistance to Fusarium head blight and accumulation of ATP, ergosterol and secondary Fusarium metabolites in	
kernels of doubled haploid lines of winter triticale cultivar Bogo	
T. Góral, M. Busko and J. Perkowski	13
Resistance of Polish winter triticale cultivars to Fusarium head blight and accumulation of Fusarium-myctoxins in grain	
T. Góral and P. Ochodzki	14
Development of PCR-based DNA markers linked to partial resistance of triticale to Stagonospora nodorum blotch	
E. Reszka, E. Arseniuk and P.P. Ueng	14
Blumeria graminis sp – an emerging problem of triticale breeding in Poland	
A. Strzembicka, E. Arseniuk and W. Poznań	14
Effectiveness of triticale breeding at DANKO	
Z. Banaszak and K. Marciniak	14
Isolated microspore culture of Canadian 6x triticale cultivars	
F. Eudes and E. Amundsen	15
BRS Minotauro, the first truly Brazilian triticale cultivar	
A. Nascimento Junior, A.C. Baier and A.C.S. Albuquerque	15
Methods for fusarium head blight field screening used at Embrapa, Brazil	
M.I.P.M. Lima and A. Nascimento Junior	15
Selectivity and efficacy of herbicides for use on winter cereals	
L Vargas E.S. Roman and A. Nascimento Junior	15

Proceedings of the 6th International Triticale Symposium

iii

Progress in triticale breeding in Romania for short straw type	
Gh. Ittu, N.N.Saulescu, M. Ittu, P. Mustatea	158
Spring triticale breeding program at Embrapa, Brazil	
A. Nascimento Junior and A.C.S. Albuquerque	160
Current status of triticale in Poland	
T. Oleksiak and E. Arseniuk	162
Breeding triticale for sprouting resistance and baking quality	
M.S. Pojmaj and R. Pojmaj	164
Studies on the cultivation of winter triticale and rye seeded in early winter in a heavy snow area of Hokkaido, Japan	
T. Yoshihira and S. Kosaka	165
Selection response after four cycles of recurrent selection for improved falling number	
E.M. Thiemt, G. Wahle, B. Schinkel and G. Oettler	169
Triticale outcrossing risk to related species	
F. Eudes, R. Graf, B. Beres and L. Hall	172
Gluten strength screening of triticale breeding lines from the Florida breeding program	
R.D. Barnett, R.O. Myer, and G.R. Fohner	174
Dynamics of falling number during ripening of different winter triticale genotypes	
A.Kronberga	176
Seeding rate: its contribution to the performance and quality of triticale (X Triticosecale Wittmack) blends for forage	
production	
L. A. Lekgari, P. S. Baenziger, K. P. Vogel and D. D. Baltensperger	180
Incorporation of breadmaking quality to winter triticale breeding program	
H. Wos, E. Arseniuk, W. Brzezinski and M. Stachowicz	182
Triticale Malting and brewing performance	
D. F. Salmon, R. McCaig, D.Dyson, W. Chapman and S. Albers	184
List of participants	187

iv

Eds. W.C. Botes, D. Boros, N. Darvey, P. Gustafson, R. Jessop, G.F. Marais, G. Oettler & D. Salmon Proceedings of the 6th International Triticale Symposium, 3 – 7 September 2006, Stellenbosch, South Africa © 2006 ITA & SU-PBL – Faculty of AgriSciences, Stellenbosch. Printed in South Africa

Selectivity and efficacy of herbicides for use on winter cereals

L. Vargas, E.S. Roman and A. Nascimento Junior

National Wheat Research Center, Brazilian Agricultural Research Corporation (Embrapa Trigo) P.O. Box 451, 99.001-970 Passo Fundo, Brazil

An experiment was carried-out with the objective of evaluating the selectivity and efficacy of herbicides applied for weeds control on winter cereals. The experiment was conducted under field conditions at Embrapa, in Passo Fundo, RS, during the 2005 growing season. Black oat, white oat, turnipseed and vetch were sown in order to act as volunteer crops interfering with wheat, triticale, barley and rye crops. The results indicated that the treatments were selective to wheat, triticale and rye while barley was the species more sensitive to them especially to iodosulfuron-methyl. Black oat, white oat, and ryegrass showed different response to the treatments according to the tested rate while turnipseed and vetch were efficiently controlled by iodosulfuron-methyl, 2,4-D and 2,4-D + picloran.

Introduction

Wheat, triticale, barley and rye are important crops for the winter growing season in Southern Brazil. The weeds, mainly ryegrass, black oat and white oat, may cause great economic damage on grain productivity of winter cereals. An experiment was carried-out with the objective of evaluating the selectivity and efficacy of herbicides applied for weeds control on winter cereals. Yield losses will vary with the weed species and weed density, as well as the timing of weed emergence and control. Understanding change in the soil seed bank, weed spectrum, and weed control practices is the key to effective weed control in a no-till system.

Materials and Methods

The experiment was conducted under field conditions at Embrapa, in Passo Fundo, RS, during the 2005 growing season. The soil of experimental site is a loam Oxisol. The testing crops were wheat, barley, rye and triticale. Black oat, white oat, turnipseed and vetch were sown in order to act as volunteer crops interfering with those cereal crops. The tested herbicides were bentazon, metsulfuron-methyl, dichlofop-methyl, clodinafop-propargyl, 2,4-D, 2,4-D + picloran, 2,4-D + glyphosate (in sequential application) and iodosulfuron-methyl. The pre-emergence treatments were applied on 23 June 2005, one day before sowing the crops. The post-emergence treatments were applied on 27 July 2005 at the 3-5 leaf stage of the weed.

Results and Discussion

The results indicated that the treatments were selective to wheat, triticale and rye while barley was the species more sensitive to them especially to iodosulfuron-methyl. Black oat, white oat, and ryegrass showed different response to the treatments according to the tested rate while turnipseed and vetch were efficiently controlled by iodosulfuron-methyl, 2,4-D and 2,4-D + picloran (table 1).

Table 1: Evaluation of phytotoxicity (Duncan's 5%) in black oat, white oat, ryegrass, turnipseed and vetch, from post-emergence applied herbicides, at 40 DAT (days after treatment). National Wheat Research Center, Passo Fundo, RS – Brazil,2005.

		Rate per								,			
N°	Active Ingredient	hectare (product) (L or g ha ⁻¹)	Black oat		White oat	White oat		Rye- grass		Turnip- seed		Vetch	
01	Bentazon	1.5	0	С	0	С	0	С	50	С	35	cd	
02	Bentazon	2.5	0	С	0	с	0	с	65	С	50	b	
03	Metsulfuron-methyl	4.0	0	С	0	С	0	с	80	b	25	de	
04	Metsulfuron-methyl	6.0	0	с	0	С	0	С	90	ab	45	bc	
05	Dichlofop-methyl	1.5	85	b	80	b	95	а	0	d	() f	
06	Dichlofop-methyl	3.0	90 a	b	85	ab	98	а	0	d	() f	
07	Clodinafop-propargyl	100	95 a	b	90	ab	80	b	0	d	() f	
08	Clodinafop-propargyl	200	98	а	95	а	95	а	0	d	() f	
09	2.4-D amine	1.0	0	с	0	с	0	с	100	а	95	а	
10	2.4-D amine	2.0	0	с	0	с	0	с	100	а	100	а	
11	2.4-D + picloran	1.5	0	с	0	с	0	с	100	а	95	а	
12	2.4-D + picloran	3.0	0	с	0	С	0	С	100	а	100	а	
13	2.4-D amine + glyphosate	1.5+2.0	0	с	0	с	0	С	80	b	15	е	
14	2.4-D amine + glyphosate	2.0+2.0	0	с	0	с	0	с	85	b	30	cd	
15	lodosulfuron-methyl	70	85	b	80	b	93	а	85	b	95	а	
16	lodosulfuron-methyl	100	95 a	b	85 :	ab	100	а	98	а	100	а	
17	Check		0	с	0	с	0	с	0	d	C) f	

Proceedings of the 6th International Triticale Symposium