UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA DE SÃO CARLOS

Espectroscopias de infravermelho próximo e médio na quantificação de atributos do solo, com ênfase na matéria orgânica e na biomassa microbiana

Tatiana Maris Ferraresi

Orientador Dr. Ladislau Martin Neto

São Carlos 2010 Tatiana Maris Ferraresi

Espectroscopias de infravermelho próximo e médio na quantificação de atributos do solo, com ênfase na matéria orgânica e na biomassa microbiana

Dissertação apresentada ao Instituto de Química de São Carlos da Universidade de São Paulo, para obtenção do título de mestre em Ciências. Área de concentração: Química Analítica.

Orientador: Dr. Ladislau Martin Neto

São Carlos 2010

À minha família:

Luiz Antonio Ferraresi Sirlei Rissoli Ferraresi Leila Cristina Ferraresi Paula Daniele Ferraresi

Dedico

Ros pesquisadores, estudantes e amantes da terra que buscam, ao mesmo

tempo, cultivá-la, estudá-la e respeitá-la

Ofereço

AGRADECIMENTOS

Quero agradecer a Deus por ter misericórdia de mim, aceitar-me apesar das falhas, dar-me sempre uma nova chance, amar-me infinitamente.

Quero agradecer à minha mãe Sirlei e ao meu pai Luiz, que me apoiam e querem sempre o melhor para mim. E às minhas irmãs Dani, pela ajuda nas pesquisas, e Leila pela correção gramatical e ortográfica e as duas pelo carinho. Ao Gláucio por seu auxílio como estagiário e orientador honorário e por sua companhia, paciente e confortadora, e à sua família acolhedora: Vânia, Galvão, Lucas e Nilo.

Agradeço ao Dr. Ladislau Martin Neto por me aceitar como aluna de mestrado, pela orientação e por abrir caminhos para mim. Agradeço à Embrapa Instrumentação Agropecuária, especialmente ao Dr. Wilson, por me encaminhar nas atividades, dispor da estrutura e dos equipamentos desta unidade da Embrapa para a realização deste trabalho e pela orientação. Meu agradecimento também à Joana, Renê e Marcelo. À Silviane e à Natália por me ajudarem nas análises e a resolver vários problemas. Aos amigos Úrsula, Larissa, Lívia, Lílian, Vivian, Aline, Zé Renato, Fernanda, Edilene, Lucimar, Luíza, Rafael, Poliana, Humberto, Mateus e André pelo auxílio e companhia.

Agradeço aos colegas da Embrapa Pecuária Sudeste, que me auxiliaram neste trabalho: Dr.ªAna Rita, Dr. Gilberto, Malaguti, Cristina, Victor, Marcos, Tatiana, Jorge, Amadeu e Paulo. Obrigada pela acolhida, direcionamento, análises, coletas de solo, conversas e fotografias!!

Às minhas amigas de mestrado Regina, Malu, Catarinie, Patrícia Toniolo e ao pessoal do GOU.

À USP, uma universidade-mãe, à qual devo a minha formação como farmacêutica e para a qual retornei. A essa universidade a minha admiração e gratidão. Obrigada Instituto de Química de São Carlos, todos os seus funcionários, Silvia e Andréia da pós-graduação e Eliana bibliotecária.

Agradeço também à Universidade Federal de São Carlos. Obrigada especialmente ao professor Dr. Edenir, por suas aulas extremamente didáticas e por sua disponibilidade aos alunos.

Quero agradecer à Embrapa Arroz e Feijão pela grande oportunidade, aprovando o projeto e disponibilizando os recursos necessários. Aos pesquisadores dessa unidade: Dr.ª Beáta, Dr. Enderson, Dr.ª Márcia Taís e Dr. Silvando, pelos esclarecimentos e financiamentos. Aos amigos Adriana, Tatiely, Sílvio, Adriano, Cristiano, Ecion, Janne, Adilson, Luciano, Diego, Wesley, Ivã, Lorrana, Wellington, Laura, Gláucia e Melissa, que me ajudaram na realização dos experimentos e me trouxeram alegria suavizando o trabalho árduo! À Selma Koakuzu e Patrícia Valle, minhas maiores incentivadoras; sem elas eu não teria me candidatado à pós-graduação na Embrapa. À Dr.ª Ana Cristina e ao Dr. Pedro Machado, que me ajudaram a pensar no projeto. Aos analistas e assistentes Márcio, Cida, Zé Francisco e Rodrigo e ao pessoal que me ajudou nas coletas de solo: Ailton, João Mula, Eric, Japão, Elídio, Tiquinho e Tião.

LISTA DE FIGURAS	5
LISTA DE TABELAS	7
LISTA DE EQUAÇÕES	
LISTA DE ABREVIATURAS E SIGLAS	9
RESUMO	
ABSTRACT	
1 INTRODUÇÃO	
2 REVISÃO DA LITERATURA	
2.1.0 solo	
2.2 A matéria orgânica do solo	
2.2.1 A matéria orgânica humificada	
2.2.2 A matéria orgânica não-humificada	
2.3 Estoques de carbono e nitrogênio	
2.4 Métodos de quantificação da matéria orgânica	
2.5 Quantificação dos microrganismos do solo	
2.5.1 Métodos de determinação da biomassa microbiana	
2.6 Espectroscopia	
2.6.1 Espectroscopia no infravermeino	
3 OBJETIVOS	
4 MATERIAIS E MÉTODOS	
4.1 Coleta de solo	
4.2 Determinação da capacidade de campo	
4.3 Determinação da umidade do solo	
4.4 Determinação do pH	
4.5 Método de referência para textura do solo	
4.6 Método de referência para carbono e nitrogênio totais (CT e NT)	
4.7 Método de referência para carbono orgânico total (COT)	
 4.8 Método de referencia para biomassa microbiana 4.3 Análise dos resultados e calibracões 	
5 RESULTADOS E DISCUSSÃO	
5.1 Características dos solos coletados	56
5.2 Espectros de NIRS	
5 3 Espectros de DRIFTS	
5.4 Transformação dos espectros.	
5.5 Análise exploratória dos dados espectrais	
5.5.1 Espectroscopia no infravermelho próximo	
5.5.2 Espectroscopia no infravermelho médio	76
5.6 Textura	
5.7 Biomassa microbiana	
6 CONCLUSÕES	
7 APLICAÇÕES DA ESPECTROSCOPIA NO INFRAVERMELHO	108
	100

SUMÁRIO

LISTA DE FIGURAS

Figura 1 Estrutura de um agregado de solo com destaque ao papel cimentante e agregador da matéria orgânica e dos microrganismos em interseção com partículas de arcia e organia
Figure 2 Espectre de luz
Figura 2 Espectro da luz
Figura 5 Kelação entre inveis de energia, nequência da fadração eletromágnetica e viorações moleculares
Figura 4 Tipos de vibrações das ligações em uma dada molecula
Figura 5 Modos de reflexao que ocorrem juntamente com a refletancia difusa
transformada de Fourier
Figura 7 Espectro no infravermelho médio de matéria orgânica do solo
Figura 8 Espectros no infravermelho médio de <i>Xylella</i> depositada em janela silício (A) após 30 dias e (B) após 70 dias de crescimento
Figura 9 Espectro de NIRS de solos afetados por diferentes ocorrências de fogo
Figura 10 Croqui da área experimental da Fazenda Agroecológica da Embrapa Arroz e Feijão, Santo Antônio de Goiás
Figura 11 Mapa da fazenda experimental Capivara da Embrapa Arroz e Feijão, em Santo Antônio de Goiás45
Figura 12 Mapa da fazenda experimental Canchim da Embrapa Pecuária Sudeste, em São Carlos-SP
Figura 13 Diagrama triangular das classes texturais do solo
Figura 14 Quantificação da biomassa microbiana do solo pelo método de fumigação-extração
Figura 15 Gráficos de <i>scores</i> e <i>loadings</i> com faixas de razão C/N
Figura 16 Espectros de absorbância em infravermelho próximo com bandas assinaladas
Figura 17 Espectros de absorbância em infravermelho próximo de diferentes subgrupos amostrais, segundo uso do solo
Figura 18 Espectros de absorbância em infravermelho médio com bandas assinaladas
Figura 19 Espectros de absorbância em infravermelho médio de diferentes subgrupos amostrais, segundo uso do solo
Figura 20 Espectros de amostras de São Carlos coletados em locais próximos
Figura 21 Espectros de solos com diferentes teores de areia e carbono orgânico
Figura 22 Espectros Absorbância e Kubelka-Munk para a amostra AF770
Figura 23 Espectros DRIFTS da amostra PS 56 sem transformação e com o cálculo da 1ª e 2ª derivadas
Figura 24 Gráficos de PRESS VAL e % Variância acumulada versus número de fatores incluídos na PCA NIRS
Figura 25 Gráficos de <i>scores</i> (A, B e C) e de <i>loadings</i> (D), Fator 1 versus Fator 2 resultantes de PCAs com espectros NIRS centrados na média
Figura 26 Gráficos de PRESS VAL e % Variância acumulada versus número de fatores incluídos na PCA DRIFTS
Figura 27 Gráficos de <i>scores</i> (A, B e C) e de <i>loadings</i> (D), Fator 1 versus Fator 2 resultantes de PCAs com espectros DRIFTS centrados na média
Figura 28 Gráficos de PRESS VAL e % de variância acumulada versus número de fatores incluídos na PCA Textura
Figura 29 Gráficos de <i>scores</i> e de <i>loadings</i> , Fator 1 versus Fator 2 resultantes de PCAs com dados auto- escalados de argila, silte e areia
Figura 30 Gráficos de poder de modelagem e resíduos para os atributos Argila, Silte e Areia
Figura 31 Gráficos dos valores medidos (de referência) versus valores preditos por modelos calculados com dados de NIRS para atributos de textura
Figura 32 Gráficos dos valores medidos versus valores preditos por modelos calculados com dados de DRIFTS para atributos de textura

Figura 33 Gráfico de PRESS VAL versus número de fatores incluídos na PCA Matéria orgânica
Figura 34 Gráficos de <i>scores</i> (A, B e C) e de <i>loadings</i> (D), Fator 1 versus Fator 2 resultantes de PCAs com dados auto-escalados de carbono orgânico, carbono total, nitrogênio total e razão C/N
Figura 35 Gráficos apresentando poder de modelagem e resíduos associados a cada atributo componente do carbono orgânico e da análise elementar
Figura 36 Gráficos dos valores medidos (referência) versus valores preditos, resultantes da validação cruzada (A, C e E) e da validação externa (B, D e F) de modelos calculados com dados de NIRS para atrbutos de matéria orgânica
Figura 37 Gráficos dos valores medidos versus valores preditos, resultantes da validação cruzada (A, C e E) e da validação externa (B, D e F) de modelos calculados com dados de DRIFTS para atributos de matéria orgânica 94
Figura 38 Gráfico de PRESS VAL versus número de fatores incluídos na PCA Biomassa Microbiana
Figura 39 Gráficos de <i>scores</i> (A, B e C) e de <i>loadings</i> (D), Fator 1 versus Fator 2 resultantes de PCAs com dados auto-escalados de biomassa microbiana
Figura 40 Gráficos apresentando poder de modelagem e resíduos associados a cada atributo componente da biomassa microbiana do solo: N _{MIC} , C _{MIC} , RB, qCO ₂ , CN _{MIC} e qMIC
Figura 41 Gráficos dos valores medidos (de referência) versus valores preditos por modelos calculados com dados de NIRS para atributos da biomassa microbiana
Figura 42 Gráficos dos valores medidos (de referência) versus valores preditos por modelos calculados com dados de NIRS para atributos de biomassa microbiana

LISTA DE TABELAS

Tabela 1 Tentativa de atribuição de bandas comumente encontradas em espectros de bactérias no infravermelho médio
Tabela 2 Bandas de absorção das vibrações de estiramento dos principais grupos funcionais no espectro no infravermelho próximo (cm ⁻¹) 39
Tabela 3 Classificação dos solos coletados segundo o uso do solo e a textura
Tabela 4 Atributos do solo quantificados pelos métodos de referência
Tabela 5 Atribuições para as bandas observadas nos espectros no infravermelho próximo
Tabela 6 Atribuições orgânicas para as bandas observadas nos espectros no infravermelho médio
Tabela 7 Atribuições inorgânicas para as bandas observadas nos espectros no infravermelho médio
Tabela 8 Solos com diferentes teores de areia e carbono orgânico
Tabela 9 Comparação entre modelos de calibração calculados com espectros NIRS em A e K-M
Tabela 10 Variância dos dados espectrais de NIRS explicada para as 10 PCs e erros de calibração e validação da PCA 74
Tabela 11 Variância dos dados espectrais de DRIFTS explicada pelas 10 PCs e erros de calibração e validação da PCA
Tabela 12 Variância dos dados de textura explicada pelas 3 PCs e erros de calibração e validação da PCA 79
Tabela 13 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para Argila
Tabela 14 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para Silte82
Tabela 15 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para Areia
Tabela 16 Valores medidos de referência e preditos pelo modelo MATAS NIRS para Argila, Silte e Areia 83
Tabela 17 Variância dos dados de matéria orgânica explicada pelas 3 PCs e erros de calibração e validação da PCA 86
Tabela 18 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para COT
Tabela 19 Dados de validação cruzada e externa para os aos modelos de calibração em NIRS e DRIFTS para CT
Tabela 20 Dados de validação cruzada e externa para os aos modelos de calibração em NIRS e DRIFTS para NT
Tabela 21 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para C/N 90
Tabela 22 Valores medidos de referência e preditos pelos modelos CNPAF DRIFTS (COT E CT) E MATAS. 91
Tabela 23 Variância dos dados de biomassa microbiana explicada pelas 6 PCs e erros de calibração e validação da PCA 95
Tabela 24 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para C _{MIC} 98
Tabela 25 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para N _{MIC}
Tabela 26 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para RB.98
Tabela 27 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para qCO ₂
Tabela 28 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para C/N _{MIC}
Tabela 29 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para qMIC
Tabela 30 Valores medidos de referência e preditos pelos modelos CNPAF DRIFTS (C _{MIC} e N _{MIC}) e MATAS

LISTA DE EQUAÇÕES

Equação 1 Reação de oxidação da matéria orgânica por dicromato de potássio em meio ácido	22
Equação 2 Reação de titulação do dicromato de potássio com sulfato ferroso	22
Equação 3 Expressão de Planck	29
Equação 4 Equação de Lambert-Beer	30
Equação 5 Equação de Kubelka-Munk	32
Equação 6 Equação de transformação de dados de reflectância para absorbância	33
Equação 7 Equação de regressão com vários comprimentos de onda derivada da equação de Lambert-Beer	40
Equação 8 Relação entre concentração e dados ópticos	41
Equação 9 Fórmula para cálculo do erro de validação cruzada	42
Equação 10 Fórmula para cálculo do erro percentual médio da validação externa	42
Equação 11 Fórmula para cálculo da umidade do solo	47
Equação 12 Fórmula para cálculo do teor de argila no solo	48
Equação 13 Fórmula para cálculo do teor de areia no solo	48
Equação 14 Fórmula para cálculo do teor de silte no solo	48
Equação 15 Fórmula para cálculo do teor de carbono orgânico total no solo	50
Equação 16 Reação de captura do CO ₂ pela solução de hidróxido de potássio	50
Equação 17 Reação de precipitação de BaCO3	51
Equação 18 Reação de titulação de KOH com HCl	51
Equação 19 Fórmula para a determinação da respiração basal do solo	52
Equação 20 Fórmula para o cálculo do teor de carbono microbiano no solo	53
Equação 21 Fórmula para o cálculo do teor de nitrogênio microbiano no solo	53

LISTA DE ABREVIATURAS E SIGLAS

C _{MIC}	Carbono microbiano
CN total	Razão CT / NT
CN _{MIC}	Razão C_{MIC} / N_{MIC}
CNPAF	Centro Nacional de Pesquisa em Arroz e Feijão
СОТ	Carbono orgânico total
CPPSE	Centro Nacional de Pesquisa em Pecuária Sudeste
СТ	Carbono total
CTC	Capacidade de troca de cátions
CV	Coeficiente de variação
DRIFTS	Diffuse reflectance Fourier Transformed Spectroscopy
FTIR	Espectroscopia no infravermelho com Transformada de Fourier
IARC	International Agency for Research on Cancer
Kc	Constante de velocidade da reação de mineralização de carbono
MO	Matéria orgânica
MOS	Matéria orgânica do solo
NIRS	Near Infrared Spectroscopy
N _{MIC}	Nitrogênio microbiano
NT	Nitrogênio total
PC	Componente principal
PCA	Analise de componentes principais
PLS	Cálculo dos mínimos quadrados parciais
PRESS VAL	Soma dos quadrados dos erros de validação cruzada
qCO ₂	Quociente metabólico
qMIC	Quociente microbiano
RVC	Coeficiente de regressão obtido com validação cruzada
RVE	Coeficiente de regressão obtido com validação externa
SEV	Erro de validação cruzada
SH	Substâncias húmicas
TOC	Total organic carbon
VIS	Região do espectro da luz correspondente à faixa visível
Y FIT	Ajuste dos dados preditos à linha identidade com dados de referência

Espectroscopia no infravermelho próximo e médio na quantificação de atributos do solo, com ênfase na matéria orgânica e na biomassa

microbiana

Autora: Tatiana Maris Ferraresi

Orientador: Dr. Ladislau Martin Neto

RESUMO

A matéria orgânica e a biomassa microbiana do solo consistem em sensíveis indicadores de qualidade do solo e de seus estoques de carbono e nitrogênio que, juntamente com a textura, têm auxiliado na escolha de formas de manejo agronômico mais sustentáveis. Os métodos disponíveis para a determinação da matéria orgânica (Walkley-Black modificado da EMBRAPA SOLOS, 1997) e da biomassa microbiana (Vance et al., 1987a) têm sido largamente utilizados, porém possuem alguns inconvenientes como a geração de resíduos altamente tóxicos e a grande demanda de tempo para analisar um pequeno número de amostras. A espectroscopia, por sua vez, tem se mostrado uma alternativa mais rápida e limpa para a identificação e quantificação de compostos orgânicos. Por esse motivo, este trabalho teve como objetivo testar métodos espectroscópicos, tanto no infravermelho próximo (NIRS) quanto no médio com refletância difusa (DRIFTS), com o uso de calibração multivariada, para a quantificação destes indicadores. Os teores de argila, silte, areia, carbono orgânico total e carbono microbiano, assim como o quociente microbiano (C_{MIC}/COT), foram espectrometricamente preditos de modo satisfatório. Em geral, obtiveram-se melhores resultados utilizando DRIFTS.

Near and Mid-infrared spectroscopy for quantification of soil attributes focusing organic matter and microbial biomass

Author: Tatiana Maris Ferraresi

Adviser: Dr. Ladislau Martin Neto

ABSTRACT

Organic matter and microbial biomass are sensible ways to indicate soil quality as well as carbon and nitrogen stocks. These properties, added to clay, silt and sand contents, have been helped to choose sustainable agronomic soil managements. Current methods for organic matter (Walkley-Black modified by EMBRAPA SOLOS, 1997) and microbial biomass (Vance et al., 1987a) determinations have been widely used despite the generation of toxic waste and large time requirement for analyzing a small number of samples. Spectroscopy, in turn, has been shown a clean and rapid alternative method for this purpose. Thus, the aim of the study was to evaluate the near-infrared reflectance spectroscopy (NIRS) and the mid-infrared diffuse reflectance spectroscopy (DRIFTS) on soil organic matter, microbial biomass and texture determination. Clay, silt, sand, total organic carbon and microbial carbon contents as even as microbial quotient are accurately quantified by infrared spectroscopy. In general, DRIFTS provided better results.

1 INTRODUÇÃO

O Brasil tem uma grande variedade de solos – mais de 30 tipos de acordo com o IBGE (2005, Anexo I) – a maioria com grande aptidão agrícola, somando uma área de pelo menos 200 milhões de hectares de terras agricultáveis (LIMA; CAPOBIANCO, 2009; RODRIGUES, 2009). Desde os primórdios da colonização, a agricultura é a principal atividade econômica do país, sendo responsável ainda por 25% do Produto Interno Bruto, o que torna o Brasil candidato a "celeiro do mundo" (¹CERRI, 2009; ²FRANÇA, 2009).

Tendo em vista a sua importância econômica e também social, a agricultura necessita cada vez mais estabelecer estratégias de manejo adequado do solo e da biodiversidade que considerem sua aptidão e potencial de uso (LEONARDO, 2003).

O emprego de processos agrícolas intensivos em insumos energéticos – como fertilizantes, mecanização (ex. aração e gradagem), irrigação e pesticidas – provoca, direta e indiretamente, um aumento da emissão de gases de efeito estufa. Além disso, as práticas de ocupação de terras e transformação do uso e cobertura vegetal, como desmatamentos e queimadas, também contribuem para grande parte dessas emissões (EMBRAPA SOLOS, 2009).

Na mesma velocidade e amplitude em que ocorrem as transformações ambientais e climáticas, cresce a demanda por indicadores de qualidade. A expectativa é que eles permitam monitorar e, de alguma forma, antever os danos, a fim de evitar impactos negativos ao meio ambiente. A partir do conhecimento de tais conseqüências, é possível selecionar práticas que mantenham maiores estoques de matéria orgânica no solo e que reduzam a emissão de gases de efeito estufa.

¹ Informação fornecida por: TRAVELIN, C. **Agricultura de baixo carbono**, 2009. Disponível em: http://mercadoetico.terra.com.br/arquivo/agricultura-de-baixo-carbono. Acesso em: 21 jan. 2010.

² Informação fornecida por: COSTA, N. **Embrapa e o "celeiro do mundo"**, 2009. Disponível em: http://www.alerta.inf.br/agropecuaria/1504.html>. Acesso em: 21 jan. 2010.

Por sua sensibilidade e correlação com a fertilidade e estrutura de agregados do solo, a matéria orgânica e sua fração viva predominante, a biomassa microbiana, tornam-se elegíveis como indicadores da qualidade do solo, com grande utilidade no monitoramento das mudanças nos estoques de carbono (ISLAM; WEIL, 2000). Entretanto, os métodos atualmente utilizados para esta quantificação não oferecem resultados satisfatórios quanto à confiabilidade e precisão. Ademais, envolvem experimentos demorados e de difícil execução quando se trata de um número grande de amostras.

Nesse contexto, a espectroscopia de refletância difusa nas regiões do infravermelho próximo (NIRS) e infravermelho médio (DRIFTS) tem sido indicada para a análise de solos por ser um método não destrutivo, rápido e de custo baixo (VISCARRA-ROSSEL et al., 2006). Tal tipo de espectroscopia permite uma ampla caracterização da matéria orgânica, detectando vários compostos em uma mesma análise. Desde 1995 (BEM-DOR; BANIN, 1995), a espectroscopia no infravermelho tem ganhado muita atenção na quantificação de componentes de solos, como carbono total (CT) (MCCARTY et al., 2002), carbono orgânico (COT) (MADARI et al., 2005, 2006a), carbono inorgânico (MCCARTY et al., 2002; CHANG; LAIRD, 2002), carbono microbiano (C_{MIC}) e nitrogênio microbiano (N_{MIC}) (REEVES III; MCCARTY, 2001; JANIK et al., 1998).

Ao contrário das análises químicas convencionais, as análises espectroscópicas não implicam o uso intensivo de reagentes químicos – em sua maioria tóxicos à saúde humana e ao meio ambiente – e, consequentemente, não produzem resíduos de difícil tratamento que se tornam um passivo ambiental.

Atualmente, já existem vários trabalhos publicados (CHANG et al., 2001; LUDWIG et al., 2002; COÛTEAUX et al., 2003; MADARI et al., 2005; MADARI et al., 2006; VISCARRA-ROSSEL et al., 2006) que tiveram como objetivo desenvolver bibliotecas de espectros e calibrações em infravermelho para a quantificação das propriedades do solo. No

entanto, poucos deles relacionam a espectroscopia com a atividade biológica do solo (COÛTEAX et al., 2003).

A possibilidade de utilizar técnicas espectroscópicas em substituição aos métodos convencionais de determinação da biomassa microbiana depende do desenvolvimento de modelos preditivos, que têm sido propostos não só para este parâmetro, mas também para a respiração do solo, e ajustados para algumas atividades enzimáticas (COÛTEAUX et al., 2003).

MADARI et al. (2005, 2006a), usando NIRS e DRIFTS, obtiveram bons resultados nas calibrações para carbono total e orgânico de solos brasileiros. No entanto, não foram encontrados relatos na literatura de calibrações para carbono e nitrogênio da biomassa microbiana em solos brasileiros.

Com o enfoque voltado para a manutenção e melhoria da qualidade do solo e o incremento eficiente no estoque de carbono, as pesquisas envolvendo técnicas de manejo (como plantio direto, agricultura orgânica, integração lavoura-pecuária e sistemas agroflorestais) necessitam de suporte na sua avaliação temporal e espacial, após uso de diversos manejos do solo, espécies culturais e adubação verde. Tais estudos requerem a análise de um grande número de amostras para cada área avaliada.

Dessa forma, o advento e o aperfeiçoamento das técnicas espectroscópicas para análises quantitativas vêm demonstrando seu potencial em auxiliar no entendimento dos processos relacionados com a dinâmica da matéria orgânica, após ação antrópica no sistema, significando agregação de qualidade e rapidez aos estudos.

2 REVISÃO DA LITERATURA

2.1 O solo

O solo, juntamente com os fatores edáficos, é a base de sustentação da pedosfera, onde se distribuem os ecossistemas (MOREIRA; SIQUEIRA, 2006), sendo capaz de suportar grande parte da vida da Terra, especialmente a espécie humana. Consiste no maior reservatório de elementos e substâncias que supre as necessidades nutricionais de plantas e animais e de onde provém alimentos, fibras, materiais para construção de habitações e equipamentos (ESSINGTON, 2004). Aliás, o solo funciona como uma máquina recicladora, recebendo restos de seres mortos e resíduos de atividades urbanas e agrícolas (MOREIRA; SIQUEIRA, 2006).

Os solos brasileiros estão localizados, em sua maioria (73%), na região do bioma Cerrado, a uma altitude entre 300 e 900 metros, sendo o latossolo o tipo predominante (46%). Esses solos são profundos, bem estruturados, com alta porosidade, considerados de grande potencial agrícola para produção de culturas anuais e perenes e também para pastagens (FERREIRA, M. et al., 1999; RESCK et al., 2008; EBERHARDT et al., 2008).

O solo é composto, além de porções de ar e água, de uma fração mineral e uma orgânica, sendo a primeira, que geralmente corresponde a 45% em solos minerais, constituída majoritariamente de elementos como silício, alumínio e ferro em diferentes formas: sílica SiO₂, alumina Al₂O₃, magnetita Fe₂O₄, hematita Fe₂O₃, goetita FeO(OH), caulinita Al₂SiO₅(OH)₄, gibbsita Al₂O₃.3H₂O, vermiculita (MgFe,Al)₃(Al,Si)₄O₁₀(OH)₂.4H₂O e montmorilonita $M_x(Al_{4-x}Mg_x)Si_8O_{20}(OH)$ (ESSINGTON, 2004). Alguns desses são argilominerais, que, em associação com a matéria orgânica, formam as partículas de argila, ao passo que a sílica (tetraedros de dióxido de silício) pode se organizar na forma de cristais de quartzo, material resistente à decomposição, constituindo partículas de areia.

Os minerais do solo também podem ser classificados em termos de tamanho de partícula (diâmetro médio): areia (>1mm), silte (1mm a 56µm) e argila (<56µm). A distribuição relativa dessas partículas no solo é denominada textura (MARCOLIN, 2006).

A textura dos latossolos brasileiros é principalmente argilosa, sendo a caulinita, a gibbsita, a goethita e a hematita, minerais com baixa capacidade de troca de cátions (CTC), os principais minerais da fração argila desses solos (FERREIRA, M. et al.1999).

O arranjo das partículas do solo e o espaço poroso formado entre elas resultam em agregados com forma e tamanho variáveis: os microagregados (com diâmetro menor que 250µm) e os macroagregados (com diâmetro maior que 250µm). Acredita-se que um solo adequado para o crescimento de plantas deva conter agregados com diâmetro entre 1 e 10 mm, que permaneçam estáveis quando molhados e contenham grande quantidade de poros com mais de 75 µm de diâmetro, para permitir a aeração, e alguns poros com 20-30µm, para reter água. O processo de agregação envolve a ação de fatores bióticos e abióticos, como pode ser observado através da estrutura de um agregado (MOREIRA; SIQUEIRA, 2006).

A Figura 1 ilustra o papel exercido pela matéria orgânica (MOS) e pelos microrganismos na qualidade estrutural do solo, promovendo a adesão das partículas com produção de substâncias cimentantes, como os polissacarídeos de alta viscosidade e as substâncias húmicas (CANELLAS et al, 2008; MOREIRA; SIQUEIRA, 2006).

Figura 1 Estrutura de um agregado de solo com destaque ao papel cimentante e agregador da matéria orgânica e dos microrganismos em interação com partículas de areia e argila. Fonte: Moreira e Siqueira, 2008.

2.2 A matéria orgânica do solo

Algumas propriedades do solo influenciadas pelo teor de matéria orgânica são: a estabilidade dos agregados, a disponibilidade de nutrientes e a retenção de água no solo. Solos com textura média a argilosa, moderadamente drenados e com alta atividade microbiana, geralmente apresentam grande quantidade de agregados estáveis. Estes agregados, por sua vez, protegem fisicamente a matéria orgânica, e, juntamente com os óxidos de ferro (que se associam quimicamente a ela), constitui fator que contribui para os estoques de MOS (ANJOS et al., 2008).

O preparo inadequado do solo para o plantio com o uso de gradagem, queimadas e desmatamento destroi os macroagregados, expõe a MOS à oxidação, aumenta a emissão de gases de efeito estufa como CO₂, CH₄, NO₂, ocasiona a perda de umidade, elimina parte da biomassa microbiana e rompe o equilíbrio dos ciclos de nutrientes. Por outro lado, sistemas conservacionistas como o plantio direto, integração de lavouras e agroflorestas utilizam um revolvimento mínimo do solo e permitem um contínuo aporte de matéria orgânica ao solo, mantendo os serviços ecológicos prestados pelos organismos vivos e contribuindo para a preservação da qualidade desses recursos e sustentabilidade da produção agrícola (MOREIRA; SIQUEIRA, 2006; BOT; BENITES, 2005).

A matéria orgânica do solo engloba os resíduos vegetais em estágios variados de decomposição, a biomassa microbiana, a fauna, as raízes e a fração mais estável, denominada húmus (BAYER; MIELNICZUK, 2008). Do total de 5% representado pelo conteúdo orgânico do solo, a maior parte é composta de substâncias recalcitrantes que formam o húmus e o restante corresponde à MOS prontamente mineralizável (CERRI, 2008).

2.2.1 A matéria orgânica humificada

O húmus consiste na matéria orgânica morta e decomposta, que já sofreu vários processos de hidrólise, oxidação, redução e síntese pelos microrganismos. As substâncias

húmicas (SH) possuem estruturas complexas, ainda não totalmente conhecidas, envolvendo ácidos carboxílicos, fenólicos, aromáticos e alifáticos anfifílicos. Durante o processo de humificação, ocorre um aumento de compostos aromáticos e uma redução de ligações C-O de carboidratos, característica que contribui para a resistência à biodegradação do húmus (SEGNINI, 2007).

De acordo com a solubilidade em soluções ácidas e alcalinas, as SH são divididas operacionalmente em ácidos húmicos, ácidos fúlvicos e humina. A extração do húmus do solo com hidróxido de sódio 0,5 mol L⁻¹ solubiliza as frações ácido fúlvico e ácido húmico, enquanto que a humina permanece no solo (ESSINGTON, 2004). As frações remanescentes na solução, em seguida, são separadas pela precipitação dos ácidos húmicos em meio ácido.

A reatividade química das SH pode ser medida pela sua acidez total, calculada pela soma de grupamentos carboxílicos (COOH) e fenólicos (Ar-OH). Os hidrogênios dos grupos COOH são dissociados a partir de pH 3,0 no solo, enquanto que a desprotonação das hidroxilas fenólicas ocorre em torno de pH 9,0, sendo esses dois grupos responsáveis por 95% da acidez das SH. A presença de cargas variáveis confere às substâncias húmicas a habilidade de participar de grande parte das reações do solo (CANELLAS et al., 2008).

A capacidade de troca de cátions (CTC) da matéria orgânica aumenta com a elevação do pH, em função da ionização dos grupos ácidos citados. Em comparação com alguns minerais de argila como caulinita (3-5 cmol_c Kg⁻¹ - centimol de carga por quilograma) e montmorilonita (80-150 cmol_c Kg⁻¹), as SH apresentam CTC que varia de 400 a 1400 cmol_c Kg⁻¹ (CANELLAS et al., 2008).

Em solos mais intemperizados, as substâncias húmicas contribuem de forma significativa para a densidade de cargas negativas de superfície. Em solos antigos que possuem um alto teor de argila, o maior conteúdo da fração ácidos fúlvicos explica sua contribuição mais significativa para a CTC nesses solos (CANELLAS et al., 2008).

Essas características das SH explicam a grande influência da matéria orgânica em funções vitais para o solo, como a absorção e retenção de água, retenção de calor e controle do pH pelo efeito tampão ocasionado por essas substâncias.

2.2.2 A matéria orgânica não-humificada

A fração mais lábil da MOS é composta por moléculas bem conhecidas como aminoácidos, carboidratos, proteínas, ácidos orgânicos, que estão presentes principalmente nos organismos vivos: na fauna (10%) e nos microrganismos como fungos (50%), bactérias e actinomicetos (30%), leveduras, algas, protozoários e nematóides (10%) (CERRI, 2008). Portanto, a maior parte da matéria orgânica viva é representada pela biomassa microbiana, definida como o somatório de todos os organismos do solo menores que 5 x $10^3 \mu m^3$, incluindo, além de fungos e bactérias, as leveduras, os actinomicetos e alguns protozoários (JENKINSON; LADD, 1981).

Produtos do metabolismo de microrganismos no solo, tais como ácidos orgânicos e inorgânicos, substâncias alcalinas (amônia ou aminas) e polissacarídeos extracelulares, além de cátions ligantes, são os principais responsáveis pelo intemperismo de silicatos e aluminosilicatos presentes nas rochas. A contribuição da MOS e da atividade microbiana na gênese dos latossolos se dá, essencialmente, através da produção de ácido carbônico (H₂CO₃), promovendo uma dissolução maior de silício em relação ao ferro e alumínio (ANJOS et al., 2008).

Substâncias de baixa massa molar como os monômeros provenientes da catálise enzimática de macromoléculas, realizada no meio extracelular, são absorvidas e metabolizadas pelos organismos microbianos. Esta é a última etapa da decomposição da matéria orgânica denominada mineralização, pois resulta em produtos inorgânicos como CO₂, NH₃, NO₃⁻, H₂PO₄⁻, HPO₄²⁻ e SO₄²⁻, os quais podem ser utilizados pelas plantas e pelos próprios microrganismos (MOREIRA; SIQUEIRA, 2006). O fluxo de elementos como carbono (C), nitrogênio (N), fósforo (P) e enxofre (S) ocorre através do sistema solo-água-planta-atmosfera, compondo alternadamente moléculas bióticas e abióticas dentro dos chamados ciclos biogeoquímicos (FEIDEN, 2005). As transformações dos elementos estão fortemente ligadas às transformações do carbono orgânico, o que explica em parte alterações sofridas por esses ciclos pela influência do clima e pela ação antrópica (MOREIRA; SIQUEIRA, 2006).

2.3 Estoques de carbono e nitrogênio

No processo de fotossíntese, os vegetais assimilam o dióxido de carbono (CO_2) e, na presença de minerais e água, transformam esse gás em biomassa vegetal. Em média 58% dessa biomassa é carbono (C), que compõe as folhas, caules, frutos e raízes (RESCK et al., 2008).

A quantidade de carbono orgânico no solo é uma função do balanço entre a velocidade de deposição de resíduos vegetais e a velocidade de mineralização desses resíduos pela biota (BALDOCK; NELSON, 1999). Em geral, há duas vezes mais carbono no solo do que a soma das quantidades encontradas na atmosfera ($7x10^{14}$ Kg) e na biomassa vegetal ($4,8x10^{14}$ Kg) (BOLIN; COOK, 1983).

Nos latossolos, os teores de carbono orgânico situam-se na faixa de 2 a 5 g Kg⁻¹; já em organossolos, o teor mínimo é de 80 g Kg⁻¹ de solo (EMBRAPA SOLOS, 2006).

O nitrogênio também está presente no solo, preferencialmente na forma orgânica (BOLIN; COOK, 1983). Por esse motivo, a MOS é considerada uma reserva de nitrogênio para solos agrícolas. O teor de N em latossolos varia de 1,1 a 1,8 g Kg⁻¹ na camada de 0-15 cm (RESCK et al., 2008).

O nitrogênio é um dos nutrientes mais limitantes para o crescimento de plantas e animais no sistema terrestre e aquático. Apesar de este elemento estar presente em grandes concentrações nas rochas, sedimentos e na atmosfera, a sua disponibilidade em formas viáveis para os organismos vivos é limitada (BOLIN; COOK, 1983; CAMARGO et al., 2008).

A biodisponibilidade do nitrogênio depende da mineralização exercida pela atividade microbiana, cuja taxa é medida pela produção de amônio e nitrato. As reações de amonificação e nitrificação transformam, em média, de 2% a 5% do N orgânico por ano. A predominância do N orgânico no balanço de nitrogênio no solo se deve, principalmente, à elevada resistência de alguns compostos orgânicos nitrogenados como aminoácidos, peptídeos e proteínas ao ataque microbiano. Estes compostos se encontram, muitas vezes, estabilizados por reações com ligninas, taninos, quinonas e açúcares redutores. A adsorção por partículas de argila também os protege da ação das proteinases (CAMARGO et al., 2008).

A presença de materiais resistentes à decomposição no solo é caracterizada por uma alta razão C/N (>30). À medida que o resíduo orgânico é mineralizado, parte do carbono é liberado e esta relação diminui, disponibilizando mais nitrogênio, que é ao mesmo tempo imobilizado pelos microrganismos. A biomassa microbiana contribui muito para a demanda de N, sendo sua razão C/N em média 10:1 (MOREIRA; SIQUEIRA, 2006).

2.4 Métodos de quantificação da matéria orgânica

A quantificação da matéria orgânica do solo normalmente é feita a partir da determinação, em laboratório, do conteúdo de carbono orgânico (COT). A fórmula comumente empregada é: M.O. (g Kg⁻¹) = 1,724 x COT, face ao conceito de que o teor de carbono da matéria orgânica do solo é igual a 58% desta (EMBRAPA SOLOS, 1997). Entretanto, apesar de sua ampla aplicação, este fator varia conforme determinadas características do solo (CONCEIÇÃO et al., 1999). Resultados encontrados na literatura indicam fatores variando de 1,55 a 2,13 (JACKSON, 1982). Avaliações feitas por Broadbent (1953) indicam valores de 1,9 para amostras superficiais de solos e 2,5 para subsolos.

O método de Walkley-Black modificado (JACKSON, 1982), inserido no Manual de Métodos de Análise de Solo (EMBRAPA SOLOS, 1997), consiste na oxidação do carbono

orgânico do solo pelo cromo na forma de Cr^{6+} , na presença de ácido sulfúrico concentrado, na qual o excesso de Cr^{6+} é titulado com Fe²⁺ (CONCEIÇÃO et al., 1999). As reações de oxidação e titulação são apresentadas nas Equações 1 e 2, respectivamente (ESSINGTON, 2004).

Este método é ainda hoje o mais empregado em laborátorios de solos devido à simplicidade e ao baixo custo, porém apresenta problemas analíticos e ambientais, devido ao uso de cromo, que é um metal tóxico solúvel de comprovado efeito cancerígeno, classificado no grupo I pela IARC (International Agency for Research on Cancer) (TERRA FILHO; SATOSHI, 2006).

O procedimento, com abertura da amostra por via úmida, também não é capaz de detectar as formas de carbono do solo que se encontram mais protegidas ou complexadas com a fração mineral do solo, ocorrendo apenas uma oxidação parcial da matéria orgânica (SEGNINI et al., 2008). Já na determinação do conteúdo total de carbono (CT) geralmente são recuperadas todas as formas de carbono orgânico e inorgânico, convertendo-as, em seguida, para dióxido de carbono (CO₂) por meio de combustão seca ou úmida. O CO₂ liberado é quantificado por meio de técnicas gravimétricas, titulométricas, volumétricas, espectrométricas ou cromatográficas (SILVA et al., 1999).

Tais métodos alternativos são relativamente rápidos, mas também apresentam problemas de exatidão (SEGNINI et al., 2008). O método da mufla, por exemplo, tem a vantagem de ser simples, mas está suscetível a erros de quantificação devido à decomposição de caulinita e de óxidos, como a gibbsita e a goetita, juntamente com a matéria orgânica (TABATABAI, 1996; MADARI; REEVES, 2008; SCHUMACHER, 2002).

A metodologia de quantificação de carbono orgânico total (TOC) em amostras líquidas

e sólidas por combustão é uma análise rápida, altamente reprodutível e facilmente automatizada (SEGNINI et al., 2008). Entretanto, outro método, semelhante ao TOC, é considerado atualmente como padrão internacional, no qual se utiliza um analisador elementar que quantifica o CO_2 desprendido a partir da combustão de amostras sólidas, usando O_2 atmosférico, a temperaturas superiores a 950°C. Um catalisador converte o CO em CO_2 e sua quantificação é feita por meio de um detector de condutividade térmica (SILVA et al., 1999).

A utilização de analisadores elementares automáticos trouxe avanços consideráveis, permitindo análises rápidas e confiáveis. Contudo, os custos de cada análise e da manutenção dos equipamentos são elevados (SEGNINI et al., 2008).

Em experimento realizado por Segnini et al. (2008), com o objetivo de comparar diversos métodos de quantificação da matéria orgânica do solo, concluiu-se que, dentre os métodos Walkley-Black, TOC e Análise Elementar, o TOC apresentou desvios menores. De acordo com os autores, isso pode ser explicado pelo fato de que no método TOC utiliza-se uma maior massa comparada à análise elementar, além de promover uma oxidação mais eficiente quando comparado com o método Walkley-Black. Outra explicação pode ser que o detector de infravermelho acoplado ao TOC seja mais sensível ao CO₂ do que o detector por condutividade térmica utilizado pelo analisador elementar. A especificidade do primeiro pode ser uma vantagem, porém o segundo se torna mais versátil, sendo útil na quantificação de outros elementos simultaneamente.

Segundo Nelson e Sommers (1996), frações orgânicas resistentes, como carvão presente no solo e parte da humina, não são oxidados pelo dicromato de potássio. A oxidação parcial da MOS pelo método de Walkley-Black fez com que os valores obtidos por Segnini et al. (2008) fossem em média 22,9 e 17,7% menores que aqueles observados via TOC e Análise Elementar, respectivamente.

2.5 Quantificação dos microrganismos do solo

Os primeiros métodos utilizados na quantificação de microrganismos do solo consistiam na contagem direta do número de células em meios de cultura e o cálculo da biomassa era realizado através da determinação dos volumes celulares e da densidade média das estruturas vivas.

A quantificação da população microbiana nos solos tem sido feita tradicionalmente com base no isolamento dos microrganismos em meios de cultura. Esse método fornece informações sobre os grupos de microrganismos viáveis e cultiváveis em uma amostra de solo, mas tende a selecionar populações com taxas de reprodução mais elevadas em meios de cultura com altas concentrações de nutrientes e em condições aeróbias. Da mesma forma, fungos com alta capacidade de produção de esporos também são favorecidos (LAMBAIS et. al, 2005; KIRK et al., 2004).

Várias outras limitações metodológicas estão associadas à cultura de microrganismos *in vitro*, como: dificuldades em desalojar microrganismos associados a biofilmes e partículas do solo, condições ótimas para crescimento e interações negativas entre as colônias de microrganismos (LAMBAIS et. al, 2005; KIRK et al., 2004).

A microscopia direta dessas células também é possível, mas raramente utilizada em amostras naturais de solo devido à dificuldade operacional e maior tempo de execução dos procedimentos. Entretanto, é útil quando se comparam diferentes metodologias para aferição da biomassa (DE-POLLI; GUERRA, 2008).

A dificuldade para discriminação entre microrganismos vivos e mortos torna-se uma limitação, visto que na estimativa da biomassa microbiana do solo deve ser considerada a massa viva de microrganismos, além de ser difícil diferenciar partículas microscópicas do solo de células microbianas (DE-POLLI; GUERRA, 2008). Na impossibilidade da obtenção de uma medida quantitativa exata da população microbiana total em um ecossistema, por

métodos culturais ou por microscopia direta, foram desenvolvidos outros métodos capazes de avaliar a massa dos microrganismos (CARDOSO, 2004).

2.5.1 Métodos de determinação da biomassa microbiana

A quantificação da biomassa microbiana foi descrita primeiramente por Jenkinson e Powlson (1976), que utilizaram o método de incubação após fumigação de amostras de solo com vapor de clorofórmio. Este processo ocasiona o rompimento das células presentes e, em seguida, a sua decomposição por aquelas sobreviventes à fumigação ou por novas células provenientes de inóculo de solo fresco. Os procedimentos envolvem a medida da emanação do dióxido de carbono nas amostras fumigadas, assim como em amostras testemunhas nãofumigadas, após 10 dias de incubação. O carbono microbiano pode ser estimado dividindo-se esse valor por um fator de mineralização do carbono (Kc), que pode variar de acordo com a proporção de fungos e bactérias, com a idade dos organismos e com a umidade das amostras de solo.

Existe uma marcante influência dos fatores ambientais neste método, principalmente porque a taxa de mineralização é muito dependente das condições da incubação, como temperatura, umidade e natureza do solo. Ademais, esse método não é recomendado para solos ácidos porque se torna necessário o uso de um inóculo grande e, consequentemente, a utilização de outro fator de correção para a mineralização do carbono da sua própria biomassa (VANCE et al., 1987b; CARDOSO, 2004).

A respiração basal, valor obtido da medição de dióxido de carbono durante um período de incubação sem a prévia fumigação nem inoculação, reflete a atividade microbiana (BALOTA et al., 1998). A quantidade de carbono da biomassa microbiana correlaciona-se bem com a evolução do CO₂ liberado pela respiração, conforme observado por Conceição et al. (2005). O método proposto por Anderson e Domsch (1978) baseia-se nesta correlação e biomassa para calcular o carbono microbiano por meio da transformação da

taxa máxima de respiração inicial após adição de glicose. O CO_2 liberado pode ser medido (1) pela adição de frasco contendo um volume conhecido de solução alcalina, como hidróxido de sódio ou de potássio, juntamente com as amostras durante a incubação, ou (2) através de cromatógrafo gasoso com detecção em infravermelho, método rápido e conveniente, segundo Sparling e Ross (1993), para solos com pH acima de 6,5.

A quantidade de glicose requerida para ativar a máxima taxa respiratória inicial varia grandemente, dependendo das propriedades físicas e químicas dos solos, devendo ser determinada para cada tipo de solo (CARDOSO et al., 2004; LIN; BROOKES, 1999; FISK et al., 2003). Entretanto, a principal desvantagem do método de respiração induzida está relacionada com o processo de conversão de CO_2 em C_{MIC} , cujo fator e curva podem variar sensivelmente em diferentes tipos de solo (CARDOSO et al., 2004; GRISI, 1997; JENKINSON; LADD, 1981).

Segundo Balota et al. (1998), a quantidade de CO_2 liberado por unidade de biomassa microbiana em determinado tempo denomina-se quociente metabólico, expresso em (µg CO_2) (mg C_{MIC}^{-1}) h⁻¹. Este quociente mede a taxa de metabolização da matéria orgânica pelos microrganismos, sendo considerado importante na avaliação dos efeitos das condições ambientais sobre a população microbiana do solo (ANDERSON; DOMSCH, 1993).

Para Insam e Domsch (1988), o quociente metabólico diminui em agroecossistemas mais estáveis; porém, com a substituição da cobertura vegetal, ocorre decomposição mais acelerada dos resíduos vegetais e ele tende a aumentar. Maiores valores são encontrados em condições ambientais estressantes, nas quais a biomassa microbiana utiliza mais carbono para sua manutenção. Segundo Gama-Rodrigues (2008), à medida que a biomassa microbiana se torna mais eficiente, menos carbono é perdido como CO₂ pela respiração e uma fração significativa de carbono é incorporada ao tecido microbiano. Por esse motivo, solos com baixo quociente metabólico estão próximos ao estado de equilíbrio (SOUZA et al. 2006).

Tanto o método fumigação-incubação quanto a respiração induzida por glicose utilizam a taxa de mineralização, ou seja, transformação do carbono orgânico em CO₂, para o cálculo do carbono microbiano. Esta taxa é muito dependente das condições da incubação, como temperatura, umidade e natureza do solo.

Vance et al. (1987a) minimizaram essas influências ambientais obtendo extratos de solo com sulfato de potássio 0,5 mol L⁻¹ após a fumigação. Esse método é particularmente útil em solos ácidos e orgânicos de florestas e em solos secos reidratados, onde o método de fumigação-incubação mostra limitações (WARDLE, 1994). A extração direta das amostras fumigadas e não-fumigadas não sofre interferência das condições ambientais, pois não depende do crescimento microbiano como o método fumigação-incubação. Além disso, é possível quantificar não só o carbono microbiano, mas também outros elementos importantes como nitrogênio, fósforo e enxofre. Entretanto, este método está sujeito à variabilidade da eficiência da extração e do rompimento das células na fumigação.

A quantificação do carbono orgânico extraído pode ser realizada por dicromatometria, método mais comum, espectrofotometria em ultravioleta ou com o uso de analisador de carbono solúvel. Já o nitrogênio presente nos extratos pode ser determinado através do método Kjeldahl, empregando o procedimento destilação/titulação, ou por análise de injeção em fluxo com leitura da absorbância no visível, sendo o primeiro mais utilizado. O C_{MIC} e N_{MIC} são calculados subtraindo-se o valor das amostras fumigadas das não-fumigadas.

A técnica titulométrica denominada dicromatometria, utilizada tanto para a quantificação do carbono orgânico total quanto para o carbono da biomassa microbiana do solo, resulta em resíduo prejudicial à saúde e ao meio ambiente e de difícil tratamento em escala laboratorial. Da mesma forma, a quantificação de nitrogênio orgânico total e microbiano pelo método Kjeldahl implica problemas ambientais, pois envolve o uso de solução altamente alcalina e uma digestão sulfúrica a altas temperaturas. Além disso, o

método Kjeldahl, apesar de muito preciso, consome muito tempo (NOGUEIRA; SOUZA; BATISTA, 1996).

Pode-se calcular a razão entre o carbono e o nitrogênio microbianos, assim como a razão C/N no solo, o que fornece informações sobre as espécies que compõem essa biomassa e seu estágio de amadurecimento. Jenkinson e Ladd (1981) relataram que fungos e bactérias possuem razões C/N consideravelmente diferentes. As hifas fúngicas possuem normalmente razão C/N na faixa de 10 a 12, enquanto que nas bactérias este valor varia entre 3 e 5. Assim, uma alta relação C/N indica uma predominância de fungos na biomassa microbiana e vice-versa (IBOMCHA, 2006; CAMPBELL, 1991).

2.6 Espectroscopia

Newton, em 1666, observou o espectro da luz visível, correspondente ao arco-íris, através de um experimento de separação dos seus componentes com um prisma. Esta visualização corresponde a apenas uma parte do espectro eletromagnético (BARBOSA, 2007), como pode ser observado na Figura 2.

Figura 2 Espectro da luz. Adaptada de: Taiz e Zeiger, 2009.

Trabalhos de Planck, Bohr e Einstein demonstraram que a onda eletromagnética expressa o movimento de fótons de energia. De acordo com a expressão de Planck (Equação 3), cada comprimento de onda carrega uma quantidade discreta de energia (BARBOSA, 2007).

$$E = hc\lambda^{-1}$$
 (Equação 3)

onde:

E = energia luminosa de um fóton (J) c = velocidade da luz (3 x 10^8 m s⁻¹) h = constante de Planck (6,63 x 10^{-34} J s⁻¹) λ = comprimento de onda (m)

Assim, a luz pode interagir de diversas formas com os elementos e moléculas, sendo cada faixa de frequência relacionada com um nível de complexidade da matéria devido aos níveis de energia (Figura 3).

Figura 3 Relação entre níveis de energia, frequência da radiação eletromagnética e vibrações moleculares. Traduzida de: Whiffen, 1972.

O termo espectroscopia envolve o estudo dessa interação entre a radiação eletromagnética com a matéria. O comportamento das massas, submetidas à ação das ondas eletromagnéticas, também segue uma razão quantizada como apresentado pela lei de Beer-Lambert. Essa característica, expressa na Equação 4, onde a absorbância da luz por uma

substância está correlacionada com a concentração desta em determinado material, permite mensurar algumas propriedades de diferentes compostos.

A = $-\log (I/I_0) = -\log(T) = \varepsilon cl$ (Equação 4)

onde:

A = absorbância

I = intensidade da luz transmitida

- $I_0 = intensidade \ da \ luz \ incidente$
- T = transmitância
- ε = coeficiente de extinção molar (L mol⁻¹ cm⁻¹)
- c = concentração da substância absorvente (mol L⁻¹)
- l = comprimento do caminho óptico em (cm)

A relação da concentração com a absorbância é linear, porém com a transmitância não. A lei de Beer-Lambert é a base para a análise quantitativa por espectroscopia (WORKMAN, 1998).

2.6.1 Espectroscopia no infravermelho

Diferentemente das radiações nas regiões do ultravioleta e do visível, que, ao incidirem sobre uma molécula, causam transições eletrônicas, a radiação infravermelha promove alterações nos modos rotacionais e vibracionais das moléculas (BARBOSA, 2007). Por meio desta técnica espectroscópica podem ser observadas as oscilações do eixo (estiramentos) e do ângulo (deformações) das ligações entre os átomos de um grupamento funcional. Esses grupamentos podem ser identificados no espectro desde que apresentem um momento dipolo (diferença de polaridade entre os átomos de uma molécula), como, por exemplo, aqueles contendo oxigênio, largamente presente na matéria orgânica (CANELLAS et al., 2001). Os diversos tipos de vibrações moleculares são ilustrados na Figura 4.

Figura 4 Tipos de vibrações das ligações em uma dada molécula. Fonte: Ceretta et al., 2008.

Por ser capaz de refletir no espectro as características moleculares da amostra, os resultados obtidos com essa espectroscopia são considerados verdadeiras impressões digitais, no caso de substâncias puras. Entretanto, não somente substâncias puras, mas também células intactas, contendo no seu interior moléculas de DNA/RNA, proteínas, lipídeos, carboidratos, entre outras, podem ser analisadas (FILIP; HERMANN, 2001).

A espectroscopia no infravermelho por transmissão é um método tradicional em análise qualitativa, para o qual existem várias técnicas de preparo de amostra como diluição em brometo de potássio (KBr), preparação de filmes com aquecimento e pressão ou pastilhas de KBr. Porém, estas técnicas envolvem o uso de altas pressões e podem afetar a amostra com a produção de interferências químicas (KOENING, 1992). Alternativamente, métodos de reflexão podem ser aplicados, eliminando as etapas de preparação das amostras, que envolvem tempo e uso de solventes tóxicos.

Ao incidir na amostra, a luz pode ser refletida como num espelho (refletância especular), de forma difusa ou por uma combinação dessas duas maneiras, refletindo difusamente na superfície. Esses modos de reflexão podem ser visualizados na Figura 5.

Figura 5 Modos de reflexão que ocorrem juntamente com a refletância difusa. Traduzida de: Coates, 1998.

No espectro proveniente da medida da refletância difusa, em contraste com o espectro tradicional de transmitância, não há uma correlação direta entre a intensidade do pico e a composição. As distorções são geradas por uma variação constante do caminho óptico, definido pela penetração da radiação na amostra, que é dependente da sua absortividade em cada freqüência de onda (COATES, 1998). A correção que pode ser aplicada ao espectro de refletância difusa para linearizar os dados é a função de Kubelka-Munk ou K-M (COATES, 1998, BARBOSA, 2007). Nesta equação (5), assume-se que a amostra tem uma espessura infinitamente pequena se comparada à profundidade de penetração da radiação na amostra.

$$f(R_{\infty}) = (1-R_{\infty})^2 x (2R_{\infty})^{-1} = 2,303 \text{ac } x \text{ s}^{-1}$$
 (Equação 5)

onde:

 $f(\mathbf{R}_{\infty}) =$ espectro corrigido

 R_{∞} = razão entre o espectro de refletância difusa da amostra e o do material não absorvente de referência (KCl ou KBr)

a = absortividade

c = concentração do analito

s = coeficiente de espalhamento

Esta equação (5) inverte o espectro de refletância e transforma-o em um formato parecido com o espectro de absorbância. Esta correção só pode ser aplicada às amostras não diluídas com haletos (COATES, 1998).

Outra possibilidade que tem sido aceita nos últimos anos é a simples transformação dos dados de refletância (R) para absorbância (A), considerando-os equivalentes aos valores de transmitância (T) (Equação 6).

$A = -\log T = -\log R$ (Equação 6)

Para se obter espectros de pós, sólidos e espécies adsorvidas nos sólidos, a técnica de refletância difusa é a mais indicada. Além de reduzir o tempo de preparação, obtêm-se informações de materiais na forma mais próxima da original. O potencial da técnica foi reconhecido como um novo método de análise quantitativa, mas a obtenção de bons resultados depende de uma boa pulverização da amostra, pois o tamanho e a forma das partículas, o espaço livre entre elas e o grau de compactação afetam a concentração do material através do qual a radiação é transmitida (COATES, 1998; MESSERSCHMIDT, 1999).

Até algumas décadas atrás, as técnicas quantitativas no infravermelho eram pouco usadas devido às seguintes desvantagens: bandas sobrepostas, desvio da lei de Beer sob uma larga faixa de concentração, irreprodutibilidade da linha de base, ruídos instrumentais elevados e baixa sensibilidade. Com o advento do algoritmo da transformada rápida de Fourier e sua aplicação à espectroscopia no infravermelho (FTIR), algumas dessas desvantagens foram vencidas (BLANCO et al., 1995; MARK; WORKMAN, 2003). O FTIR possibilitou a utilização de equipamentos mais modernos associados ao interferômetro de Michelson (Figura 6), em substituição aos equipamentos dispersivos, e proporcionou um aumento da relação sinal-ruído, ao permitir acumular vários espectros em poucos segundos, além de uma maior entrada de energia em relação aos instrumentos dispersivos (BARBOSA, 2007).

Figura 6 Esquema do interferômetro de Michelson utilizado na espectroscopia no infravermelho com transformada de Fourier. Fonte: Barbosa, 2007.

Graças a esses avanços tecnológicos, a espectroscopia no infravermelho, em sinergia com técnicas quimiométricas, fornece hoje um meio efetivo de fazer análises de misturas complexas sem a necessidade de qualquer separação prévia de seus componentes (BLANCO et al., 1995).

Outro problema contornado pelo desenvolvimento de cálculos matemáticos mais complexos foi a impossibilidade de analisar quantitativamente amostras sólidas de produtos agrícolas com o mínimo de preparação, sem a diluição em brometo de potássio (KBr), devido às distorções causadas pela absorção mais forte na região do infravermelho médio (REEVES III, 2003). Embora tais distorções ocorram no espectro de DRIFTS de produtos agrícolas e inclusive de solos (REEVES III, 2003), por meio do uso de métodos de calibração multivariada como a regressão por mínimos quadrados parciais, é possível superar os problemas causados por elas (WILLIAMS; NORRIS, 2001; BEEBE et al., 1998; NAES et al., 2002; MADARI et al., 2006b).

O uso dessas técnicas espectroscópicas, principalmente a NIRS, para a análise de fibras e proteínas em forragens e grãos tem sido estudado há décadas, entretanto o interesse em aplicá-las para estudos quantitativos de características e propriedades dos solos é relativamente recente (desde 1995) (MITTELMANN et al., 2005; MADARI et al., 2006b).

A precisão da espectroscopia por refletância no infravermelho próximo (NIRS) na predição do conteúdo de carbono já é conhecida (BEN-DOR; BANIN, 1995). Por outro lado, a espectroscopia no infravermelho por refletância difusa em infravermelho médio (DRIFTS) tem sido aplicada extensivamente em pesquisas de vários materiais incluindo matéria orgânica e substâncias húmicas (MARTIN-NETO et al., 2004; NIEMEYER et al., 1992). Os espectros são influenciados não só pelas propriedades químicas do material analisado, mas também pelo tamanho e arranjo das partículas. Enquanto NIRS utiliza radiação eletromagnética de 10000 a 4000 cm⁻¹ (1000-2500 nm), DRIFTS utiliza faixa de 4000 a 400 cm⁻¹ (2500-25000 nm).

Calibrações para carbono total e orgânico foram desenvolvidas por Madari et al. (2005) usando espectros de solos de diferentes texturas, ou seja, diferentes teores de argila, silte e areia, obtidos com DRIFTS e NIRS. Os espectros em DRIFTS foram menos influenciados pela granulometria das amostras, enquanto que o uso de espectros obtidos com NIRS resultou em ótimas calibrações somente no caso de populações muito homogêneas de amostras, em termos de distribuição de tamanho de partículas dentro de cada amostra.

A região do infravermelho médio já foi mais extensamente estudada quanto à absorção de compostos orgânicos, sendo possível identificar em tais espectros bandas referentes à absorção de diversos grupos funcionais de compostos orgânicos: ácidos carboxílicos, amidas, alquilas e aromáticos (VISCARRA-ROSSEL, 2006). Bandas intensas
podem ser observadas em 3400 cm⁻¹ (hidroxilas), 1630 cm⁻¹ (carboxilatos e aromáticos), 2920 cm⁻¹ (alifáticos) e 1450 cm⁻¹ (amidas secundárias) (GERZABEK et al., 2006).

Os espectros de matéria orgânica do solo, assim como os espectros de bactérias (Figuras 7 e 8), apresentam sinais em torno de 3400 cm⁻¹, 2900 cm⁻¹, 1700 cm⁻¹, 1500 cm⁻¹, 1300 cm⁻¹, 1100. cm⁻¹. Na análise de células intactas, Filip e Hermann (2001) destacaram também as bandas em 1200-900 cm⁻¹, onde há bastante sobreposição, mas é a faixa mais sensível e seletiva, e em 900-600 cm⁻¹, onde há sinais de vibrações aromáticas de aminoácidos e nucleotídeos, chamada de região de impressão digital bacteriana.

Figura 7 Espectro no infravermelho médio de matéria orgânica do solo. Fonte: Wilson Tadeu Lopes da Silva, Embrapa Instrumentação Agropecuária, 2008.

Figura 8 Espectros no infravermelho médio de *Xylella* depositada em janela silício (A) após 30 dias e (B) após 70 dias de crescimento. Fonte: Osiro et al., 2000.

Ainda na análise de células bacterianas, Naumann et al. (1996) procuraram interpretar seus espectros tendo em mente as moléculas comumente encontradas nas paredes celulares, conforme colocado na Tabela 1.

Frequência (cm ⁻¹)	Intensidade	Atribuição				
~3500	М	υO–H				
~3200	m-F	vN–H (amida A) de proteínas				
2959	F	υ _a C–H de metila				
2934	Mf	v _a C–H de metileno				
2921	М	v _a C–H de metileno de ácidos graxos				
2898	Mf	v _a C–H de metino				
2872	F	υ₅C−H de metila				
2852	М	v _s C–H de metileno de ácidos graxos				
1741	F	vC=O de ésteres				
1715	Mf	vC=O de ésteres, ácidos carbônicos				
1695	F	Diferentes componentes				
1685	F	da banda de amida I resultantes				
1675	F	das folhas β -pregueadas de proteínas				
~1655	F	Amida I das estruturas α-hélices				
~1637	F	Amida I das estruturas β-pregueadas				
1548	F	Banda de amida II				
1515	М	Banda de vibração do anel de tirosina				
1498	F	Banda de vibração do anel de fenilalanina				
1468	f-m	δ C–H de metileno				
~1400	М	υ _s COO ⁻				
1310-1240	F	Componentes da banda de amida III de proteínas				
1250-1220	f-m	$v_a PO_2^-$ de fosfodiesteres				
1084-1088	f-m	$v_s PO_2^-$ de fosfodiesteres				
1200-900	М	Vibrações de anéis de polissacarídeos com C-O-C, C-O, C-O -P, P-O-P				
720	Mf	ρC–H de metileno				
900-600	F	Região de fingerprint				

Tabela 1 Tentativa de atribuição de bandas comumente encontradas em espectros de bactérias no infravermelho médio. Adaptada de: Naumann, 1996.

Ben-Dor e Banin (1995) constataram que a matéria orgânica também é espectroscopicamente ativa em toda a região do infravermelho próximo. O espectro de NIR (Figura 9) é constituído de bandas fracas de acoplamentos e combinações das bandas de vibração de C-H, N-H e O-H que ocorrem na região do infravermelho médio (GERZABEK et al., 2006), sendo, por esse motivo, não muito seletivo e pouco utilizado para a interpretação e elucidação de estruturas moleculares (WESTAD et al., 2008).

Figura 9 Espectro de NIRS de solos afetados por diferentes ocorrências de fogo. Traduzida de: Vergnoux et al., 2009.

Aparentemente, o espectro no infravermelho médio é mais informativo que aquele obtido por NIRS. Entretanto, deve-se destacar que os componentes inorgânicos como a sílica, que são predominantes no solo e dificultam a identificação de bandas características de compostos orgânicos do solo, não absorvem na região do infravermelho próximo, mas sim no infravermelho médio (MADARI et al., 2005).

Outras vantagens da NIRS incluem alta razão sinal-ruído (tipicamente 25000:1), alta passagem energética pelos cabos de fibra óptica e disponibilidade de caminhos ópticos de diversos tamanhos (WORKMAN, 1998).

Algumas atribuições de bandas em NIRS são apresentadas na Tabela 2. Dentre os comprimentos de onda selecionados por Palmborg e Nordgren (1993), na região do infravermelho próximo, para correlacionar com respiração microbiana, foram identificadas absorções em 7022, 6631, 6561 e 5030 cm⁻¹ relacionados a grupos OH, em 6631, 6561, 5030 e 5000 cm⁻¹ referentes a aminas e amidas e em 5319 e 5274 cm⁻¹ devido a fosfatos orgânicos. Essas bandas estão muito correlacionadas, em ciência dos alimentos, com proteína e amido, o que conduz à ideia de que a disponibilidade de N e carboidrato têm um papel fundamental na atividade da biomassa microbiana do solo.

Estrutura	Ligação	1ª harmônica	2ª harmônica	3ª harmônica
ArCH (aromáticos)	C-H	8748-8424	8748-8424	11668-11235
CH=CH (metileno)	C-H	8064-8019	8064-8019	10752-10695
CH ₃ (metil)	C-H	8223-8196	8223-8196	10964-10928
CH ₃ (metil)	C-H combinação	7423-7315	7423-7315	9900-9756
R-OH (álcoois)	O-H	7092-6872	10638-10309	*
ArOH (fenóis)	О-Н	7037-6802	10559-10204	*
HOH (água)	O-H	6944-6734	1041610101	*
Amido	O-H	6891	10341	*
Uréia	N-H	6849	10277	*
CONH ₂ (amidas primárias)	N-H	6835-6738	10256-10111	*
CONHR (amidas secundárias)	N-H	6793	10193	*
Celulose	O-H	6711	10070	*
Uréia	N-H	6711	10070	*
ArNH ₂ (aminas aromáticas)	N-H	6697	10050	*
NH (aminas em geral)	N-H	6666	10000	*
Proteínas	N-H	6618	9930	*
Uréia	N-H	6578	9871	*
RNH ₂ (aminas primárias)	N-H combinação	*	9803	*
Amido	O-H	*	9737	*
CONH (amidas primárias)	N-H combinação	*	9551	*
=CH2 (metileno)	C-H combinação	*	9259	*

Tabela 2 Bandas de absorção das vibrações de estiramento dos principais grupos funcionais no espectro no infravermelho próximo (cm⁻¹). Adaptada de: Workman, 1998.

2.7 Análise Multivariada

Uma das chaves para a análise quantitativa em qualquer campo da ciência é suposição de que os constituintes de interesse em uma amostra estão relacionados com os dados obtidos por determinada técnica de análise, principalmente as espectroscópicas. Para saber qual é essa relação, cria-se uma equação de calibração a partir de amostras-padrão, que é conhecida também como modelo (DUCKWORTH, 1998).

O modelo estatístico dos métodos multivariados considera a correlação entre muitas variáveis analisadas simultaneamente, permitindo a extração de uma quantidade muito maior de informação comparada à análise univariada (SENA et al., 2000). Tem como princípio a utilização de muitas variáveis x (x_1 , x_2 ,..., x_n) para quantificar outra variável y (OLENDZKI, 2006). Dessa forma, o uso do espectro de uma amostra, o qual contém muitos dados, traz algumas vantagens em relação à leitura em somente um comprimento de onda, pois, quanto mais medidas por amostra, mais acurados podem ser os resultados (DUCKWORTH, 1998).

Segundo Mark e Workman (2003), uma equação de regressão com vários comprimentos de onda, derivada da Lei de Beer-Lambert, poderia ser expressa como (Equação 7):

$$Y = B_0 + B_i x \log(1/R_i) [+E]$$
 (Equação 7)

onde:

Y = porcentagem de concentração da substância absorvedora

 B_0 = intercepto da regressão

 B_i = coeficiente de regressão

i = índice do comprimento de onda usado e sua correspondente refletância (R_i) E = erro aleatório

Esta relação entre concentração e dados ópticos pode ser traduzida para (Equação 8):

Conc = (Mudança na concentração/ Mudança na Absorbância) x Absorbância + Erro ou

Conc = B x Absorbância + Erro (Equação 8)

Assim, se houver uma grande mudança na concentração e também na absorbância, significa que o coeficiente de regressão (B) será pequeno, indicando uma alta sensibilidade e uma boa razão sinal-ruído. Entretanto, se a variação for grande na concentração e pequena na absorbância, o coeficiente será maior, indicando uma baixa sensibilidade do modelo (MARK; WORKMAN, 2003).

Em amostras reais, existem diferentes variações refletidas nos espectros: os constituintes da amostra, a interação entre esses constituintes, as variações do instrumento como ruído do detector, alterações nas condições ambientais (que afetam a linha de base) e diferenças na manipulação das amostras. As variações dos espectros são frequentemente chamadas de autovetores, *loadings* espectrais, componentes principais ou fatores, enquanto as constantes usadas para reconstruir os espectros são conhecidas como *scores* (DUCKWORTH, 1998).

Vários modelos têm sido usados para medir propriedades de materiais por espectros em infravermelho. Os mais utilizados são: regressão de componentes principais (PCR), regressão dos mínimos quadrados parciais (PLS), regressão de Fourier e redes neurais artificiais (CHANG et al., 2001).

A PLS é uma combinação da análise de componentes principais e regressão múltipla e é considerada uma das mais robustas para dados multidimensionais, incluindo toda a informação disponível nos espectros (SHENK; WESTERHAUSS, 1994).

A PCR e PLS são duas técnicas de decomposição espectral; porém, enquanto a PCR decompõe a matriz espectral em uma série de *loadings* e *scores* e, em seguida, como uma etapa separada, faz a regressão deles contra as concentrações dos componentes da amostra, a PLS usa a informação da propriedade que está sendo modelada durante o processo de decomposição. Isso faz com que os espectros de amostras com maiores concentrações tenham

maior peso. A principal ideia da PLS é obter o máximo de informação nos primeiros vetores de *loadings* (DUCKWORTH, 1998).

A regressão fornece o modelo linear que melhor descreve a correlação entre absorbância e concentração, minimizando a soma dos quadrados dos resíduos (distâncias) de cada ponto da linha. Apesar da Lei de Beer-Lambert se aplicar apenas à espectroscopia de transmissão, na falta de um modelo matemático ideal para a espectroscopia de refletância, ela é utilizada nessas calibrações após transformar os dados de refletância em absorbância (MARK; WORKMAN, 2003).

O pré-tratamento dos espectros com o cálculo de derivadas é usado geralmente para excluir o efeito do intercepto diferente de zero. No entanto, as derivadas não removem o erro multiplicativo e as não-linearidades. Essas interferências são reduzidas pelo uso do *background* (MARK; WORKMAN, 2003).

Os resíduos entre valores preditos pelo modelo obtido por PLS e os valores de referência fornecem subsídios para a avaliação da qualidade da calibração. Para isso, faz-se a predição para um grupo de amostras de validação, que pode conter as mesmas amostras de calibração, realizando-se a validação cruzada, ou pode ser constituída de amostras não contidas no grupo de calibração, mas com valores conhecidos para cada propriedade, procedendo à validação externa. Os resíduos resultantes dessas predições são chamados neste trabalho de SEV e Erro%, respectivamente, e os coeficientes de regressão entre os valores medidos e preditos são denominados RVC e RVE. O cálculo desses parâmetros é descrito nas equações 9 e 10.

$$SEV = \left[\sum_{i=1}^{n} \sum_{j=1}^{m} (y_{i,j} - \hat{y}_{i,j})^2\right]^{1/2} \ge n^{-1} (Equação 9) \qquad Erro\% = \left|y - \hat{y}\right| \ge y^{-1} \ge 100 (Equação 10)$$

onde:

y = valor medido	m = número de valores preditos
$\hat{\mathbf{y}} = \mathbf{valor} \ \mathbf{predito}$	i = índice de valores de referência
n = número de valores de referência	j = indice de valores preditos

3 OBJETIVOS

O objetivo geral desse trabalho foi estudar o potencial da espectroscopia de refletância no infravermelho próximo e médio na quantificação de algumas propriedades do solo. Para atingir este objetivo, algumas metas foram traçadas:

- a) Determinar alguns parâmetros do solo, adotando como métodos de referência aqueles mais utilizados no estudo de solos;
- b) Obter espectros das amostras, secas e trituradas, pela técnica de refletância difusa nas regiões do infravermelho próximo e médio;
- c) Visualizar a distribuição dos solos e detectar semelhanças e agrupamentos, utilizando a análise de componentes principais (PCA) a partir dos dados de quantificação, das informações disponíveis sobre esses solos e dos espectros.
- d) Correlacionar com os espectros as medidas de pH, textura, carbono total, orgânico e microbiano, respiração basal do solo, nitrogênio total e microbiano, coeficientes metabólico e microbiano e razões C/N do solo e microbiano, através de calibração multivariada (*Parcial Least Squares* PLS);
- e) Verificar se a espectroscopia de refletância difusa no infravermelho é adequada para a quantificação dessas propriedades do solo e analisar as vantagens e as possibilidades de melhoria no intuito de atingir uma precisão aceitável em termos agronômicos;
- f) Avaliar as duas regiões do infravermelho quanto à capacidade de predição.

4 MATERIAIS E MÉTODOS

4.1 Coleta de solo

Foram coletadas amostras superficiais (0-10 cm) em fazendas experimentais pertencentes à Embrapa Arroz e Feijão (ou CNPAF – Centro Nacional de Pesquisa em Arroz e Feijão) e à Embrapa Pecuária Sudeste (ou CPPSE – Centro Nacional de Pesquisa em Pecuária Sudeste), localizadas em Santo Antônio de Goiás-GO e em São Carlos-SP, respectivamente.

Em Santo Antônio de Goiás, foram obtidas amostras de solo de diferentes experimentos com cultivo de arroz, feijão, café, banana e pastagens em sistemas de integração lavoura-pecuária, agricultura orgânica e irrigação por pivô central, acrescentadas de amostras de matas com vegetação nativa de Cerrado. As amostras numeradas de 1 a 40 são provenientes de um experimento com agricultura orgânica, constituído de 40 parcelas de 100 m² divididas por sistema de plantio e plantas de coberturas de inverno, conforme Figura 10 e destaque em amarelo na Figura 11. A coleta foi realizada em fevereiro de 2009, após o plantio de arroz e feijão sobre as coberturas de inverno. Nessa mesma época, foram obtidas três amostras de uma área com vegetação nativa próxima ao experimento (amostras AF41 a AF43). O restante das amostras coletadas na Embrapa Arroz e Feijão foi obtido no período de outubro a novembro de 2009, resultando em um total de 114 amostras nesse local. A região de Goiás, portanto, foi amostrada em duas épocas do período chuvoso.

Figura 10 Croqui da área experimental da Fazenda Agroecológica da Embrapa Arroz e Feijão, Santo Antônio de Goiás. Parcelas de 10x10m. Áreas com plantio direto – PD e plantio convencional – PC. Coberturas de inverno em quatro repetições de campo: C – crotalária; M – mucuna; P – pousio; S – sorgo; F – feijão-de-porco.

Figura 11 Mapa da fazenda experimental Capivara da Embrapa Arroz e Feijão, em Santo Antônio de Goiás. Fonte: figura cedida por Beáta Emöke Madari.

Na Embrapa Pecuária Sudeste, em São Carlos (Figura 12), fez-se uma amostragem de diversos experimentos, incluindo pastagens, algumas culturas como cana, alfafa e aveia, além de áreas com vegetação nativa de Cerrado em duas fases de amadurecimento, somando 57 amostras deste local e totalizando 171 amostras coletadas. O período de amostragem nessa região se estendeu de maio a agosto de 2009, onde houve maior variação de temperatura e

umidade que em Santo Antônio de Goiás.

Figura 12 Mapa da fazenda experimental Canchim da Embrapa Pecuária Sudeste, em São Carlos-SP. Os números da figura não estão relacionados com os números das amostras coletadas. Fonte: Primavesi et al., 1999.

A coleta foi realizada com auxílio de um trado holandês, na profundidade 0-10 cm, sendo cada amostra composta de cinco pontos escolhidos ao acaso. Também foram coletadas amostras indeformadas em cilindros de Kopecky, encaminhadas, logo em seguida, ao laboratório de solos da Embrapa Arroz e Feijão para a obtenção da curva de retenção e determinação da capacidade de campo (EMBRAPA SOLOS, 1997). Para as demais análises, o solo foi armazenado em geladeira.

4.2 Determinação da capacidade de campo

Os dados de capacidade de campo são originários da curva de retenção de água no solo e são utilizados para uniformizar a umidade dos solos na determinação da biomassa microbiana. Amostras de solo indeformadas, coletadas em cilindros de Kopecky, foram colocadas em bandejas com água durante 24 horas para saturação total. Após esse período, os cilindros foram submetidos à pressão de 60 KPa, equivalente a 1800 rpm em centrífuga, determinando-se em seguida a umidade restante, relativa à capacidade de campo do solo (EMBRAPA SOLOS, 1997).

4.3 Determinação da umidade do solo

Alíquotas de 10-15g de solo foram acondicionadas em latas de alumínio de 15 cm de diâmetro ou vidros-relógio com 20-30 cm de diâmetro e colocadas em estufa a 105 °C por 24 horas. Após esse período, os recipientes com solo seco e vazios foram pesadas em balança de precisão e o cálculo da umidade seguiu a seguinte fórmula, expressa pela Equação 11:

$$U = 100 \text{ x } (P_U - P_S)/(P_U - P_R)$$
 (Equação 11)

onde:

U = umidade do solo (%)

 P_U = peso do solo úmido com o recipiente

 P_{S} = peso do solo seco com o recipiente

 P_R = peso do recipiente (lata ou vidro relógio)

4.4 Determinação do pH

O pH foi determinado segundo metodologia Embrapa Solos (1997). Misturas de 10g de solo seco, moído e passado em peneira de 2 mm, com 25 mL de água destilada foram homogeneizados manualmente com bastão de vidro. Após uma hora de descanso, foi separado o sobrenadante e com este realizada a leitura em pHmetro da marca Thermo Scientific.

4.5 Método de referência para textura do solo

O método do densímetro foi utilizado para determinar a textura (ou granulometria) do solo. Conforme descrito no manual da Embrapa Solos (1997), alíquotas de 50 g de solo seco e moído (2 mm) foram saturados com hidróxido de sódio (NaOH) 1 mol L^{-1} , hexametafosfato de sódio, peróxido de hidrogênio e água destilada. Esperou-se um tempo de 30 minutos em repouso para a desagregação química do solo, agitando-se, em seguida, por 10 minutos em agitador elétrico tipo *strirrer* para a desagregação total.

O conteúdo do copo do agitador foi transferido para uma proveta de 1000 mL completando-se o volume, com o densímetro em solução, para 1000 mL com água. Retirado o densímetro, agitou-se manualmente o conteúdo da proveta por 30 segundos seguidos de repouso de 40 segundos. A leitura da densidade foi realizada após este repouso como referência da fração areia decantada, sendo repetida após nova agitação manual de 30 segundos e repouso de 2 horas para o cálculo da fração argila, sempre se anotando a temperatura juntamente com a densidade para as devidas correções. A fração silte foi calculada a partir dos valores de areia e argila. Os cálculos foram realizados conforme as Equações 12 a 14.

$$\begin{split} A_g \ (g \ Kg^{-1}) &= [(D_2 \ x \ 100) \ / \ 50] \ x \ 10 \ (\text{Equação 12}) \\ A_e \ (g \ Kg^{-1}) &= \{100 - [D_1 \ x \ 100] \ / \ 50\} \ x \ 10 \ (\text{Equação 13}) \\ S \ (g \ Kg^{-1}) &= \{[(D_1 - D_2) \ x \ 100] \ / \ 50\} \ x \ 10 \ (\text{Equação 14}) \end{split}$$

onde:

 $\begin{array}{l} A_g \ = g \ argila \ Kg^{-1} \ solo \\ A_e \ = g \ areia \ Kg^{-1} \ solo \\ S \ = g \ silte \ Kg^{-1} \ solo \\ D_1 \ = \ primeira \ leitura \ da \ densidade \ corrigida \ para \ a \ temperatura \ ambiente \\ D_2 \ = \ segunda \ leitura \ da \ densidade \ corrigida \ para \ a \ temperatura \ ambiente \ após \ 2 \ horas \end{array}$

De acordo com os teores de argila, silte e areia obtidos, os solos foram classificados quanto à textura conforme a Figura13.

Figura 13 Diagrama triangular das classes texturais do solo. Fonte: Prevedello, 1996.

4.6 Método de referência para carbono e nitrogênio totais (CT e NT)

As amostras de solo, incubadas juntamente com aquelas destinadas à determinação da biomassa microbiana, foram secas ao ar livre e à sombra e depois trituradas em moinho de bolas, homogeneizadas e peneiradas (0,250 mm). Foram pesadas alíquotas de 8 mg de solo e 2 mg de padrão sulfanilamida na microbalança Autobalance Controller AD6 Perkin Elmer e submetidas à combustão no analisador elementar CHNS/O Perkin-Elmer modelo 2400 Series II, pertencentes à Embrapa Arroz e Feijão.

4.7 Método de referência para carbono orgânico total (COT)

Utilizou-se o método da Embrapa Solos (1997) no qual 0,5 g de solo seco, moído e peneirado (2 mm) foi submetido à oxidação com 10 mL de dicromato de potássio 0,066 mol L^{-1} e 20 mL de ácido sulfúrico concentrado. Foi preparado também um branco com a adição de dicromato e ácido sulfúrico. Após homogeneização das amostras e do branco, a oxidação ocorreu durante 30 minutos em capela de exaustão sem aquecimento adicional. Em seguida, adicionaram-se 200 mL de água destilada e 10 mL de ácido fosfórico concentrado. A

quantificação do dicromato em excesso foi realizada por titulação com sulfato ferroso 18,4 mol L^{-1} e difenilamina como indicador, até coloração verde. O cálculo do carbono orgânico total foi realizado através da fórmula apresentada na Equação 15:

$$COT = ((V_B - V_A) / m) \times f \text{ (Equação 15)}$$

onde:

 $COT = carbono orgânico total em g Kg^{-1} solo seco$ $V_B = volume de sulfato ferroso gasto na titulação do branco$ $V_A = volume de sulfato ferroso gasto na titulação da amostra$ m = massa de solo analisada (0,5g)f = fator de correção do método (0,39)

4.8 Método de referência para biomassa microbiana

O método descrito por Vance et al. (1987a) foi escolhido como referência para biomassa microbiana por ser largamente usado em pesquisa agronômica.

As amostras de solo úmidas foram passadas em peneira de 4 mm e pesadas em 6 replicatas, sendo uma triplicata destinada à fumigação e outra triplicata de referência (amostras não-fumigadas). A umidade de todas as amostras foi corrigida para no mínimo 50% da capacidade de campo adicionando-se água destilada.

Todas as amostras foram acondicionadas em frascos com tampa e incubadas em câmara escura à temperatura ambiente. Nos frascos contendo as amostras controles foram adicionados frascos menores contendo uma solução de hidróxido de potássio 0,3 mol L⁻¹ para capturar o CO_2 resultante da respiração basal do solo, conforme reação apresentada na Equação 16.

 $CO_2 + 2KOH \rightarrow K_2CO_3 + H_2O + KOH_{exc}$ (Equação 16)

Após seis dias, as triplicatas a serem fumigadas foram transferidas, sem tampas, para um dessecador contendo uma placa de Petri aberta com clorofórmio, permanecendo sob vácuo e na ausência de luz durante 24 horas. No dia seguinte, o carbono e o nitrogênio orgânicos foram extraídos de todas as amostras utilizando-se uma solução de sulfato de potássio 0,5 mol L^{-1} pH 6,5-6,8 e 30 minutos de agitação orbital a 250 rpm (Figura 14).

Figura 14 Quantificação da biomassa microbiana do solo pelo método de fumigação-extração (Vance et al., 1987). Fonte: Moreira e Siqueira, 2006.

No mesmo dia, determinou-se a respiração basal do solo pela titulação da solução de KOH restante no frasco incubado juntamente com as amostras controles. O KOH excedente foi estabilizado com cloreto de bário 20% (Equação 17) e, em seguida, titulado com ácido clorídrico 0,1 mol L^{-1} e fenolftaleína como indicador (Equação 18).

 $K_2CO_3 + BaCl_2 \rightarrow BaCO_3(s) + 2KCl + KOH_{exc}$ (Equação 17) KOH_{exc} + HCl → KCl + H₂O (Equação 18)

A respiração basal do solo foi calculada de acordo com a Equação 19.

$$RB = (V_B - V_A) \times C_{AC} \times N \times MM_C \times PS^{-1} \times f \times d^{-1} \times h^{-1}$$
(Equação 19)

onde:

$$\begin{split} &RB = respiração basal do solo (mg C-CO_2 Kg^{-1} solo seco hora^{-1}) \\ &V_B = média do volume de ácido clorídrico gasto na titulação da triplicata do branco (mL) \\ &V_A = média do volume de ácido clorídrico gasto na titulação da triplicata de amostras (mL) \\ &C_{AC} = concentração do ácido clorídrico padronizada (mol L^{-1}) \\ &N = número de mols de hidróxido de potássio que reage com o dióxido de carbono \\ &MM_C = massa molar do carbono igual a 12 g mol^{-1} \\ &PS = peso seco do solo incubado \\ &f = fator de correção do peso do solo de g para Kg igual a 1000 \\ &d = número de dias de incubação igual a 7 \end{split}$$

h = horas de incubação por dia (24h)

Alíquotas de 8 mL dos extratos foram submetidas à digestão com ácido sulfúrico e ácido fosfórico concentrados e dicromato de potássio 0,066 mol L^{-1} , permanecendo em bloco digestor a 100°C por 30 minutos após homogeneização. A quantificação do carbono foi realizada através da titulação do dicromato de potássio restante na reação, com sulfato ferroso amoniacal 0,02 mol L^{-1} e ferroína como indicador.

Outras alíquotas de 20 mL dos extratos foram submetidas à digestão a 300°C em bloco digestor utilizando-se ácido sulfúrico concentrado e sulfatos de potássio e cobre como catalisadores. O N total nos extratos foi determinado por destilação Kjedahl e titulação com ácido sulfúrico 0,0025 mol L⁻¹.

Tanto o carbono quanto o nitrogênio microbianos foram calculados subtraindo-se os valores encontrados para as amostras controles daqueles referentes às amostras fumigadas, considerando-se o fracionamento dos extratos antes das duas determinações (Equações 20 e 21).

$$C_{MIC} = (V_{NF} - V_F) \times C_{SFA} \times meqC \times C_D \times f_{EX} \times V_E \times V_A^{-1} \times P_S^{-1} \times f_U$$
 (Equação 20)

onde:

 C_{MIC} = carbono da biomassa microbiana em mg C Kg⁻¹ solo seco

 V_{NF} = média do volume de sulfato ferroso amoniacal gasto na titulação da triplicata de amostras não-fumigadas (mL)

 V_F = média do volume de sulfato ferroso amoniacal gasto na titulação da triplicata de amostras fumigadas (mL)

 C_{SFA} = concentração do sulfato ferroso amoniacal padronizada (mol L⁻¹)

meqC = miliequivalente do carbono igual a 1,2 mg

C_D = concentração do dicromato de potássio

 f_{EX} = fator de rendimento da extração igual a 2,64 correspondente a 37,88%

 V_E = volume total de solução sulfato de potássio utilizado na extração igual a 60 mL

 V_A = volume da alíquota de extrato utilizada na quantificação do carbono igual a 8 mL

 P_S = peso seco de solo pesado para a extração

 f_U = fator de conversão de mg g⁻¹ para mg Kg⁻¹

 $N_{MIC} = (V_F - V_{NF}) \times C_{AS} \times MM_N \times f_{EX} \times V_E \times V_A^{-1} \times P_S^{-1} \times f_U$ (Equação 21)

onde:

 N_{MIC} = nitrogênio da biomassa microbiana em mg C Kg⁻¹ solo seco

 V_{NF} = média do volume de ácido sulfúrico gasto na titulação da triplicata de amostras nãofumigadas (mL)

 V_F = média do volume de ácido sulfúrico gasto na titulação da triplicata de amostras fumigadas (mL)

 C_{AS} = concentração do ácido sulfúrico (mol L⁻¹)

MM_N = massa molar do nitrogênio igual a 14 g mol

 f_{EX} = fator de rendimento da extração igual a 1,85 correspondente a 54%

 V_E = volume total de solução sulfato de potássio utilizado na extração igual a 60 mL

V_A = volume da alíquota de extrato utilizada na quantificação do carbono igual a 20 mL

 P_S = peso seco de solo pesado para a extração

 f_U = fator de conversão de mg g⁻¹ para mg Kg⁻¹

O quociente metabólico (qCO₂) foi determinado pela relação (C-CO₂ liberado/C_{MIC}) segundo metodologia proposta por Anderson e Domsch (1993), e o quociente microbiano (qMIC) foi calculado pela razão entre o C_{MIC} e o COT. Também foi calculada a razão C/N microbiana (C_{MIC}/N_{MIC}).

Para a obtenção dos espectros de solos, as amostras foram secas ao ar, trituradas em moinho de bolas, passadas em peneiras de 0,250 mm e analisadas em espectrômetros no infravermelho próximo (10000 a 4000 cm⁻¹) e médio (4000 a 400 cm⁻¹), com resolução de 16 cm⁻¹ e acumulação de 32 varreduras por espectro. Foram obtidos espectros de refletância transformados automaticamente para absorbância e Kubelka-Munk pelos *softwares* dos equipamentos. Todos os espectros foram centrados na média e submetidos ao cálculo da 1^a e a 2^a derivadas com 5 pontos.

Os equipamentos utilizados foram: espectrômetro no infravermelho próximo com refletância difusa Perkin-Elmer, modelo Spectrum 100N, pertencente à Embrapa Instrumentação Agropecuária, e espectrômetro no infravermelho médio com refletância difusa Varian 600-IR com acessório AutoDiff da Pike, pertencente à Embrapa Arroz e Feijão.

4.3 Análise dos resultados e calibrações

A fim de explorar os dados, identificando as variáveis que mais diferenciaram as amostras e verificando correlações entre agrupamentos de amostras e agrupamentos de variáveis, foi utilizada a análise de componentes principais (PCA). Os resultados das análises químicas de referência também foram submetidos à regressão com os espectros de absorbância utilizando a técnica de regressão PLS.

O método PLS foi aplicado em 80% das amostras e esta calibração foi validada durante o cálculo PLS (validação cruzada) e também através da previsão dos atributos para os 20% restantes das amostras (validação externa). Com a utilização deste método estatístico foram testados separadamente os modelos de calibração obtidos com 5 subgrupos de amostras

de localidades e vegetação diferentes (CNPAF, CPPSE, MATAS, MANEJADOS, TODOS), para cada uma das técnicas, NIRS e DRIFTS. As amostras de validação externa foram escolhidas a partir de gráficos de scores provenientes de PCA com amostras de cada subgrupo, selecionando aleatoriamente 20% das amostras de forma representativa.

Os parâmetros utilizados para comparar a eficiência de cada modelo de calibração construído foram: o número de fatores necessários na calibração, os erros de validação cruzada e externa (SEV e Erro%), o coeficiente de regressão linear entre os dados preditos e medidos (RVC e RVE), assim como a inclinação e intercepto desta reta. De acordo com os resultados para RVE, os modelos foram classificados como A, B ou C conforme descrito por Chang et al. (2001). A escolha dos melhores modelos foi feita com base em todos os parâmetros e não somente de acordo com esta classificação proposta por Chang et al. (2001), pois bons modelos podem ser obtidos com coeficientes de correlação abaixo de 0,5 dependendo da faixa de valores de referência.

Tanto a PCA quanto a PLS utilizaram os espectros inteiros, sem seleção de bandas, e foram calculadas pelo *software Pirouette* versão 3.11, adquirido pela Embrapa Instrumentação Agropecuária.

5 RESULTADOS E DISCUSSÃO

5.1 Características dos solos coletados

Os solos provenientes da fazenda Canchim da Embrapa Pecuária Sudeste no município de São Carlos (PS) e os solos originários da fazenda Capivara da Embrapa Arroz e Feijão, em Santo Antônio de Goiás (AF), foram classificados quanto ao uso do solo e a textura, conforme detalhado na Tabela 3.

Amostra	Uso do solo	Textura	Amostra	Uso do solo	Textura
PS1	Mata	Argila	PS30 Mata		Areia Franca
PS2	Mata	Argila	PS31 Mata		Franco Argila Arenoso
PS3	Mata	Argila	PS32 Mata		Franco Argila Arenoso
PS4	Mata	Argila	PS33	Mata	Argila
PS5	Mata	Argila	PS34	Mata	Argila Arenosa
PS6	Mata	Franco Argila Arenoso	PS35	Mata	Franco Argila Arenoso
PS7	Mata	Franco Argiloso	PS36	Cultura	Franco Argila Arenoso
PS8	Mata	Franco Argila Arenoso	PS37	Cultura	Franco Argila Arenoso
PS9	Mata	Franco Argila Arenoso	PS38	Pastagem	Franco Arenoso
PS10	Mata	Franco Arenoso	PS39	Pastagem	Areia Franca
PS11	Pastagem	Franco Argila Arenoso	PS40	Pastagem	Franco Arenoso
PS12	Mata	Franco Argila Arenoso	PS41	Mata	Franco Arenoso
PS13	Cultura	Franco Argila Arenoso	PS42	Pastagem	Franco Argila Arenoso
PS14	Cultura	Franco Argila Arenoso	PS43	Pastagem	Argila Arenosa
PS15	Pastagem	Franco Argila Arenoso	PS44	Pastagem	Franco Argila Arenoso
PS16	Cultura	Argila	PS45	Pastagem	Franco Argila Arenoso
PS17	Pastagem	Argila Arenosa	PS46	Pastagem	Franco Argila Arenoso
PS18	Cultura	Muito Argiloso	PS47	Mata ciliar	Franco Argila Arenoso
PS19	Cultura	Argila Arenosa	PS48	Pastagem	Franco Argila Arenoso
PS20	Pastagem	Muito Argiloso	PS49	Pastagem	Argila Arenosa
PS21	Pastagem	Muito Argiloso	PS50	Pastagem	Argila
PS22	Pastagem	Muito Argiloso	PS51	Pastagem	Argila
PS23	Pastagem	Muito Argiloso	PS52	Pastagem	Franco Argila Arenoso
PS24	Pastagem	Argila Arenosa	PS53	Pastagem	Argila
PS25	Mata	Franco Arenoso	PS54	Pastagem	Argila
PS26	Mata	Franco Arenoso	PS55	Pastagem	Argila
PS27	Mata	Areia Franca	PS56	Pastagem	Argila
PS28	Mata	Franco Arenoso	PS57	Pastagem	Argila
PS29	Mata	Areia Franca			

Tabela 3 Classificação dos solos coletados segundo o uso do solo e a textura

A mostra	Uso do solo	Textura	Amostra	Uso do	Textura
	Cultura	nd		Pastagem	Argilo
AF1 AF2	Cultura	nd	AF47 AF48	Pastagem	Argila
AF2 AF3	Cultura	nd	AF40 AF40	Pastagem	Argila
AFJ AF4	Cultura	nd	AF 42 AF 50	Pastagem	Argila
AF4 AF5	Cultura	nd	AF 50 AF 51	Pastagem	Argila
AF5 AF4	Cultura	nd	AF51 AF52	Pastagem	Argila
AFU AF7	Cultura	nd	AF 52 A F 52	Pastagem	Argila
АГ / А Г 9	Cultura	nd	AF 55 A E 54	Pastagem	Alglia Muite Argilese
АГО	Cultura	nd	AF 54 A E 55	Pastagem	Muito Argiloso
AF9 AF10	Cultura	nd	AF 55 A F 56	Pastagem	Muito Argiloso
AF 10 A F11	Cultura	liu	AF 50 A F 57	Pastagem	Muito Argiloso
AF11 AF12	Cultura	nd	AF5/	Pastagem	Muito Argiloso
AF12	Cultura	nd	AF 58	Pastagem	Muito Argiloso
AF13	Cultura	nd	AF59	Pastagem	Muito Argiloso
AF 14	Cultura	nd	AF6U	Moto	Muito Argiloso
AF15	Cultura	nd	AF61	Destagem	Multo Argiloso
AF 16	Cultura	nd	AF62	Pastagem	Multo Argiloso
AF17	Cultura	nd	AF63	Moto	Muito Argiloso
AF18	Cultura	nd	AF64	Mata	Muito Argiloso
AF19	Cultura	nd	AF65	Mata	Muito Argiloso
AF20	Cultura	nd	AF66	Mata	Muito Argiloso
AF21	Cultura	nd	AF67	Mata	Muito Argiloso
AF22	Cultura	nd	AF68	Mata	Muito Argiloso
AF23	Cultura	nd	AF69	Mata	Muito Argiloso
AF24	Cultura	nd	AF70	Mata	Muito Argiloso
AF25	Cultura	nd	AF71	Mata	nd
AF26	Cultura	nd	AF72	Mata	Muito Argiloso
AF27	Cultura	nd	AF73	Mata	Muito Argiloso
AF28	Cultura	nd	AF74	Mata	Muito Argiloso
AF29	Cultura	nd	AF75	Cultura	Muito Argiloso
AF30	Cultura	nd	AF76	Cultura	Argila
AF31	Cultura	nd	AF77	Cultura	Argila
AF32	Cultura	nd	AF78	Cultura	Argila
AF33	Cultura	nd	AF79	Cultura	Argila
AF34	Cultura	nd	AF80	Cultura	Argila
AF35	Cultura	nd	AF81	Cultura	Muito Argiloso
AF36	Cultura	nd	AF82	Cultura	Argila
AF37	Cultura	nd	AF83	Pastagem	Muito Argiloso
AF38	Cultura	nd	AF84	Pastagem	Muito Argiloso
AF39	Cultura	nd	AF85	Pastagem	Argila
AF40	Cultura	nd	AF86	Pastagem	Argila
AF41	Mata	nd	AF87	Pastagem	Argila
AF42	Mata	nd	AF88	Pastagem	Argila
AF43	Mata	nd	AF89	Pastagem	Argila
AF44	Pastagem	Argila	AF90	Integração	Argila
AF45	Pastagem	Argila	AF91	Integração	Argila
AF46	Pastagem	Argila	AF92	Integração	Muito Argiloso

Amostra	Uso do solo	Textura	Amostra	Uso do	Textura
AF93	Integração	Muito Argiloso	AF104	Mata ciliar	Argila
AF94	Integração	Argila	AF105	Mata ciliar	Argila
AF95	Integração	Argila	AF106	Mata ciliar	Muito Argiloso
AF96	Integração	Argila	AF107	Mata ciliar	Argila
AF97	Integração	Argila	AF108	Mata ciliar	Argila
AF98	Integração	Argila	AF109	Mata ciliar	Argila
AF99	Integração	Muito Argiloso	AF110	Pastagem	Argila
AF100	Mata ciliar	Argila	AF111	Pastagem	Argila
AF101	Mata ciliar	Argila	AF112	Pastagem	Argila
AF102	Mata ciliar	Argila	AF113	Pastagem	Argila
AF103	Mata ciliar	Argila	AF114	Pastagem	Argila

nd = textura não determinada

As amostras de solo descritas na Tabela 3 apresentaram diferentes valores para os atributos do solo mensurados com o uso dos métodos de referência. A faixa de valores para cada um desses atributos e o desvio padrão associado são apresentados na Tabela 4.

Tabela 4 Atributos do solo quantificados pelos métodos de referência

	Valor mínimo	Valor máximo	Média	Desvio Padrão Médio	$\mathbf{CV}^{1}(\mathbf{\%})$
C _{MIC} (mg Kg ⁻¹ solo)	28,29	984,89	304,49	10,69	3,52
N _{MIC} (mg Kg ⁻¹ solo)	7,15	385,29	71,72	7,93	11,06
RB (mg C-CO ₂ Kg ⁻¹ h ⁻¹)	-0,05	8,43	1,99	0,04	2,01
$qCO_2 (\mu g \text{ C-CO}_2 \text{ mg } \text{ C}^{-1} \text{ h}^{-1})$	-0,20	42,86	7,77	0,43	5,53
CN _{MIC}	0,64	39,80	5,66	0,82	14,49
COT (g Kg ⁻¹ solo)	2,34	53,82	28,40	nd^2	nd
$\mathbf{qMIC} \ (\mathrm{mg g}^{-1})$	0,95	75,71	11,27	nd	nd
CT (%)	0,27	5,29	2,48	nd	3% ³
NT (%)	0,11	1,96	0,84	nd	nd
CN	0,43	20,59	8,47	nd	nd
ARGILA (g Kg ⁻¹ solo)	96,00	678,80	465,52	nd	nd
SILTE (g Kg ⁻¹ solo)	7,20	374,40	86,11	nd	nd
AREIA (g Kg ⁻¹ solo)	166,80	866,80	448,36	nd	nd
рН	4,0	7,2	5,76	nd	nd

¹coeficiente de variação ²nd = não determinado ³determinado por Madari et al. (2005)

Os valores de carbono total e de carbono orgânico total são muito semelhantes (multiplicam-se os valores de CT em % por 10 para obter dados em g Kg⁻¹). Seus máximos se devem principalmente à incorporação de diversas amostras de solo preservado, sendo o COT e o CT máximos comparáveis àquele obtido por Carvalho (2005) para matas plantadas em

Campos do Jordão (51,71 g Kg⁻¹). O valor médio observado para COT foi superior ao encontrado por Alvarenga (1999) para solos de cerrado (16,6 g Kg⁻¹). No entanto, a média dos conteúdos de carbono orgânico dos solos de mata avaliados no presente trabalho (37,34 g Kg⁻¹) não foram superiores às medidas realizadas por Carvalho (2005) em porções de mata atlântica (43,7 a 47,5 g Kg⁻¹) nem àquelas encontradas para a região de floresta amazônica estudada por Moreira e Malavolta (2004) (42,77 e 47,70 g Kg⁻¹).

O C_{MIC} médio se assemelha ao encontrado por Alvarenga (1999) para pastagens plantadas (349,5 mg Kg⁻¹), refletindo o maior número de áreas amostradas sob este uso do solo. Por sua vez, o resultado médio obtido para qMIC foi de $11,27 \pm 0,79$, atribuindo a C_{MIC} uma participação de, em média, 1,13 % no carbono orgânico total, enquadrando-se dentro da faixa de 1 a 4%, proposta por Jenkinson e Ladd (1981). A faixa obtida neste trabalho, entretanto, foi bem mais ampla, variando de 0,1% a 7,8%.

Os valores de nitrogênio total estão dentro de uma faixa mais extensa que aquela esperada para latossolos (1,1 a 1,8 g Kg⁻¹), indicando a amostragem de solos de outras classes e a adubação nitrogenada de várias áreas estudadas. Com relação à determinação do nitrogênio microbiano, observa-se que está sujeita a maiores desvios que a determinação das várias frações de carbono, sendo o CV médio maior que 10% e, consequentemente, 14,49% para a relação C/N microbiana. Isto pode ser explicado pelo grande número de etapas envolvido nesta quantificação, assim como pela perda de amônia durante a destilação.

A relação C/N não chegou a 30, demonstrando que nesses solos não havia uma grande quantidade de material resistente à decomposição. Já os resultados da razão C/N microbiana foram agrupados, neste trabalho, em 5 faixas: 0 a 2,96 (faixa 1); 3,01 a 4,96 (faixa 2); 5,09 a 6,88 (faixa 3); 7,11 a 8,96 (faixa 4) e 9,02 a 15,09 (faixa 5). A faixa 2 indicou predominância de bactérias nesses solos e a faixa 5, a predominância de biomassa fúngica. É possível visualizar as faixas através de uma PCA com dados de C_{MIC} , N_{MIC} e CN_{MIC}. Dessa forma, nas amostras destacadas em roxo predominam as bactérias, enquanto que naquelas destacadas em rosa claro há maior ocorrência de fungos (Figura 15).

Figura 15 Gráficos de *scores* e *loadings* com faixas de razão C/N. *Scores*: em amostras da laranja faixa 1, roxo faixa 2, verde faixa 3, rosa escuro faixa 4, rosa claro faixa 5.

Verifica-se que os solos da Embrapa Pecuária Sudeste, especialmente os solos de mata nativa, são ricos em biomassa bacteriana, enquanto que os solos da Embrapa Arroz e Feijão se distribuem dentro das faixas 2 a 5.

Pela média do quociente metabólico, há um razoável equilíbrio da comunidade microbiana da maioria desses solos, porém o valor máximo mostra que alguns estão muito longe do equilíbrio entre a perda de carbono pela respiração e a sua incorporação na biomassa microbiana, havendo uma taxa de mineralização de carbono muito rápida. O seu desvio foi médio, devido ao erro associado à quantificação de C_{MIC} , já que o método utilizado para quantificar a respiração basal do solo se mostrou bem preciso. Tal precisão em RB não era esperada devido à evaporação da solução alcalina em consequência de possíveis falhas no isolamento do ambiente em que a liberação do CO₂ é medida.

Estes resultados apresentados também foram utilizados para verificar o potencial de discriminação das diferentes técnicas e variáveis, o que pode ser visualizado nos gráficos de *scores* da PCA apresentados posteriormente para cada grupo de atributos do solo.

5.2 Espectros de NIRS

É possível identificar três principais regiões nos espectros no infravermelho próximo situando-se em torno de 7000 cm⁻¹, 5200 cm⁻¹e 4500 cm⁻¹. A Figura 16 apresenta alguns espectros de NIRS representativos das amostras analisadas.

Figura 16 Espectros de absorbância em infravermelho próximo com bandas assinaladas.

É difícil realizar a interpretação dos espectros em NIRS, visto que são constituídos essencialmente de bandas de combinação e harmônicas. Apesar disso, faz-se aqui uma tentativa de atribuição das bandas observadas, com base em informações anteriormente publicadas.

O sinal em 7149 cm⁻¹ pode ser atribuído a vibrações OH de Al(OH) indicando a presença de caulinita e/ou montmorilonita. Já aquele mais definido em 7062 cm⁻¹ e outro pouco visível em 6963 cm⁻¹ podem ser resultantes da 1^a harmônica da absorção de OH de alcoóis e fenóis. É possível atribuir também a absorção em 7062 cm⁻¹ às vibrações OH de moléculas de água adsorvidas pela montmorilonita e à combinação de estiramentos CH.

A banda em 6895 cm⁻¹ e a seguinte banda sobreposta em 6849 cm⁻¹ podem ser atribuídas, respectivamente, às primeiras harmônicas das absorções relativas a vibrações de estiramentos de O-H de carboidratos como amido e N-H de uréia.

Em 6451 cm⁻¹ tem-se o sinal mais fraco, que pode ser um indicativo da presença de amidas e aminas, enquanto que em 5186 cm⁻¹ tem-se o mais intenso, sempre presente nas amostras de solo, resultante da 1^a harmônica do estiramento CH de grupos metilas, metilenos e etilenos, da absorção por fosfatos orgânicos e de vários outros grupos funcionais presentes em celulose, lignina, amido, pectina e substâncias húmicas, além de água adsorvida por argilominerais como caulinita e montmorilonita.

A região final dos espectros é marcada por duas bandas com absorção máxima bem definida, situadas em 4527 cm⁻¹ e 4408 cm⁻¹, que indicam a presença de caulinita e gibbsita além de combinações entre vibrações de estiramentos de CH, NH e OH. Também nesta região do espectro são observadas outras duas bandas, menos intensas e pouco definidas, em 4322 cm⁻¹ e 4188 cm⁻¹, devido à presença de água adsorvida à gibbsita.

Essas atribuições foram feitas a partir de informações obtidas em Dalmolin et al. (2005), Formaggio e Epiphanio (2001), Demattê et al. (2004, 2005), Workman (1998), R. Rinnan e A. Rinnan (2007) e Vergnoux et al. (2009) estão detalhadas na Tabela 5.

Bandas (cm ⁻¹)	Atribuições
7149	vO–H de Al(OH) de caulinita e montmorilonita
7062	υO–H alcoóis e fenóis, υO–H de montmorilonita
6963	vO–H alcoóis e fenóis
6895	υO–H amido
6949	υN–H uréia
6451	υN–H amidas e aminas
5186	υO-H de fosfatos orgânicos e água de caulinita e montmorilonita, 1ª harmônica de υC-H
4527	Caulinita,gibbsita, combinação de vO-H , vN-H e vC-H
4408	Caulinita
4322	υO–H de água adsorvida por gibbsita
4188	υO–H de água adsorvida por gibbsita

Tabela 5 Atribuições para as bandas observadas nos espectros no infravermelho próximo

Para visualizar como os diferentes usos do solo podem interferir nos perfis espectrais, os resultados de NIRS também foram plotados para cada subgrupo de amostras sob diferente uso do solo, constituindo-se 5 subgrupos: solos cultivados, solos sob pastagem, solos sob mata nativa, solos sob mata-ciliar e solos sob sistema de integração lavoura-pecuária (Figura

Figura 17 Espectros de absorbância em infravermelho próximo de diferentes subgrupos amostrais, segundo uso do solo: cultivados, com pastagens, matas nativas, matas ciliares e solos de áreas com integração lavoura-pecuária.

Percebe-se que o espectro da amostra 47, que possui o maior conteúdo de CT, tem a maior intensidade do sinal em 5186 cm⁻¹, sugerindo alguma correlação. Apesar disso, todas as amostras sob integração lavoura-pecuária e as amostras sob pastagem PS50 e PS38, que possuem intensidade de sinal comparável, não contêm os maiores teores de CT.

Apesar disso, outra região em torno de 11100 cm⁻¹, parcialmente observada nesses espectros já foi correlacionada com matéria orgânica e óxidos de ferro. Alguns trabalhos citados por Dalmolin et al. (2005), exemplificam o comportamento da matéria orgânica, em teores superiores a 17 g Kg⁻¹, que pode exercer um efeito máscara sobre os sinais de ferro, em refletância.

5.3 Espectros de DRIFTS

Os espectros no infravermelho médio trazem grande quantidade de informação sobre os componentes das amostras, havendo maior número de bandas, sobrepostas umas às outras, como se observa na Figura 18.

Figura 18 Espectros de absorbância em infravermelho médio com bandas assinaladas.

Organicamente, uma interpretação dos espectros é possível; entretanto, os sinais observados nas regiões entre 4000 e 3000 cm⁻¹ e entre 1700 e 500 cm⁻¹, ou seja, em grande parte do espectro, devem-se principalmente às absorções por compostos inorgânicos do solo como sílica, caulinita e gibbsita. Torna-se difícil, portanto, uma interpretação individual de cada banda de absorção.

Primeiramente será feita a interpretação com base somente nas funções orgânicas; depois, as regiões que são ocultadas pela sobreposição dos sinais de inorgânicos serão detalhadas.

Na primeira região do espectro (3700 a 3100 cm⁻¹) são observadas algumas bandas agudas seguidas de um ombro largo. A banda larga em 3200 cm⁻¹ pode ser atribuída ao estiramento de OH (ν O–H) de alcoóis e fenóis com ligação de hidrogênio ou ao estiramento de NH de lactamas (ν N–H). Já aquela em 3451 cm⁻¹ pode ser também devida ao estiramento de NH livre (ν N–H) e as bandas agudas em 3610 cm⁻¹ e 3516 cm⁻¹, ao estiramento de O–H (ν O–H) livre de alcoóis e fenóis.

Em 2923 cm⁻¹ observa-se a absorção de estiramento assimétrico de metileno ($v_{as}CH_2$) ou aquela resultante do estiramento de C–H de aldeídos aromáticos com grupos fortemente eletronegativos na posição orto (vH–CO–Ar-E). As bandas pouco visíveis em 2230 cm⁻¹ e 2122 cm⁻¹ podem ser atribuídas a sais de amidas.

Em compostos orgânicos isolados, atribui-se a banda em 1985 cm⁻¹ a estiramentos de alcenos acumulados (ν C=C=CH₂) e aquela em 1785 cm⁻¹ ao estiramento de carbonilas com o oxigênio menos eletronegativo como em carboxilatos e γ -lactonas (ν C=O). A banda sobreposta em 1667 cm⁻¹ pode ser devida ao estiramento de carbonila de cetonas conjugadas com alcenos (ν C=O). Esta banda também pode ser identificada como banda de amida I (ν C=O de amidas). Já em 1515 e 1602 cm⁻¹ se encontram as bandas de amida II decorrentes

de deformação angular de NH ou NH₂ (δ N–H). Em 1602 cm⁻¹ também pode estar o estiramento de alcenos conjugados com anel aromático (vC=C–Ar).

Na região onde se encontra o sinal em 1377 cm⁻¹, são geralmente observadas a deformação angular simétrica de metila (δ_s CH₃) e a deformação angular no plano de OH (δ O–H).

Em 1154 cm⁻¹ observa-se a banda de estiramento de CO de alquil-éters ou carboidratos, assim como a deformação angular assimétrica fora do plano de metileno $(\tau_{as}CH_2)$; em 923 cm⁻¹ a deformação angular assimétrica no plano de *t*-butila ($\rho_{as}CH(CH_3)_3$) e, na região entre 700 e 812 cm⁻¹, a deformação angular assimétrica fora do plano (τ C–H). Essas atribuições feitas através de dados extraídos de Silverstein (2007), Barbosa (2007) e Madari (2006a) estão resumidas na Tabela 6.

Bandas (cm ⁻¹)	Atribuições
3610	υO–H livre
3516	υO–H livre
~ 3500	υC–H
3451	υN–H livre
3200	υO–H e υN–H com ligações H
2923	υ _{as} CH ₂ aromáticos ou υH-CO-Ar-E
2122	υC≡C−R
1985	$\upsilon C = C = CH_2$
1785	υ -CF=CF ₂ , υ C=O ou υ O=C-X
1667	ν RC=CR ₂ , ν C=O Amida I
1515 e 1602	Amida II δ N–H
1602	vC=C-Ar
1377	δ₅CH ₃ , 1ª harm. δH-C 三 C, δO–H
1154	$ au_{ m as} m CH_2$
923	$\rho_{as}CH(CH_3)_3$
700 e 812	τС–Н

Tabela 6 Atribuições orgânicas para as bandas observadas nos espectros no infravermelho médio

As atribuições inorgânicas, descritas na Tabela 7, foram feitas de acordo com informações obtidas em Russell e Fraser (1994), Reeves et al. (2005) e Viscarra-Rossel et al. (2006).

Bandas (cm ⁻¹)	Atribuições
3690	vO–H de caulinita, silicatos
3660	υO–H de caulinita
3645	υO–H de caulinita
3610	υO–H de caulinita, υO–H de água em gibbsita e illita
3520	Gibbsita
3451	υO–H de água adsorvida, gibbsita, caulinita
3377	Gibbsita, smectita
1985	Quartzo
1862	Quartzo
1785	Quartzo
1667	Caulinita
1602	Smectita
1103	caulinita, silicatos
1016	caulinita, silicatos
923	Quartzo
812	Illita
800	Quartzo
755	Illita
700	Quartzo
563	Hematita
500	Silicatos
403	Silicatos

Tabela 7 Atribuições inorgânicas para as bandas observadas nos espectros no infravermelho médio

Verifica-se, desse modo, que as regiões que se estendem de 3200 cm⁻¹ a 2100 cm⁻¹ e de 1550 cm⁻¹ a 1150 cm⁻¹ refletem quase exclusivamente a presença de compostos orgânicos, não havendo sobreposições com componentes inorgânicos. Viscarra-Rossel et al. (2006) afirmam que a faixa de 1800 a 1190 contribuem positivamente para os *scores* de compostos orgânicos nas primeiras três PCs em PCA de dados espectrais de solos. Ainda outra pequena faixa foi escolhida por Coleman et al. (1991) como a melhor para estimar o conteúdo de matéria orgânica: entre 800 e 961 cm⁻¹, que corresponde à impressão digital bacteriana de acordo Filip e Hermann (2001).

Analisando os espectros de DRIFTS plotados separadamente por subgrupos amostrais divididos para cada uso do solo (Figura 19), verifica-se que os solos sob pastagem diferem muito entre si, ao contrário dos solos sob lavoura-pecuária, que se assemelham bastante.

Figura 19 Espectros de absorbância em infravermelho médio de diferentes subgrupos amostrais, segundo uso do solo: cultivados, com pastagens, matas nativas, matas ciliares e solos de áreas com integração lavoura-pecuária.

A amostra PS47 se destacou no grupo matas ciliares, porém seu perfil é o mesmo das amostras coletadas em áreas próximas da Embrapa Pecuária Sudeste em São Carlos (Figura 20).

Figura 20 Espectros de amostras de São Carlos coletados em locais próximos.

Os espectros de PS34, AF112 e AF113 (Figura 19), assim como aqueles contidos na Figura 20, apresentaram 3 bandas entre 1750 cm⁻¹ e 2000 cm⁻¹, que não estão presentes em todos os espectros obtidos por DRIFTS. Estes solos não pertencem ao mesmo grupo textural e também não têm o mesmo uso e local de origem. Estas bandas, atribuídas por Reeves (2005) e Viscarra-Rossel (2006) ao quartzo, podem aparecer em solos com baixo conteúdo de matéria orgânica.

Para confirmar esta hipótese foram selecionados quatro espectros de solos com diferentes combinações de teores de areia e carbono orgânico (Figura 21), conforme Tabela 8.

Figura 21 Espectros de solos com diferentes teores de areia e carbono orgânico.

Amostra	Areia	COT	Razão Areia/COT
PS8	Alto	Alto	17,34
PS44	Alto	Baixo	185,21
AF70	Baixo	Alto	6,06
AF5	Baixo	Baixo	-

 Tabela 8 Solos com diferentes teores de areia e carbono orgânico

A ordem crescente em intensidade de sinais nesta faixa é: AF70, AF5, PS8 e PS44 Assim, é perceptível que quanto menos intenso os sinais entre 2100 cm⁻¹ e 1200 cm⁻¹ maior o conteúdo orgânico, e, quanto mais intensos, maior o conteúdo de areia. Mesmo havendo uma quantidade considerável de areia, se o teor de matéria orgânica for alto, estes sinais serão atenuados, como na amostra PS8. Este efeito ocorre com maior intensidade na região das três bandas: 2100 cm⁻¹ e 1750 cm⁻¹.

5.4 Transformação dos espectros

A escolha da transformação dos espectros originais de reflectância em espectros de absorbância (A) foi feita após comparação com a transformação Kubelka-Munk . Abaixo é apresentado o espectro de refletância de uma amostra de solo em NIRS tansformado para A e K-M. Os perfis espectrais se assemelham bastante (eixo x), diferindo na intensidade dos sinais (Figura 22).

Figura 22 Espectros Absorbância e Kubelka-Munk para a amostra AF7.

De acordo com Smith (1996), os espectros de absorbância difusa não devem ser utilizados para análise quantitativa e sim a transformação para K-M. Entretanto, atualmente a simples conversão dos espectros de refletância para absorbância tem sido aplicada nas calibrações para propriedades do solo (VISCARRA-ROSSEL et al., 2006; MADARI et al., 2005, 2006; COÛTEAUX et al., 2003; CHANG et al., 2001).

Apesar das diferenças das intensidades de resposta serem maiores com o cálculo de K-M, os resultados obtidos nas calibrações por PLS utilizando os espectros de absorbância foram melhores para alguns atributos testados (Tabela 9), optando-se pelo uso da simples transformação com a Equação 6 (-logR). Na avaliação dos modelos de calibração, utilizaramse dados da validação cruzada (RVC e SEV) e dados da validação externa (RVE e erro percentual).

Modelo	Atributo do solo	\mathbf{RVC}^1	SEV^2	\mathbf{NF}^3	Intercepto	Inclinação	\mathbf{RVE}^4	Erro Médio (%)
TODOS K-M	CMIC	0,1805	175,52	6	271,96	0,12	0,1967	56,77
TODOS ABS	CMIC	0,6065	127,51	7	146,28	0,59	0,8297	47,87
TODOS K-M	NMIC	0,3877	69,32	3	68,80	0,26	0,6033	67,21
TODOS ABS	NMIC	0,7350	51,09	7	16,34	0,75	0,9212	34,38
TODOS K-M	COT	0,3745	8,36	4	23,87	0,15	0,3041	17,24
TODOS ABS	COT	0,7649	5,77	7	0,84	4,74	0,9519	26,07
TODOS K-M	СТ	0,1476	0,69	2	2,02	-0,01	-0,0314	33,98
TODOS ABS	СТ	0,2748	2,07	1	1,40	0,53	0,5028	25,04
TODOS K-M	NT	0,3430	0,34	3	1,30	0,21	0,1522	10,97
TODOS ABS	NT	0,8451	0,42	3	0,15	0,91	0,9693	57,15

Tabela 9 Comparação entre modelos de calibração calculados com espectros NIRS em A e K-M

¹RVC = coeficiente de regressão obtido pela validação cruzada; ²SEV = erro de validação (ver Equação 9);

³NF = número de fatores ou PCs utilizados no cálculo da PLS; ⁴RVE = coeficiente de regressão obtido pela validação externa.

Outra transformação dos dados utilizada foi o cálculo de derivada. Foram testadas a primeira e a segunda derivadas com 5 pontos de intervalo conforme ilustrado na Figura 23.
Modelos de calibração foram construídos com os espectros de absorbância sem transformação (d_0) e com o cálculo da primeira e segunda derivadas (d_1 e d_2) para fins de comparação. Esses resultados estão contidos nos Anexos II e III. A transformação com a primeira derivada foi escolhida como padrão para os próximos modelos obtidos com NIRS e DRIFTS, para correção de problemas de linha de base e aumento da resolução sem incremento significativo de ruído.

Figura 23 Espectros DRIFTS da amostra PS 56 sem transformação e com o cálculo da 1ª e 2ª derivadas com 5 pontos de intervalo.

5.5 Análise exploratória dos dados espectrais

5.5.1 Espectroscopia no infravermelho próximo

Foi realizada uma análise de componentes principais com os dados espectrais obtidos por NIRS, após 1^a derivada com 5 pontos e centrados na média, utilizando-se inicialmente 10 PCs. Com os dados da validação cruzada utilizada na PCA, foram gerados o gráfico do erro de validação (PRESS VAL) e o gráfico da variância total explicada versus o número de fatores (Figura 24).

Figura 24 Gráficos de PRESS VAL e % Variância acumulada versus número de fatores incluídos na PCA NIRS.

Observa-se uma diminuição do erro à medida que são inclusos mais fatores no modelo criado na PCA. Em geral, escolhe-se o número de fatores que provoca uma queda mais acentuada nos valores de PRESS VAL, acumulando-se o máximo de variância explicada pelas PCs.

A tabela gerada pelo *software Pirouette* (Tabela 10) fornece, os valores de PRESS VAL e variância, visualizados nos gráficos, a cada fator adicionado. A partir desses dados, verifica-se, que com 2 fatores, acumula-se uma variância de 72,10%, explicada por essas duas componentes principais, e atinge-se um valor baixo de PRESS VAL, igual a 0,003.

	Variância	Percentual	% Cumulativo	Press Val	Press Cal
Fator 1	0,00495	42.13	42,13	0,0070	0,0068
Fator 2	0,00352	29,97	72,10	0,0034	0,0033
Fator 3	0,00092	7,81	79,91	0,0025	0,0024
Fator 4	0,00059	5,00	84,91	0,0019	0,0018
Fator 5	0,00022	1,87	86,78	0,0017	0,0016
Fator 6	0,00008	0,68	87,46	0,0017	0,0015
Fator 7	0,00006	0,47	87,94	0,0016	0,0014
Fator 8	0,00005	0,41	88,35	0,0016	0,0014
Fator 9	0,00005	0,38	88,73	0,0016	0,0013
Fator 10	0.00004	0,35	89,08	0.0016	0,0013

Tabela 10 Variância dos dados espectrais de NIRS explicada para as 10 PCs e erros de calibração e validação da PCA

A seguir são apresentados os gráficos de *scores* e *loadings*, através dos quais é possível visualizar a distribuição das amostras, com base em suas propriedades mensuradas e outras características inerentes, e correlacionar os agrupamentos com cada variável medida.

Observa-se na Figura 25A, que a espectroscopia NIRS diferencia os solos provenientes das duas localidades provavelmente devido à origem e mineralogia detectada nos espectros, confirmando a hipótese mencionada no item 5.2 após visualização dos espectros de solos cultivados.

Quanto ao uso do solo (Figura 25 B), houve uma segregação entre solos sob cultivo, matas nativas e ciliares, dentro de cada grupo formado pela localidade. Os solos sob integração lavoura-pecuária de Santo Antônio de Goiás (CNPAF) também se agruparam. As pastagens de ambos os locais se dispersaram mais, demonstrando heterogeneidade. Neste grupo foram incluídas áreas com diferentes gramíneas, o que parcialmente justifica esta dispersão. Com relação às amostras de matas nativas, aquelas coletadas em Santo Antônio se mostraram bem homogêneas, pois são originárias de uma mesma mata. Já aquelas coletadas em São Carlos (CPPSE) são originárias de três áreas de preservação em estágios diferentes de recuperação da vegetação natural e densidade de espécies arbóreas, sendo uma delas pouco amostrada (uma amostra de corredor ecológico). A textura dos solos está de certa forma relacionada com o local de coleta e o uso do solo (Figura 25 A, B e C). De acordo com as características de fertilidade e textura, entre outras, o solo é indicado para o cultivo, pastagens ou preservação, entre outros usos. Esta relação não é identificada nos gráficos de *scores*. Observa-se, aliás, que a maioria dos solos de matas nativas e ciliares do CNPAF são muito argilosos enquanto que os solos de mata do CPPSE são franco argila arenosos, não sendo a textura determinante para a escolha do uso do solo.

Em geral, os solos da Embrapa Arroz e Feijão são de textura argilosa enquanto que os solos da Embrapa Pecuária Sudeste são mais diversificados e com maiores teores de areia.

Figura 25 Gráficos de *scores* (A, B e C) e de *loadings* (D), Fator 1 versus Fator 2 resultantes de PCAs com espectros NIRS centrados na média. Classes ativadas: (A) Localidade - marrom Santo Antônio de Goiás e vermelho São Carlos; (B) Uso do solo - marrom culturas, verde matas, vermelho pastagens, azul matas ciliares e rosa integração lavoura-pecuária e (C) Textura – cinza, solos de textura não determinada, marrom solos argilosos, vermelho muito argilosos, verde franco argila arenosos, rosa franco argiloso, azul franco arenosos, laranja argilo arenosos, cinza claro areia franca. (D) Espectros transformados e contribuições de cada região espectral para os *scores* da PC1 e da PC2.

Demattê et al. (2005), partindo dos solos mais arenosos para os mais argilosos, perceberam uma diferenciação nas angularidades e nas formas das curvas espectrais em VIS-NIRS, permitindo discriminalidade entre elas. Isto não foi observado no grupo de amostras coletados, onde a textura por si só não foi capaz de explicar as semelhanças e diferenças espectrais entre esses solos.

A Figura 25 D exibe, além dos gráficos de *scores*, os espectros transformados e as regiões mais informativas, ou seja, as regiões onde os espectros se diferenciam e resultam em agrupamentos e dispersões. Pode-se constatar que se trata das bandas de absorção e que o sinal intenso em 5186 cm⁻¹ apresentado na Figura 16 contribui pouco para os *scores* das duas primeiras PCs, que explicam mais de 70% da variância, não se tratando de região muito informativa.

5.5.2 Espectroscopia no infravermelho médio

A análise de componentes principais dos dados espectrais obtidos por DRIFTS também foi realizada, após calcular a 1^a derivada com 5 pontos e centrar os dados de absorbância na média. Foram calculadas 10 PCs, sendo escolhidas apenas três (Figura 26 e Tabela 11) para visualizar os *scores* e *loadings*.

Figura 26 Gráficos de PRESS VAL e % Variância acumulada versus número de fatores incluídos na PCA DRIFTS.

Com três fatores obteve-se um percentual de variância total de 70,87% e um PRESS VAL de 1,71.

	Variância	Percentual	% Cumulativo	Press Val	Press Cal
Fator 1	2,27	41,61	41,61	3,30	3,19
Fator 2	0,96	17,61	59,22	2,38	2,23
Fator 3	0,64	11,65	70,87	1,71	1,59
Fator 4	0,38	6,95	77,83	1,35	1,21
Fator 5	0,32	5,91	83,74	0,99	0,89
Fator 6	0,16	2,98	86,71	0,83	0,72
Fator 7	0,12	2,31	89,03	0,69	0,60
Fator 8	0,09	1,64	90,67	0,60	0,51
Fator 9	0,07	1,23	91,90	0,53	0,44
Fator 10	0,05	0,92	92,81	0,48	0,39

Tabela 11 Variância dos dados espectrais de DRIFTS explicada pelas 10 PCs e erros de calibração e validação da PCA

A espectroscopia no infravermelho médio também diferencia as amostras de São Carlos e Santo Antônio de Goiás, como pode ser observado na Figura 27A, porém com menor poder de discriminação que NIRS.

Observa-se na Figura 27B que as amostras de mata nativa e pastagem se encontram bem dispersas e os grupos de solos sob cultivo e integração estão mais definidos. O maior espalhamento das amostras de mata e pastagem pode indicar uma maior sensibilidade de DRIFTS comparada à NIRS com relação aos teores de matéria orgânica e biomassa microbiana.

Do ponto de vista da textura (Figura 27C), os espectros DRIFTS das amostras da Embrapa Pecuária Sudeste se encontram mais dispersas, refletindo a diversidade de composição de partículas de areia, silte e argila, enquanto que os solos da Embrapa Arroz e Feijão contêm maiores teores de argila, sendo possível distinguir as classes de textura argilosa e muito argilosa nesta localidade. Aparentemente, solos de textura semelhantes têm outras propriedades que os diferenciam dentro de uma escala de valores. Na Figura 27D visualiza-se a contribuição das bandas de absorção nos *scores* da PC1 e da PC2. A região da matéria orgânica, de 3200 cm⁻¹ a 2100 cm⁻¹ e de 1750 cm⁻¹ a 1150 cm⁻¹, praticamente só contribui para a PC1.

Figura 27 Gráficos de *scores* (A, B e C) e de *loadings* (D), Fator 1 versus Fator 2 resultantes de PCAs com espectros DRIFTS centrados na média. Classes ativadas: (A) Localidade - marrom Santo Antônio de Goiás e vermelho São Carlos; (B) Uso do solo - marrom culturas, verde matas, vermelho pastagens, azul matas ciliares e rosa integração lavoura-pecuária e (C) Textura – cinza, solos de textura não determinada, marrom solos argilosos, vermelho muito argilosos, verde franco argila arenosos, rosa franco argiloso, azul franco arenosos, laranja argilo arenosos, cinza claro areia franca. (D) Espectros transformados e contribuições de cada região espectral para os *scores* da PC1 e da PC2.

5.6 Textura

A PCA com os valores de argila, silte e areia, obtidos por procedimentos de referência, foi calculada com três fatores sendo necessárias somente duas PCs para alcançar 100% da variância e valor zero para PRESS VAL (Figura 28 e Tabela12).

	Variância	Percentual	% Cumulativo	Press Val	Press Cal
Fator1	273.315582	75.920998	75.920998	93.943459	86.684418
Fator2	86.684402	24.079002	100.000000	0.000000	0.000000
Fator3	0.000000	0.000000	100.000000	0.001160	0.000000

Tabela 12 Variância dos dados de textura explicada pelas 3 PCs e erros de calibração e validação da PCA

Figura 28 Gráficos de PRESS VAL e % de variância acumulada versus número de fatores incluídos na PCA Textura.

A textura se mostrou capaz de distinguir entre os solos da Fazenda Canchin (CPPSE) e os solos da Fazenda Capivara (CNPAF) (Figura 29A). Como mencionado anteriormente, o grupo CNPAF possui 2 tipos de textura: argilosa e muito argilosa (Figura 29C). A maioria dos solos do CPPSE tem textura franco argilo arenosa, informação confirmada pelos gráficos de *score* e *loadings* (Figura 29C,D) onde a areia está do lado correspondente às amostras PS.

Alguns solos do CNPAF têm quantidade considerável de silte, característica de solos menos intemperizados (DEMATTÊ et al., 2005). Esses solos, cujo uso é a integração lavourapecuária, demonstram alto poder de agregação e compactação ao manuseá-los.

Através da Figura 29B, observa-se que os solos de mata da Embrapa Arroz e Feijão contêm mais argila que aqueles sob pastagem neste local. A Tabela 3, apresentada anteriormente, confirma essa observação. Poucos solos cultivados foram analisados quanto à textura (somente aqueles provenientes da Embrapa Pecuária Sudeste), não sendo possível inferir algo sobre essa classe de uso do solo através destes gráficos.

Figura 29 Gráficos de *scores* e de *loadings*, Fator 1 versus Fator 2 resultantes de PCAs com dados auto-escalados de argila, silte e areia. Classes ativadas: (A) Localidade - cinza Santo Antônio de Goiás e vermelho São Carlos; (B) Uso do solo - cinza culturas, verde matas, vermelho pastagens, azul matas ciliares e rosa integração lavoura-pecuária e (C) Textura - cinza, solos de textura não determinada, roxo solos argilosos, vermelho muito argilosos, verde franco argila arenosos, rosa franco argiloso, azul franco arenosos, laranja argilo arenosos, cinza claro areia franca.

De acordo com a Figura 30, a quantificação do silte tem o maior poder de modelagem e o menor resíduo. Observando-se, porém, a escala de valores do gráfico verifica-se que, não só o silte, mas também a argila e a areia contribuíram bastante na discriminação dos grupos de amostras. Os resíduos associados são extremamente baixos, mostrando que as duas primeiras PCs são eficientes na reconstrução da matriz de valores. Isso mostra que tais propriedades podem ser facilmente preditas neste universo de amostras.

Figura 30 Gráficos de poder de modelagem e resíduos para os atributos Argila, Silte e Areia

Os conteúdos de areia silte e argila, assim como outros atributos analisados, foram preditos por NIRS e DRIFTS em 5 diferentes subgrupos amostrais, divididos segundo uso do solo e localidade: CNPAF, CPPSE, MANEJADOS (cultivados + pastagens + integração), MATAS e TODOS. As Figuras 31 e 32 contêm alguns gráficos de valores preditos versus medidos (Y FIT) provenientes da validação cruzada e da validação externa. Os parâmetros para a avaliação da qualidade dos modelos construídos para textura são detalhados nas Tabelas 13 a 15.

Modelo	\mathbf{NC}^1	\mathbf{RVC}^2	SEV ³	\mathbf{NV}^4	\mathbf{NF}^5	Intecepto	Inclinação	RVE ⁶	Erro (%)
CNPAF NIRS	55	0,3622	65,80	15	4	514,20	0,13	0,1648	9,32
CNPAF DRIFTS	55	0,6173	45,90	15	3	556,63	0,05	0,2170	13,32
CPPSE NIRS	40	0,7400	76,35	11	1	219,28	0,36	0,6093	32,24
CPPSE DRIFTS	38	0,7906	75,42	12	1	306,47	0,07	0,0979	20,82
MATAS NIRS	24	0,9641	55,10	6	3	178,68	0,63	0,9367	18,26
MATAS DRIFTS	23	0,9733	48,56	6	6	257,20	0,41	0,5261	37,90
TODOS NIRS	100	0,8354	86,17	21	3	245,97	0,47	0,7649	24,93
TODOS DRIFTS	96	0,9109	66,56	24	5	131,37	0,65	0,7448	20,85
MANEJADOS NIRS	72	0,7734	88,98	19	3	215,00	0,52	0,7595	17,57
MANEJADOS DRIFTS	74	0,8607	73,74	17	6	130,98	0,70	0,7837	16,33

Tabela 13 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para Argila

 1 NC = número de amostras de calibração; 2 RVC = coeficiente de regressão obtido pela validação cruzada; 3 SEV = erro de validação cruzada (ver Equação 9); 4 NV = número de amostras de validação; 5 NF = número de fatores ou PCs utilizados no cálculo da PLS; 6 RVE = coeficiente de regressão obtido pela validação externa.

Modelo	\mathbf{NC}^1	RVC ²	SEV ³	\mathbf{NV}^4	NF ⁵	Intecepto	Inclinação	RVE ⁶	Erro (%)
CNPAF NIRS	55	0,6703	52,91	15	2	79,32	0,38	0,6391	119,43
CNPAF DRIFTS	55	0,6873	52,02	15	4	101,09	-0,13	-0,1459	149,03
CPPSE NIRS	40	0,3496	42,60	11	1	63,19	-0,08	-0,2620	64,78
CPPSE DRIFTS	38	0,4543	40,32	12	2	52,76	-0,02	-0,0798	103,28
MATAS NIRS	24	0,4502	22,37	6	2	51,86	0,17	0,4243	20,27
MATAS DRIFTS	23	0,2733	24,97	6	4	59,18	-0,09	-0,2181	138,65
TODOS NIRS	100	0,6295	52,26	21	4	31,85	0,66	0,5348	49,13
TODOS DRIFTS	96	0,6045	50,05	24	4	18,17	0,63	0,1590	56,19
MANEJADOS NIRS	72	0,6264	57,60	19	4	39,76	0,54	0,5280	49,81
MANEJADOS DRIFTS	74	0,5844	54,00	17	4	12,97	0,59	0,8012	40,49

Tabela 14 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para Silte

 ${}^{1}NC = n$ úmero de amostras de calibração; ${}^{2}RVC = coeficiente de regressão obtido pela validação cruzada; <math>{}^{3}SEV = erro de validação cruzada (ver Equação 9); {}^{4}NV = n$ úmero de amostras de validação; ${}^{5}NF = n$ úmero de fatores ou PCs utilizados no cálculo da PLS; ${}^{6}RVE = coeficiente de regressão obtido pela validação externa.$

Tabela 15 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para Areia

Modelo	\mathbf{NC}^1	\mathbf{RVC}^2	SEV ³	NV^4	\mathbf{NF}^5	Intecepto	Inclinação	RVE ⁶	Erro (%)
CNPAF NIRS	55	0,4704	64,86	15	3	249,97	0,14	0,1850	17,82
CNPAF DRIFTS	55	0,5776	46,50	15	8	257,08	0,16	0,3109	20,81
CPPSE NIRS	40	0,6916	104,14	11	1	400,77	0,33	0,5266	13,65
CPPSE DRIFTS	38	0,7966	93,02	12	2	564,98	0,10	0,1321	9,35
MATAS NIRS	24	0,9566	64,38	6	4	219,25	0,50	0,9015	22,22
MATAS DRIFTS	23	0,9625	60,08	6	5	290,50	0,64	0,6503	19,77
TODOS NIRS	100	0,8185	108,28	21	4	145,87	0,71	0,8845	23,37
TODOS DRIFTS	96	0,8992	82,18	24	5	184,79	0,69	0,8167	18,12
MANEJADOS NIRS	72	0,7604	115,06	19	4	148,49	0,72	0,8450	25,81
MANEJADOS DRIFTS	74	0,8616	89,10	17	5	174,20	0,72	0,8795	27,03

 ${}^{1}NC = n$ úmero de amostras de calibração; ${}^{2}RVC = coeficiente de regressão obtido pela validação cruzada; <math>{}^{3}SEV = erro de validação cruzada (ver Equação 9); {}^{4}NV = n$ úmero de amostras de validação; ${}^{5}NF = n$ úmero de fatores ou PCs utilizados no cálculo da PLS; ${}^{6}RVE = coeficiente de regressão obtido pela validação externa.$

Analisando os parâmetros apresentados, destacam-se os modelos MATAS NIRS na quantificação de argila e areia, apesar do infravermelho próximo não ser capaz de detectar compostos como silicatos, largamente presentes nos solos. Isto pode ser explicado pela sensibilidade de NIRS à distribuição das partículas quanto ao tamanho (MADARI et al., 2005, 2006a; CHANG et al., 2001).

Os modelos MANEJADOS e TODOS construídos com espectros nas duas regiões do infravermelho também trouxeram bons resultados. Dessa forma, a separação das amostras de locais diferentes não demonstrou incremento de eficácia na predição dos componentes texturais dos solos, visto que proporcionam uma redução de variabilidade de teores de argila, silte e areia dentro dos grupos amostrais.

Verificou-se que tanto NIRS quanto DRIFTS predisseram satisfatoriamente os teores de areia e argila, diferentemente de Viscarra-Rossel et al. (2006), que observaram melhores resultados com os espectros no infravermelho médio. Os coeficientes de regressão (RVC e RVE) foram superiores aos alcançados por estes autores em DRIFTS (argila = 0,67; silte = 0,49 e areia = 0,74) e por Chang et al.(2001) em NIRS (argila = 0,67, silte = 0,84 e areia = 0,82). Conforme esperado, as calibrações para silte resultaram em predições menos acuradas, em função do método de quantificação indireto desse constituinte.

Os valores preditos para as amostras de validação externa estão detalhados na Tabela 16.

	Arg	gila	Si	lte	Areia		
Amostras	Medidos	Preditos	Medidos	Preditos	Medidos	Preditos	
PS2	456,00	465,00	67,2	76,75	476,8	441,41	
PS5	456,00	420,24	57,2	56,96	486,8	555,00	
PS12	316,00	457,01	47,2	63,73	636,8	483,53	
PS30	196,00	263,13	47,2	58,34	756,8	608,45	
AF70	678,80	593,88	47,2	54,16	274	354,69	
AF73	678,80	621,92	97,2	64,49	224	310,78	

Tabela 16 Valores medidos de referência e preditos pelo modelo MATAS NIRS para Argila, Silte e Areia

Tendo em vista a pequena diferença de precisão entre os modelos construídos com espectros NIRS e com espectros DRIFTS, talvez a técnica mais indicada fosse NIRS. Isto devido à maior facilidade de manuseio de amostras pulverizadas, além do menor custo do equipamento e da sua manutenção (VISCARRA-ROSSEL et al., 2006).

Somam-se a essas características de NIRS a disponibilidade de equipamentos portáteis para uso em campo (VISCARRA-ROSSEL et al., 2006) e a larga utilização desta faixa do infravermelho na obtenção de dados por satélites (DALMOLIN et al., 2005; FORMAGGIO e EPIPHANIO, 2009).

Figura 31 Gráficos dos valores medidos (de referência) versus valores preditos por modelos calculados com dados de NIRS, resultantes da validação cruzada (A, C, E e G) e da validação externa (B, D, F e H). (A) e (B) Argila pelo modelo Matas; (C) e (D) Silte pelo modelo Matas; (E) e (F) Areia pelo modelo Matas; (G) e (H) Areia pelo modelo Todos. As linhas indicam valores 1:1.

Figura 32 Gráficos dos valores medidos versus valores preditos por modelos calculados com dados de DRIFTS, resultantes da validação cruzada (A, C, E, G) e da validação externa (B, D, F, H). (A) e (B) Argila pelo modelo Manejados; (C) e (D) Argila pelo modelo Todos; (E) e (F) Silte pelo modelo Manejados; (G) e (H) Areia pelo modelo Todos. As linhas indicam valores 1:1.

5.7 Matéria orgânica

No grupo de matéria orgânica foram selecionados três fatores na PCA, totalizando 99,62% de variância explicada e um Press Val igual a 1,82, conforme dados da Figura 33 e da Tabela 17.

Figura 33 Gráfico de PRESS VAL versus número de fatores incluídos na PCA Matéria orgânica.

Tabela 17 Variância dos dados de p	natéria orgânica explicada	pelas 3 PCs e erros de calibra	ção e validação da PCA
------------------------------------	----------------------------	--------------------------------	------------------------

	Variância	Percentual	% Cumulativo	Press Val	Press Cal
Fator 1	189,28	47,79	47,80	232,55	206,72
Fator 2	113,23	28,59	76,39	115,56	93,48
Fator 3	91,99	23,23	99,62	1,82	1,49
Fator 4	1,49	0,38	100,00	0,00	0,00

Observa-se na Figura 34B que as amostras de matas nativas e algumas provenientes de mata ciliar se destacam pela grande quantidade de carbono total e que amostras e sob integração possuem alto teores de nitrogênio. Os solos de mata da Embrapa Pecuária Sudeste se mostraram menos ricos em carbono, com menor relação C/N que os solos de mata da Embrapa Arroz e Feijão.

Diversos solos sob pastagens demonstraram uma alta relação C/N (Figura 34B,D), característico de gramíneas, destacando-se os solos CNPAF de textura muito argilosa, o que era esperado devido à sua capacidade de armazenar carbono pela proteção física exercida por

agregados presentes nesses solos. A maioria dos solos apresentou valores intermediários de

Figura 34 Gráficos de *scores* (A, B e C) e de *loadings* (D), Fator 1 versus Fator 2 resultantes de PCAs com dados auto-escalados de carbono orgânico, carbono total, nitrogênio total e razão C/N.Classes ativadas: (A) Localidade - cinza Santo Antônio de Goiás e vermelho São Carlos; (B) Uso do solo - cinza culturas, verde matas, vermelho pastagens, azul matas ciliares e rosa integração lavoura-pecuária; (C) Textura - cinza solos de textura não determinada, roxo solos argilosos, vermelho muito argilosos, verde franco argila arenosos, rosa franco argiloso, azul franco arenosos, laranja argilo arenosos, cinza claro areia franca.

Figura 35 Gráficos apresentando poder de modelagem e resíduos associados a cada atributo componente do carbono orgânico e da análise elementar.

No gráfico de *loadings* (Figura 34D) constata-se também a correlação entre as variáveis CT, NT e COT, pela proximidade entre elas.

Através dos gráficos de poder de modelagem e resíduos (Figura 35) verifica-se que o nitrogênio total e o carbono orgânico são propriedades com alto poder de modelagem associado a baixos resíduos, resultando em situação ideal para o seu uso em calibrações. Na verdade, todos esses atributos constituintes da matéria orgânica apresentaram alto poder de modelagem.

Os parâmetros para a avaliação da qualidade desses modelos de predição são detalhados nas Tabelas 18 a 21 e os teores de COT, CT, NT e C/N total, preditos por NIRS e DRIFTS, são apresentados na Tabela 22, e, graficamente, nas Figuras 36 e 37.

Modelo	\mathbf{NC}^1	\mathbf{RVC}^1	SEV^2	\mathbf{NV}^4	\mathbf{NF}^3	Intecepto	Inclinação	\mathbf{RVE}^4	Erro (%)
CNPAF NIRS	89	0,5425	7,30	23	4	16,02	0,42	0,6506	14,61
CNPAF DRIFTS	84	0,6735	6,09	25	4	13,99	0,53	0,8352	13,82
CPPSE NIRS	40	0,3412	10,68	10	4	20,32	0,27	0,6286	17,95
CPPSE DRIFTS	39	0,5905	9,48	11	4	34,94	-0,05	-0,1237	26,12
MATAS NIRS	18	0,5936	8,16	15	3	20,83	0,50	0,6718	21,84
MATAS DRIFTS	25	0,7325	6,54	7	6	29,48	0,24	0,5031	25,34
TODOS NIRS	129	0,3635	8,48	32	5	15,37	0,41	0,7398	22,47
TODOS DRIFTS	126	0,6318	6,80	33	4	25,08	0,18	0,3278	20,04
MANEJADOS NIRS	102	0,5729	5,73	26	4	17,59	0,22	0,3592	23,08
MANEJADOS DRIFTS	101	0,6948	5,58	27	3	2,07	0,24	0,4047	17,43

Tabela 18 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para COT

 1 NC = número de amostras de calibração; 2 RVC = coeficiente de regressão obtido pela validação cruzada; 3 SEV = erro de validação cruzada (ver Equação 9); 4 NV = número de amostras de validação; 5 NF = número de fatores ou PCs utilizados no cálculo da PLS; 6 RVE = coeficiente de regressão obtido pela validação externa.

A melhor predição para COT foi realizada pelo modelo CNPAF DRIFTS, local que apresentou dois agrupamentos na PCA com dados de matéria orgânica, combinando o menor erro percentual com maiores coeficientes de regressão (RVC e RVE). Esse também foi melhor modelo para CT, confirmando a correlação entre esses dados (Tabela 19).

Modelo	\mathbf{NC}^1	\mathbf{RVC}^2	SEV ³	\mathbf{NV}^4	\mathbf{NF}^5	Intecepto	Inclinação	RVE ⁶	Erro (%)
CNPAF NIRS	55	0,4102	0,62	15	5	2,79	0,01	0,0385	18,95
CNPAF DRIFTS	56	0,5503	0,60	14	5	2,59	0,16	0,3052	23,02
CPPSE NIRS	26	0,0838	4,23	7	8	-1,90	2,33	0,6266	65,89
CPPSE DRIFTS	39	-0,0021	3,05	10	1	2,07	0,22	0,5566	46,27
MATAS NIRS	15	-0,2755	5,18	4	2	8,29	-1,24	-0,6116	92,66
MATAS DRIFTS	23	0,0328	4,06	6	2	1,74	0,29	0,4036	42,40
TODOS NIRS	82	-0,1517	2,09	21	1	3,33	-0,11	-0,3182	22,63
TODOS DRIFTS	95	-0,0396	2,15	24	3	2,32	0,14	-0,1443	35,83
MANEJADOS NIRS	67	0,0794	59,49	17	6	3,33	-0,21	-0,3772	34,01
MANEJADOS DRIFTS	72	-0,1300	0,87	18	2	2,73	0,05	0,2049	33,48

Tabela 19 Dados de validação cruzada e externa para os aos modelos de calibração em NIRS e DRIFTS para CT

 1 NC = número de amostras de calibração; 2 RVC = coeficiente de regressão obtido pela validação cruzada; 3 SEV = erro de validação cruzada (ver Equação 9); 4 NV = número de amostras de validação; 5 NF = número de fatores ou PCs utilizados no cálculo da PLS; 6 RVE = coeficiente de regressão obtido pela validação externa.

Modelo	\mathbf{NC}^1	\mathbf{RVC}^2	SEV ³	\mathbf{NV}^4	\mathbf{NF}^5	Intecepto	Inclinação	RVE ⁶	Erro (%)
CNPAF NIRS	55	0,2136	0,66	15	4	0,23	-0,08	-0,1836	20,74
CNPAF DRIFTS	56	0,4773	0,06	14	3	0,25	-0,09	-0,1623	27,82
CPPSE NIRS	26	-0,0052	0,59	7	4	0,25	0,13	0,0445	65,89
CPPSE DRIFTS	39	-0,087	0,69	10	1	0,60	0,03	0,3407	146,99
MATAS NIRS	15	-0,1365	0,98	4	10	2,92	-11,91	-0,9346	216,39
MATAS DRIFTS	23	0,3124	0,70	6	2	0,70	0,16	0,5710	216,95
TODOS NIRS	82	-0,0065	0,29	21	1	0,21	0,11	0,1658	21,74
TODOS DRIFTS	95	0,1572	0,42	24	1	0,30	0,05	0,4962	73,52
MANEJADOS NIRS	67	0,4391	0,06	17	3	0,24	-0,14	-0,2322	31,10
MANEJADOS DRIFTS	72	0,1819	0,29	18	1	0,23	0,11	0,2976	43,39

Tabela 20 Dados de validação cruzada e externa para os aos modelos de calibração em NIRS e DRIFTS para NT

 1 NC = número de amostras de calibração; 2 RVC = coeficiente de regressão obtido pela validação cruzada; 3 SEV = erro de validação cruzada (ver Equação 9); 4 NV = número de amostras de validação; 5 NF = número de fatores ou PCs utilizados no cálculo da PLS; 6 RVE = coeficiente de regressão obtido pela validação externa.

Esperava-se que os resíduos de validação fossem baixos na predição de constituintes quantificados pela análise elementar, visto que essa é uma técnica precisa e confiável e que a acurácia das quantificações pela calibração multivariada de espectros depende da precisão do método de referência. Tais calibrações não alcançaram a qualidade dos modelos obtidos por Vergnoux et al. (2009) em NIRS, com r^2 iguais a 0,97 e 0,97, Madari et al. (2006a) em DRIFTS, com r^2 iguais a 0,97 e 0,97, Ludwig et al. (2002) em NIRS, com r^2 iguais a 0,93 e

0,91 e Chang et al. (2001) em NIRS, com r^2 de 0,87 e 0,85 para carbono e nitrogênio totais do solo. Morgan et al. (2009) e Aichi et al. (2009) obtiveram resultados nem tão bons para carbono (0,73 e 0,83) usando NIRS.

Um provável erro instrumental pode ter ocasionado tais resultados nas predições de CT e NT, visto que estes elementos foram bem modelados por NIRS ou DRIFTS por todos esses autores.

Surpreendentemente, os menores erros de validação externa foram obtidos na predição da razão C/N (Tabela 21), talvez devido à amplificação da variabilidade dos dados ocasionada por esse cálculo. Isto está de acordo com o poder de modelagem de C/N total ilustrada na Figura 33, contrariando os resultados obtidos por Ludwig et al. (2002).

Modelo	\mathbf{NC}^1	\mathbf{RVC}^2	SEV ³	\mathbf{NV}^4	\mathbf{NF}^5	Intecepto	Inclinação	RVE ⁶	Erro (%)
CNPAF NIRS	55	0,5579	2,83	15	3	6,05	0,55	0,5233	9,58
CNPAF DRIFTS	56	0,7967	2,02	14	3	4,95	0,63	0,4202	9,54
CPPSE NIRS	26	0,3377	2,11	7	4	8,84	0,29	0,4392	8,55
CPPSE DRIFTS	39	0,3120	6,01	10	5	3,01	0,55	0,7576	134,17
MATAS NIRS	15	0,5516	2,83	4	3	0,19	0,97	0,7787	4,85
MATAS DRIFTS	23	0,8636	3,45	6	2	5,31	0,23	0,5981	196,86
TODOS NIRS	82	0,4729	2,60	21	2	9,92	0,29	0,7029	9,41
TODOS DRIFTS	95	0,7529	3,17	24	10	7,08	0,32	0,4178	146,97
MANEJADOS NIRS	67	0,3390	2,84	17	6	6,14	0,55	0,6889	10,72
MANEJADOS DRIFTS	72	0,5550	3,37	18	9	6,11	0,61	0,5434	47,13

Tabela 21 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para C/N

 ^{1}NC = número de amostras de calibração; ^{2}RVC = coeficiente de regressão obtido pela validação cruzada; ^{3}SEV = erro de validação cruzada (ver Equação 9); ^{4}NV = número de amostras de validação; ^{5}NF = número de fatores ou PCs utilizados no cálculo da PLS; ^{6}RVE = coeficiente de regressão obtido pela validação externa.

Os valores de COT, CT, NT e C/N total, preditos para as amostras de validação, pelos melhores modelos de calibração, são detalhados na Tabela 22.

	СОТ			СТ			C/N total	
Amostras	Medidos	Preditos	Amostras	Medidos	Preditos	Amostras	Medidos	Preditos
AF11	21,84	24,07	AF45	12,18	13,32	PS32	13,26	11,68
AF12	20,28	24,07	AF67	15,42	15,83	PS41	12,50	12,90
AF31	20,28	21,88	AF73	13,81	13,11	AF70	15,30	15,05
AF35	23,40	22,98	AF74	13,27	12,09	AF73	13,81	14,17
AF36	20,28	22,86	AF79	13,33	13,40	-	-	-
AF39	20,28	21,35	AF80	13,22	14,05	-	-	-
AF41	33,54	31,81	AF83	14,39	15,24	-	-	-
AF43	35,88	33,00	AF87	12,18	13,72	-	-	-
AF44	30,00	26,85	AF92	13,08	13,18	-	-	-
AF45	21,84	25,24	AF93	12,36	13,21	-	-	-
AF46	20,28	22,22	AF99	13,21	13,51	-	-	-
AF67	47,58	34,56	AF102	16,03	13,64	-	-	-
AF68	42,90	35,73	AF104	12,18	7,75	-	-	-
AF69	40,56	36,79	AF107	11,93	14,42	-	-	-
AF71	38,22	34,36	-	-	-	-	-	-
AF72	47,58	36,60	-	-	-	-	-	-
AF73	46,02	41,27	-	-	-	-	-	-
AF79	24,18	32,50	-	-	-	-	-	-
AF80	25,74	35,38	-	-	-	-	-	-
AF81	26,52	36,41	-	-	-	-	-	-
AF82	28,08	26,14	-	-	-	-	-	-
AF83	30,42	30,48	-	-	-	-	-	-
AF102	26,52	29,14	-	-	-	-	-	-
AF107	28,08	29,61	-	-	-	-	-	-
AF109	44,46	39,29	-	-	-	-	-	-

 Tabela 22
 Valores medidos de referência e preditos pelos modelos CNPAF DRIFTS (COT E CT) E MATAS

 NIRS (C/N total)

O modelo que resultou em melhores predições de C/N total foi MATAS NIRS, o mesmo que se mostrou mais eficiente na quantificação de argila e areia. Este fato provoca um questionamento sobre a habilidade desta técnica na predição da matéria orgânica do solo. Como a textura influencia grandemente na retenção da matéria orgânica pela formação de complexos com argila e promoção da humificação, esse resultado pode ser conseqüência da sensibilidade de NIRS ao tamanho de partícula.

Madari et al. (2006a) verificaram que as predições para CT são melhores em NIRS e DRIFTS quando existe homogeneidade de composição textural. Caso contrário, o infravermelho médio demonstra maior robustez trazendo valores mais precisos que o infravermelho próximo. Esta interferência da textura não foi detectada pelos autores na determinação do nitrogênio total.

Considerando esse estudo de Madari et al. (2006a), concluiu-se que existe sim alguns sinais de matéria orgânica nos espectros de NIRS, responsáveis pela calibração de C/N. Além disso, segundo Chang et al. (2001), o cálculo da primeira derivada pode atenuar o efeito de distribuição de tamanho das partículas.

Concordando com a maior robustez verificada em DRIFTS por Madari et al. (2006a), esta região do infravermelho também proporcionou melhores índices de validação em CT e NT, sendo superado por NIRS apenas na predição de C/N total.

Assim, a faixa do infravermelho médio mostrou-se mais sensível à presença de matéria orgânica, apesar dos fortes sinais de componentes minerais também detectados, sendo mais indicado para este tipo de predição. A razão C/N pode ser calculada após a partir desses valores de carbono e nitrogênio preditos, não sendo imprescindível a sua predição.

No caso de usar os espectros inteiros, é recomendável a realização de uma calibração para cada local amostrado, tendo em vista que as diferenças de mineralogia são mais marcantes do que as diferenças nos teores de carbono e nitrogênio.

Figura 36 Gráficos dos valores medidos (referência) versus valores preditos, resultantes da validação cruzada (A, C e E) e da validação externa (B, D e F) de modelos calculados com dados de NIRS. (A) e (B) COT pelo modelo CNPAF; (C) e (D) CT pelo modelo CNPAF; (E) e (F) NT pelo modelo CNPAF; (G) e (H) CN pelo modelo MATAS. As linhas indicam valores 1:1.

Figura 37 Gráficos dos valores medidos versus valores preditos, resultantes da validação cruzada (A, C e E) e da validação externa (B, D e F) de modelos calculados com dados de DRIFTS. (A) e (B) COT pelo modelo CNPAF; (C) e (D) CT pelo modelo CNPAF; (E) e (F) NT pelo modelo Manejados; (G) e (H) C/N pelo modelo CNPAF. As linhas indicam valores 1:1.

5.7 Biomassa microbiana

Neste grupo de atributos do solo, denominado biomassa microbiana, estão incluídos o carbono e o nitrogênio de origem microbiana, a respiração basal do solo, o quociente metabólico, a relação C/N microbiana e o quociente microbiano.

A PCA com os dados de biomassa microbiana foi realizada utilizando-se seis componentes principais ou fatores, porém apenas três foram necessários (Figura 38).

Figura 38 Gráfico de PRESS VAL versus número de fatores incluídos na PCA Biomassa Microbiana.

De acordo com a Tabela 23, utilizando-se três fatores, acumula-se uma variância de 82,32%, explicada por essas três componentes principais, e atinge-se um valor de mediano de PRESS VAL, igual a 274,71.

	Variância	Percentual	% Cumulativo	Press Val	Press Cal
Fator 1	324,07	34,18	34,18	787,21	623,93
Fator 2	273,31	28,83	63,01	482,03	350,63
Fator 3	183,02	19,31	82,32	274,71	167,61
Fator 4	100,51	10,60	92,92	148,07	67,10
Fator 5	42,83	4,52	97,44	84,91	24,28
Fator 6	24,28	2,56	100,00	0,00	0,00

Tabela 23 Variância dos dados de biomassa microbiana explicada pelas 6 PCs e erros de calibração e validação da PCA

Em seguida são apresentados os gráficos de scores (Figura 39), nos quais se observa um acúmulo de amostras em torno do centro. Algumas amostras da Embrapa Pecuária Sudeste se distanciaram na direção do canto superior direito. Estes solos são provenientes de ambientes de matas nativas, separadas pelo alto teor de C_{MIC} e N_{MIC} , atributos que se situam no mesmo local no gráfico de *loadings* (Figura 39D).

Quanto às amostras de solos com culturas e com mata ciliar, houve uma pequena segregação entre amostras de mesma classe, porém permeadas pelas amostras de pastagens. Enquanto as de mata ciliar se caracterizaram por uma atividade respiratória mais intensa e consequente alto quociente metabólico, as provenientes de culturas se destacaram pela alta relação C/N.

Figura 39 Gráficos de *scores* (A, B e C) e de *loadings* (D), Fator 1 versus Fator 2 resultantes de PCAs com dados auto-escalados de biomassa microbiana. Classes ativadas: (A) Localidade - cinza Santo Antônio de Goiás e vermelho São Carlos; (B) Uso do solo - cinza culturas, verde matas, vermelho pastagens, azul matas ciliares e rosa integração lavoura-pecuária; (C) Textura - cinza, solos de textura não determinada, roxo solos argilosos, vermelho muito argilosos, verde franco argila arenosos, rosa franco argiloso, azul franco arenosos, laranja argilo arenosos, cinza claro areia franca.

Conforme esperado, as amostras de mata se localizaram em região de altos teores de C_{MIC} e N_{MIC}. Quanto ao quociente microbiano, as amostras PS 44-45 e AF 92-95, apresentaram os maiores valores, sendo visualizadas à direita no gráfico de *scores*. Pode-se afirmar que, em geral, os solos manejados possuem um maior quociente microbiano que os solos de matas nativas, justamente porque estes últimos contêm grande quantidade de carbono orgânico total, incluindo frações de difícil decomposição.

O carbono microbiano, nesta análise, demonstrou ter maior poder de modelagem (Figura 40), pois interferiu de maneira significativa na distribuição das amostras no gráfico de *scores*, assim como o N_{MIC}. Entretanto, esta medida está relacionada também com os maiores resíduos, ou seja, a diferença entre os valores originais e os valores da matriz reconstruída com três fatores foi grande (\pm 200 g Kg⁻¹ de carbono).

Figura 40 Gráficos apresentando poder de modelagem e resíduos associados a cada atributo componente da biomassa microbiana do solo: N_{MIC}, C_{MIC}, RB, qCO₂, CN_{MIC} e qMIC.

Os gráficos de regressão entre valores preditos e medidos provenientes das validações cruzada e externa são apresentados nas Figuras 41 e 42. Os parâmetros utilizados para a comparação entre as diferentes calibrações para biomassa estão contidos nas Tabelas 24 a 29.

Modelo	\mathbf{NC}^1	\mathbf{RVC}^2	SEV^3	\mathbf{NV}^4	\mathbf{NF}^5	Intecepto	Inclinação	RVE ⁶	Erro (%)
CNPAF NIRS	91	0,3363	147,48	20	2	248,09	0,18	0,6207	35,33
CNPAF DRIFTS	84	0,4396	151,69	25	6	202,17	0,46	0,4970	53,66
CPPSE NIRS	42	0,6284	141,51	10	6	131,04	0,60	0,6440	82,60
CPPSE DRIFTS	39	0,6811	127,98	11	5	113,82	0,68	0,8220	75,61
MATAS NIRS	17	0,4655	180,80	15	3	305,48	0,51	0,4547	75,95
MATAS DRIFTS	25	0,7279	129,35	7	2	344,09	0,37	0,6545	81,01
TODOS NIRS	127	0,066	155,66	35	1	308,32	0,04	0,2487	94,80
TODOS DRIFTS	126	0,5012	143,74	33	7	193,74	0,46	0,5746	62,90
MANEJADOS NIRS	107	0,2881	116,67	23	1	252,95	0,10	0,5440	46,69
MANEJADOS DRIFTS	101	0,4814	116,13	27	4	176,47	0,31	0,4492	63,13

Tabela 24 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para C_{MIC}

 ^{1}NC = número de amostras de calibração; ^{2}RVC = coeficiente de regressão obtido pela validação cruzada; ^{3}SEV = erro de validação cruzada (ver Equação 9); ^{4}NV = número de amostras de validação; ^{5}NF = número de fatores ou PCs utilizados no cálculo da PLS; ^{6}RVE = coeficiente de regressão obtido pela validação externa.

Tabela 25 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para N_{MIC}

Modelo	\mathbf{NC}^{1}	\mathbf{RVC}^1	SEV^2	\mathbf{NV}^4	\mathbf{NF}^3	Intecepto	Inclinação	\mathbf{RVE}^4	Erro (%)
CNPAF NIRS	91	0,6168	18,81	20	2	37,97	0,24	0,6295	35,91
CNPAF DRIFTS	84	0,6506	21,06	25	9	13,84	0,87	0,7488	33,72
CPPSE NIRS	42	0,5191	79,82	10	4	65,19	0,80	0,7555	104,00
CPPSE DRIFTS	39	0,7530	59,38	11	6	25,21	0,77	0,7319	52,52
MATAS NIRS	17	0,5898	84,50	15	2	69,40	0,59	0,7130	79,16
MATAS DRIFTS	25	0,8589	53,15	7	2	77,21	0,56	0,6966	51,67
TODOS NIRS	127	0,4838	54,58	35	1	51,97	0,28	0,5213	41,06
TODOS DRIFTS	126	0,6313	45,37	33	3	53,02	0,29	0,5213	41,02
MANEJADOS NIRS	107	0,6880	23,40	23	5	29,44	0,44	0,5054	34,08
MANEJADOS DRIFTS	101	0,7464	22,25	27	4	31,34	0,40	0,4565	30,00

 ${}^{1}NC = n$ úmero de amostras de calibração; ${}^{2}RVC =$ coeficiente de regressão obtido pela validação cruzada; ${}^{3}SEV =$ erro de validação cruzada (ver Equação 9); ${}^{4}NV =$ número de amostras de validação; ${}^{5}NF =$ número de fatores ou PCs utilizados no cálculo da PLS; ${}^{6}RVE =$ coeficiente de regressão obtido pela validação externa.

Tabela 26 Dados de	validação cruzada e externa r	para os modelos de calibração em	1 NIRS e DRIFTS para RF

Modelo	\mathbf{NC}^1	\mathbf{RVC}^{1}	SEV^2	\mathbf{NV}^4	\mathbf{NF}^3	Intecepto	Inclinação	\mathbf{RVE}^4	Erro (%)
CNPAF NIRS	91	0,6038	1,39	20	2	1,35	0,38	0,7031	96,28
CNPAF DRIFTS	84	0,5983	1,51	25	3	1,48	0,30	0,3890	54,96
CPPSE NIRS	42	0,6197	0,49	10	4	1,26	-0,05	-0,1532	37,69
CPPSE DRIFTS	39	0,5214	0,56	11	3	1,47	0,03	0,0616	51,42
MATAS NIRS	17	0,6369	1,59	15	1	1,91	0,49	0,7112	91,42
MATAS DRIFTS	25	0,8014	1,09	7	4	1,87	0,12	0,3890	72,70
TODOS NIRS	127	0,5691	1,17	35	2	1,50	0,27	0,6161	87,12
TODOS DRIFTS	126	0,5767	1,20	33	4	1,55	0,30	0,5264	120,72
MANEJADOS NIRS	107	0,5275	1,21	23	4	1,57	0,39	0,7223	47,18
MANEJADOS DRIFTS	101	0,5862	1,14	27	4	1,20	0,42	0,5862	68,52

 ${}^{1}NC$ = número de amostras de calibração; ${}^{2}RVC$ = coeficiente de regressão obtido pela validação cruzada; ${}^{3}SEV$ = erro de validação cruzada (ver Equação 9); ${}^{4}NV$ = número de amostras de validação; ${}^{5}NF$ = número de fatores ou PCs utilizados no cálculo da PLS; ${}^{6}RVE$ = coeficiente de regressão obtido pela validação externa.

Modelo	\mathbf{NC}^1	\mathbf{RVC}^1	SEV^2	\mathbf{NV}^4	\mathbf{NF}^3	Intecepto	Inclinação	\mathbf{RVE}^4	Erro (%)
CNPAF NIRS	91	0,5359	5,72	20	2	5,56	0,37	0,5773	86,19
CNPAF DRIFTS	84	0,5778	5,76	25	2	6,23	0,37	0,4828	59,50
CPPSE NIRS	42	0,2819	3,81	10	2	5,82	0,05	0,4380	42,48
CPPSE DRIFTS	39	0,1570	6,48	11	2	7,65	0,14	0,5841	93,46
MATAS NIRS	17	0,4791	5,09	15	1	5,80	0,32	0,5285	135,54
MATAS DRIFTS	25	0,6039	4,33	7	3	3,58	0,08	0,2717	38,25
TODOS NIRS	127	0,5431	4,31	35	2	7,15	0,05	0,2009	98,42
TODOS DRIFTS	126	0,4536	5,82	33	4	8,65	0,11	0,2997	162,62
MANEJADOS NIRS	107	0,2072	6,89	23	1	8,90	0,04	0,3000	72,43
MANEJADOS DRIFTS	101	0,4871	6,10	27	4	7,63	0,16	0,3285	106,47

Tabela 27 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para qCO2

 ^{1}NC = número de amostras de calibração; ^{2}RVC = coeficiente de regressão obtido pela validação cruzada; ^{3}SEV = erro de validação cruzada (ver Equação 9); ^{4}NV = número de amostras de validação; ^{5}NF = número de fatores ou PCs utilizados no cálculo da PLS; ^{6}RVE = coeficiente de regressão obtido pela validação externa.

Tabela 28 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para C/N_{MIC}

Modelo	\mathbf{NC}^1	\mathbf{RVC}^1	SEV^2	\mathbf{NV}^4	\mathbf{NF}^3	Intecepto	Inclinação	\mathbf{RVE}^4	Erro (%)
CNPAF NIRS	91	-0,1078	4,64	20	1	5,94	0,16	0,2861	44,81
CNPAF DRIFTS	84	0,1188	4,76	25	3	6,49	0,09	0,1027	45,27
CPPSE NIRS	42	0,0890	5,83	10	7	3,00	-0,04	-0,1825	62,80
CPPSE DRIFTS	39	0,1400	2,08	11	2	3,71	-0,17	-0,3957	79,60
MATAS NIRS	17	0,7488	1,24	15	2	3,09	0,22	0,6226	43,63
MATAS DRIFTS	25	0,4184	3,29	7	5	1,59	1,00	0,6530	79,76
TODOS NIRS	127	0,2975	4,00	35	1	4,39	0,31	0,6093	107,78
TODOS DRIFTS	126	0,4220	3,84	33	4	2,91	0,40	0,5057	59,63
MANEJADOS NIRS	107	0,2364	4,26	23	1	5,17	0,15	0,3509	94,28
MANEJADOS DRIFTS	101	0,3657	4,29	27	4	2,07	0,66	0,5575	68,51

 1 NC = número de amostras de calibração; 2 RVC = coeficiente de regressão obtido pela validação cruzada; 3 SEV = erro de validação cruzada (ver Equação 9); 4 NV = número de amostras de validação; 5 NF = número de fatores ou PCs utilizados no cálculo da PLS; 6 RVE = coeficiente de regressão obtido pela validação externa.

Modelo	\mathbf{NC}^1	\mathbf{RVC}^1	SEV^2	\mathbf{NV}^4	\mathbf{NF}^3	Intecepto	Inclinação	\mathbf{RVE}^4	Erro (%)
CNPAF NIRS	89	0,2824	4,20	23	2	10,34	0,13	0,3041	65,90
CNPAF DRIFTS	84	0,4449	4,46	25	8	10,07	0,19	0,1585	56,04
CPPSE NIRS	40	-0,0757	11,97	10	1	9,81	0,075	0,2186	56,13
CPPSE DRIFTS	39	0,1970	11,51	11	1	8,95	0,22	0,4594	120,92
MATAS NIRS	18	0,6622	4,16	15	4	9,13	0,43	0,4141	55,05
MATAS DRIFTS	25	0,5522	3,97	7	5	8,66	0,51	0,8746	58,74
TODOS NIRS	129	-0,1141	7,39	32	1	11,58	0,02	0,0875	65,68
TODOS DRIFTS	126	0,1722	7,65	33	3	9,68	0,00	0,00	64,54
MANEJADOS NIRS	102	0,1881	7,84	26	3	13,35	-0,080	-0,1404	82,16
MANEJADOS DRIFTS	101	0,2428	8,35	27	3	8,71	0,25	0,4047	72,94

Tabela 29 Dados de validação cruzada e externa para os modelos de calibração em NIRS e DRIFTS para qMIC

 ^{1}NC = número de amostras de calibração; ^{2}RVC = coeficiente de regressão obtido pela validação cruzada; ^{3}SEV = erro de validação cruzada (ver Equação 9); ^{4}NV = número de amostras de validação; ^{5}NF = número de fatores ou PCs utilizados no cálculo da PLS; ^{6}RVE = coeficiente de regressão obtido pela validação externa.

 C_{MIC} foi mais bem predito por CPPSE DRIFTS, porém CNPAF NIRS apresentou o menor Erro%. No gráfico de Y FIT deste modelo observam-se algumas amostras acima da linha 1:1 e outras abaixo, indicando duas retas possíveis. As amostras de cima são solos com alta taxa de respiração basal e qCO₂, o que pode significar diferença qualitativa de matéria orgânica e comunidade microbiana.

Os valores de RVE obtidos para C_{MIC} com CPPSE DRIFTS e N_{MIC} com CNPAF DRIFTS são comparáveis com os coeficientes de regressão publicados por Ludwig et al. (2002) (0,76 e 0,74) e melhores que aqueles obtidos por R. Rinnan e A. Rinnan (2007) (0,79 e 0,60) em NIRS. O melhor modelo para C_{MIC} superou aquele alcançado por Chang et al. (2001) (r = 0,60 e SEV = 389,71), porém estes e os modelos para N_{MIC} não foram melhores que os resultados de Coûteaux et al. (2003) (0,955 e 0,969) e de Terhoeven-Urselmans et al. (2008) (0,99 e 1,03) em NIRS. Os modelos obtidos para RB (MANEJADOS NIRS), por sua vez, não confirmaram os valores alcançados por Chang et al. (2001), Ludwig et al. (2002) e Terhoeven-Urselmans (2008) (r = 0,82; r = 0,96; r = 1,00).

Em alguns dos trabalhos citados foi utilizado um maior número de amostras na validação (NV) do que na calibração (NC). Ludwig et al. (2002) adotaram $n_C = 40$ e $n_V = 80$ para calibrar com PLS modificado, ressaltando a importância de escolher amostras de calibração que cobrem toda a faixa de valores observado, e Chang et al. (2001) dividiram as amostras em $n_C = 30$ e $n_V > 700$ para posterior regressão com PCR.

Chang et al. (2001) observaram que as predições de propriedades bioquímicas do solo por NIRS foram mais precisas dentro de grupos de amostras de mesmo local e em solos com maiores teores de matéria orgânica, o que foi confirmado no caso de C_{MIC} e N_{MIC} . Os resultados das validações para C/N_{MIC} (MATAS NIRS) e qMIC (MATAS DRIFTS) indicam que esses índices, de maior significado na avaliação ambiental do que C_{MIC} e N_{MIC} , podem ser razoavelmente preditos por NIRS e DRIFTS. Os coeficientes de regressão foram melhores que os apresentados por Ludwig et al. (2002), mas os erros percentuais ainda são muito altos. As calibrações para qCO_2 não foram satisfatórias.

Observa-se que DRIFTS teve melhor desempenho na modelagem dos elementos (C_{MIC} e N_{MIC}). NIRS, por sua vez, se mostrou mais adequado nas predições da respiração basal e do quociente metabólico, propriedades preditas por uma relação indireta com os espectros, através de sua correlação com o conteúdo de biomassa microbiana (C_{MIC} e N_{MIC}), com a qualidade da matéria orgânica e com a textura.

Assim, é mais vantajoso optar pela técnica DRIFTS na quantificação do carbono e do nitrogênio microbianos. A partir desses valores, o quociente microbiano e a relação C/N microbiana podem ser calculados. Com relação à respiração basal do solo, existem métodos práticos e mais precisos que a captura de CO₂ por solução alcalina, que podem trazer melhores resultados nas calibrações por DRIFTS ou, até mesmo, dispensar essa alternativa espectroscópica. A vantagem de NIRS ser sensível a este parâmetro é a possibilidade futura de uma caracterização mais ampla do solo, através de dados obtidos por satélites.

	C _{MIC}			N _{MIC}			C/N _{MIC}	
Amostras	Medidos	Preditos	Amostras	Medidos	Preditos	Amostras	Medidos	Preditos
AF11	240,60	350,34	AF11	30,21	37,25	AF41	6,29	5,25
AF12	152,50	350,34	AF12	32,17	37,25	AF43	7,59	5,17
AF31	242,66	305,96	AF31	30,10	30,94	PS1	2,53	2,28
AF35	303,14	214,84	AF35	39,65	27,95	PS3	2,00	2,43
AF36	341,45	227,31	AF36	45,70	39,83	PS5	2,21	3,24
AF39	288,13	213,40	AF39	31,03	41,14	PS8	2,08	3,26
AF41	614,69	502,91	AF41	97,73	80,77	PS9	2,10	3,50
AF43	731,04	457,33	AF43	96,33	70,31	PS12	1,36	4,03
AF44	165,20	177,47	AF44	40,09	28,23	PS30	3,15	2,31
AF45	165,36	170,91	AF45	22,08	41,01	PS35	2,75	4,22
AF46	185,14	186,22	AF46	34,71	46,69	PS41	3,85	3,85
AF67	546,15	451,07	AF67	87,78	105,73	AF64	11,77	5,64
AF68	403,13	601,65	AF68	66,04	110,59	AF67	6,22	6,71
AF69	551,88	667,63	AF69	89,32	113,54	AF70	5,61	5,67
AF71	382,26	566,58	AF71	70,08	91,55	AF73	14,75	4,90
AF72	274,38	506,76	AF72	64,02	93,81	-	-	-
AF73	497,39	439,98	AF73	33,73	86,83	-	-	-
AF79	280,99	350,66	AF79	30,87	56,85	-	-	-
AF80	79,58	461,60	AF80	43,17	35,95	-	-	-
AF81	205,35	382,51	AF81	40,00	33,27	-	-	-
AF82	247,51	325,73	AF82	30,62	20,05	-	-	-
AF83	426,21	201,85	AF83	96,08	81,38	-	-	-
AF102	277,90	127,21	AF102	58,78	66,48	-	-	-
AF107	300,65	260,58	AF107	54,29	53,37	-	-	-
AF109	434,28	392,93	AF109	81,66	81,84	-	-	-

Tabela 30 Valores medidos de referência e preditos pelos modelos CNPAF DRIFTS (C_{MIC} e N_{MIC}) e MATAS NIRS (C/N_{MIC})

Continua...

...continua figura anterior

Figura 41 Gráficos dos valores medidos (de referência) versus valores preditos por modelos calculados com dados de NIRS, resultantes da validação cruzada (A, C, E, G, I) e da validação externa (B, D, F, H, J). (A) e (B) C_{MIC} pelo modelo CNPAF; (C) e (D) N_{MIC} pelo modelo Manejados; (E) e (F) RB pelo modelo Manejados; (G) e (H) qCO₂ pelo modelo CPPSE; (I) e (J) CN_{MIC} pelo modelo MATAS; (L) e (M) qMIC pelo modelo MATAS. As linhas indicam valores 1:1.

Continua...

...continua figura anterior

Figura 42 Gráficos dos valores medidos (de referência) versus valores preditos por modelos calculados com dados de NIRS, resultantes da validação cruzada (A, C, E, G, I, L) e da validação externa (B, D, F, H, J). (A) e (B) C_{MIC} pelo modelo CNPAF; (C) e (D) N_{MIC} pelo modelo Manejados; (E) e (F) RB pelo modelo Manejados; (G) e (H) qCO₂ pelo modelo CPPSE; (I) e (J) CN_{MIC} pelo modelo MATAS; (L) e (M) qMIC pelo modelo MATAS. As linhas indicam valores 1:1.

6 CONCLUSÕES

Observa-se que, dentre as técnicas utilizadas para análise de solo, a espectroscopia se mostrou mais sensível às diferenças entre solos de classes distintas. Tanto NIRS quanto DRIFTS identificaram bem os locais de coleta e, razoavelmente, os usos do solo e a textura.

Os diferentes locais de coleta dos solos, assim como o uso destes com culturas, pastagens ou preservação, foram características que distinguiram as amostras na análise de componentes principais. A textura não foi uma classificação que explicou bem a dispersão das amostras.

A calibração de subgrupos amostrais segundo local e uso do solo em geral melhorou a precisão dos modelos, tendo em vista o destaque dos modelos CNPAF DRIFTS e MATAS NIRS, na predição de matéria orgânica, biomassa microbiana e textura.

Na análise elementar, as quantificações de CT e NT têm a mesma precisão resultando em calibrações semelhantes. A abundância de CT no solo é compensada pela especificidade de algumas bandas a NT (bandas de amida I e amida II), que não são tão mascaradas pelos sinais de componentes minerais de solo.

Os coeficientes de regressão encontrados para as propriedades argila, silte, areia, COT, C_{MIC} e qMIC se enquadram na categoria A (0,8 < r < 1,0) proposta por Chang et al. (2001), indicando que esses atributos podem ser acuradamente quantificados pela espectroscopia. As predições de C/N total, N_{MIC}, C/N_{MIC} e RB se enquadraram na categoria B (0,5 < r < 0,8) e podem ser melhoradas utilizando-se estratégias de calibração, entretanto aquelas classificadas como C (CT, NT e qCO₂) podem não ser confiáveis devido a algum erro analítico no procedimento padrão ou pelo alto desvio inerente ao método utilizado como referência.

As predições por DRIFTS foram, em geral, melhores que aquelas com calibrações em NIRS, provavelmente, devido à maior quantidade de informação disponível nesses espectros e pela maior intensidades dos sinais.
7 APLICAÇÕES DA ESPECTROSCOPIA NO INFRAVERMELHO

Os modelos construídos para textura mostraram-se robustos, alcançando bons resultados com todos os solos. Estes cálculos podem ser aplicados para solos arenosos até muito argilosos, sendo provável o sucesso com solos de diversas regiões do país.

O destaque para o modelo CNPAF DRIFTS na quantificação de matéria orgânica e biomassa microbiana sugere grande potencial de uso da espectroscopia no estudo das mudanças climáticas e estoques de carbono no solo. A utilização de solos de mesma textura nas calibrações se mostra promissora para a melhoria da precisão dessas quantificações por DRIFTS.

O uso da espectroscopia resulta em economia de tempo e custo. Enquanto as determinações de textura e matéria orgânica demoram, em média, 3 horas por amostra e o procedimento convencional para biomassa microbiana, um período de 9 dias, a espectroscopia fornece tais dados em 2 minutos.

O custo da análise espectroscópica está concentrado na aquisição do equipamento, que pode ser facilmente compensado considerando-se a economia de aproximadamente R\$9,00 por amostra, em relação às análises convencionais. Estas envolvem a compra de reagentes químicos, tanto para a análise quanto para o tratamento dos resíduos.

O procedimento alternativo implicaria somente na secagem e moagem do solo, havendo estudos no sentido de eliminar por completo o preparo da amostra, utilizando-se o solo úmido e sem moagem (Terhoeven-Urselmans et al., 2008). Tais estudos mostram a tendência de se analisar amostras ambientais na forma mais próxima da original.

A espectroscopia se constitui, portanto, em método confiável, pois os espectros refletem a constituição química da amostra, de maneira que os sinais observados também indicam o estado da amostra, com grande sensibilidade.

8 TRABALHOS FUTUROS

Existem diversas formas de avaliar os resultados gerados neste trabalho, que durante o curto período do mestrado não puderam ser realizadas. Os procedimentos que podem ser aplicados no intuito de melhorar as calibrações são:

- a) Seleção e utilização das regiões mais informativas para cada propriedade a ser predita;
- b) Atualização constante da base de dados;
- c) Calibração através de redes neurais;
- d) Agrupamento das amostras segundo a textura para posterior calibração;
- e) Agrupamento das amostras segundo a taxonomia para posterior calibração;
- f) Utilização de número de amostras de validação maior do que número de amostras de calibração, no caso de um grande universo amostral com mais de 700 amostras;
- g) Seleção de métodos de referência com alta precisão, de preferência validados, e utilização de ambientes com temperatura e umidade controladas;
- h) Predição de classes, utilizando-se índices de qualidade de solo e métodos estatísticos como PLS-DA.

REFERÊNCIAS

AICHI, H.; FOUAD, Y.; WALTER, C.; VISCARRA-ROSSEL, R. A.; CHABAANE, Z. L.; SANAA, M. Regional predictions of soil organic carbon content from spectral reflectance measurements. **Biosystems engineering**, v. 104, p. 442-446, 2009.

ALVARENGA, M. I. N.; SIQUEIRA, J. O.; DAVIDE, A. C. Teor de carbono, biomassa microbiana, agregação e micorriza em solos de cerrado com diferentes usos. **Ciência e Agrotecnologia**, v. 23, n. 3, p. 617-625, 1999.

ANDERSON, J.P.E.; DOMSCH, K.H. A physiological method for the quantitative measurement of microbial biomass in soils. **Soil Biology and Biochemistry**, v. 10, n. 3, p. 215-221, 1978.

ANDERSON, T. H.; DOMSCH, K.H. The metabolic quotient for CO_2 (q CO_2) as a specific activity parameter to assess the effects of environment conditions, such as pH, on the microbial biomass of forest soils. **Soil Biology and Biochemistry**, v. 25, p. 393-395, 1993.

ANJOS, L. H. C.; PEREIRA, M. G.; FONTANA, A. Matéria orgânica e pedogênese. In: SANTOS, G.de A.; CAMARGO, F.A.de O. (Ed.) **Fundamentos da matéria orgânica do solo:** ecossistemas tropicais e subtropicais. Porto Alegre: Metrópole, 2008. p. 65-86.

BALDOCK, J. A.; NELSON, P. N. Soil organic matter. In: SUMMER, M. E. (Ed.) Handbook of soil science. Flórida: CRC, 1999. Seção B, cap. 2, p. B-37.

BALOTA, E.L.; COLOZZI-FILHO, A.; ANDRADE, D.S.; HUNGRIA, M. Biomassa microbiana e sua atividade em solos sob diferentes sistemas de preparo e sucessão de culturas. **Revista Brasileira de Ciência do solo**, v. 22, p. 641-649, 1998.

BARBOSA, L. C. A. **Espectroscopia no infravermelho:** na caracterização de compostos orgânicos. Viçosa: Editora da Universidade Federal de Viçosa, 2007. 189p.

BAYER, C; MIELNICZUK, J. Dinâmica e função da Matéria orgânica. In: In: SANTOS, G.de A.; CAMARGO, F.A.de O. (Ed.) **Fundamentos da matéria orgânica do solo:** ecossistemas tropicais e subtropicais. Porto Alegre: Metrópole, 2008. p. 7-18.

BEEBE, K. R.; PELL, R. J.; SEASHOLTZ, M. B. Chemometrics: a practical guide. New York: John Wiley, 1998, p. 46-47.

BEN-DOR, E.; BANIN, A. Near-Infrared analysis as a rapid method to simultaneously evaluate several soil properties. **Soil Science Society of America Journal**, v. 59, p. 364-372, 1995.

BLANCO, M.; COELHO, J.; ITURRIAGA, H.; MASPOCH, S.; BERTARN, E. Simultaneous determination of rubber additives by FT-IR Spectrophoyometry with multivariate calibration. **Applied Spectroscopy**, v.49, p.747-753, 1995.

BOLIN, B.; COOK, R. B. C, N, P and S Cycles: Major reservoirs and fluxes. In: BOLIN, B.; COOK, R. B. **The major biogeochemical cycles and their interactions.** New York: John Wiley, 1983. Disponível em: http://www.icsu-scope.org/downloadpubs/scope21/chapter02.html. Acesso em: 02 jan. 2010.

BOT, A.; BENITES, J. **The importance of soil organic matter:** key to drought-resistant soil and sustained food production. Roma: Food and agriculture organization of the united nations (FAO), 2005, 93p. (FAO soils bulletin, 80).

BROADBENT, F.E. The soil organic fraction. Advances in Agrononomy, v. 5, p. 153-183, 1953.

CAMARGO, F. A. O.; SILVA, L. S.; GIANELLO, C.; TEDESCO, M. J.; VIDOR, C. Nitrogênio orgânico do solo. In: SANTOS, G.de A.; CAMARGO, F.A.de O. (Eds.) **Fundamentos da matéria orgânica do solo:** ecossistemas tropicais e subtropicais. Porto Alegre: Metrópole, 2008. p. 87-100.

CAMPBELL, C. A.; BIEDERBECK, V.O.; ZENTNER, R. P.; LAFOND, G. P. Effect of crop rotations and cultural practices on siol organic matter, microbial biomass and respiration in a thin Black Chernozem. **Canadian Journal of Soil Science**, v. 71, p. 363-376, 1991.

CANELLAS, L. P. Distribuição da matéria orgânica e características de ácidos húmicos em solos com adição de resíduos de origem urbana. **Pesquisa Agropecuária Brasileira**, v. 36, n. 12, p. 1529-1538, 2001.

CANELLAS, L. P.; MENDONÇA, E. S.; DOBBSS, L. B.; BALDOTTO, M. A.; VELOSO A. C. X.; SANTOS, G. A.; AMARAL SOBRINHO, N. M. B. Reações da matéria orgânica. In: SANTOS, G. de A.; CAMARGO, F.A.de O. (Ed.) **Fundamentos da matéria orgânica do solo:** ecossistemas tropicais e subtropicais. Porto Alegre: Metrópole, 2008. p. 45-61.

CARDOSO, M.O. Métodos para quantificação da biomassa microbiana do solo. Agropecuária Técnica, v. 25, n. 1, p. 1-12, 2004.

CARVALHO, F. Atributos bioquímicos como indicadores da qualidade do solo em florestas de *Araucaria angustifólia* (Bert.) O. Ktze. no estado de São Paulo. 79 f. 2005. Dissertação (Mestrado em Ecologia de Agroecossistemas). Escola Superior Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, 2005.

CERETTA, C. A.; BAYER, C.; DICK, D. P.; MARTIN-NETO, L.; COLNAGO, L. A. Métodos Espectroscópicos. In: SANTOS, G. A.; SILVA, L. S.; CANELLAS, L. P.; CAMARGO, F. A. O. (Ed.) **Fundamentos da matéria orgânica do solo:** ecossistemas tropicais e subtropicais, Porto Alegre: Metropole, 2008. p. 201-228.

CERRI, C.C. **Conceitos básicos.** 2008. Disponível em: </br><web.cena.usp.br/apostilas/Cerri/conceitosbasicos.ppt>. Acesso em: 26 nov. 2008.

CHANG, C.W.; LAIRD, D.A.; MAUSBACH, M.J.; HURBURGH, C.R.J. Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties. **Soil Science Society of America Journal**, v. 65, p. 480-490, 2001.

CHANG, C.-W., LAIRD, D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science v. 167, n. 110, p. 116, 2002.

COATES, J. Review of IR sampling methods. In: WORKMAN JÚNIOR., J.; SPRINSTEEN, A. (Ed.) **Applied spectroscopy:** a compact reference for practitioners. San Diego: Academic Press, 1998. p-49-91.

CONCEIÇÃO, M.; MANZATTO, C.V.; ARAÚJO, W.S.; MARTIN-NETO, L.; SAAB, S.C.; CUNHA, T.J.F.; FREIXO, A.A. Estudo comparativo de métodos de Determinação do teor de Matéria Orgânica em solos orgânicos do estado do Rio de Janeiro. **Pesquisa em Andamento**, Embrapa Solos, n. 3, p. 1-5, 1999.

COLEMAN, T. L.; AGBU, P. A.; MONTGOMERY, O. L.; GAO, T.; PRASAD, S. Spectral Band Selection for Quantifying Selected Properties in Highly Weathered Soils. **Soil Science**, v. 151, p. 331-397, 1991.

COÛTEAUX, M.M.; BJORN, B. ROVIRA, P. Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. **Soil Biology and Biochemistry**, v. 35, p. 1587–1600, 2003.

DALMOLIN, R.S.D.; GONÇALVES, C. N.; KLAMT, E.; DICK, D. P. Relação entre os constituintes do solo e seu comportamento espectral. **Ciência Rural**, v. 35, n. 2, p. 481-489, 2005.

DE-POLLI, H.; GUERRA, J. G. M. C, N e P na biomassa microbiana do solo. In: SANTOS, G.de A.; CAMARGO, F.A.de O. (Ed.) **Fundamentos da matéria orgânica do solo:** ecossistemas tropicais e subtropicais. Porto Alegre: Metrópole, 2008. p. 263-273.

DEMATTÊ, J.A.M.; CAMPOS R.C.; ALVES, M.C.; FIORIO, P.R.; NANNI; M.R. Visible-NIR reflectance: a new aproach on soil evaluation. **Geoderma**, v. 121, p. 95-112, 2004.

DEMATTÊ, J. A. M.; SILVA, M. L. S.; ROCHA, G. C.; CARVALHO, L.A.; FORMAGGIO, A. R.; FIRME, L. P. Variações espectrais em solos submetidos à aplicação de torta de filtro. **Revista Brasileira de Ciência do Solo**, v. 29, p. 317-326, 2005.

DUCKWORTH, J. H. Spectroscopic quantitative analysis. In: WORKMAN J.R.J.; SPRINSTEEN, A. (Ed.) **Applied spectroscopy:** a compact reference for practitioners. San Diego-USA: Academic Press, 199 p. 93-164.

EBERHARDT, D. N.; VENDRAME, P. R. S; BECQUER, T.; GUIMARÃES, M. F. Influência da granulometria e da mineralogia sobre a retenção do fósforo em latossolos sob pastagens no cerrado. **Revista Brasileira de Ciência do Solo**, v. 32, p. 1009-1016, 2008.

EMBRAPA SOLOS. Manual de métodos de análise de solo. 2. ed. Rio de Janeiro: EMBRAPA-CNPS, 1997. 212p.

EMBRAPA SOLOS. **Sistema brasileiro de classificação de solos.** 2. ed. Rio de Janeiro: EMBRAPA-CNPS, 2006. 306p.

EMBRAPASOLOS.Projetocarbono.Disponívelem:<http://www.cnps.embrapa.br/carbono/antecedentes/antecedentes.html>Acesso em: 28 dez. 2009.

ESSINGTON, M. E. Soil and water chemistry: an integrative approach. London: CRC, 2004. 534 p.

FEIDEN, A. Agroecologia: introdução e conceitos. In: AQUINO, A. M.; ASSIS, R. L. (Ed.). Agroecologia: princípios e técnicas para uma agricultura orgânica sustentável. Brasília: Embrapa Informação Tecnológica, 2005. 517 p.

FERREIRA, M. M.; FERNANDES, B.; CURI, N. Mineralogia da fração argila e estrutura de latossolos da região sudeste do Brasil. **Revista Brasileira de Ciência do Solo**, v. 23, p. 507-514, 1999.

FERREIRA, J.A.; SIMÕES, M. L.; MILORI, D. M. B. P.; MARTIN-NETO, L. HAYES, M. H. B.; MAO, J. **Caracterização espectroscópica da matéria orgânica do solo.** São Carlos: Embrapa Instrumentação Agropecuária, 2004. 3p. (Circular Técnica, n ° 24).

FILIP, Z.; HERMANN, S. An attempt to differentiate *Pseudomonas* spp. and other soil bacteria by FT-IR spectroscopy. **European Journal of Soil Biology**, v. 37, p. 137–143, 2001.

FISK, M.C.; RUETHER, K.F.; YAVITT, J.B. Microbial activity and functional composition among northern peatland ecosystems. **Soil Biology and Biochemistry**, v. 35, n. 4, p. 591-602, 2003.

FORMAGGIO, A. R.; EPIPHANIO, J. C. N. Feições espectrais e parâmetros analíticos de solos tropicais brasileiros. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 10, 2001, Foz do Iguaçu, **Anais.** São José dos Campos: Sociedade Brasileira de Sensoriamento Remoto, 2001. p. 1399 -1401. Disponível em: http://marte.dpi.inpe.br/col/dpi.inpe.br/lise/2001/09.20.18.07/doc/1399.1401.221.pdf>. Acesso em 29 dez. 2009.

GAMA-RODRIGUES, E. F. Biomassa microbiana e ciclagem de nutrientes. In: SANTOS, G. A.; CAMARGO, F. A. O. (Ed.). Fundamentos da matéria orgânica: ecossistemas tropicais e subtropicais. Porto Alegre: Gênesis, 2008. p.159-168.

GERZABEK, M. H.; ANTIL, R. S.; KOGEL-KNABNER, I.; KNICKER, H.; KIRCHMANN, H. HABERHAUER, G. How are soil use and management reflected by soil organic matter characteristics: a spectroscopic approach. **European Journal of Soil Science**, v. 57, p. 485–494, 2006.

GRISI, B.M. Temperature increase and its effect on microbial biomass and activity of tropical and temperate soils. **Revista de Microbiologia**, v. 28, p. 5-10, 1997.

IBGE. **Mapa de solos do Brasil,** 2005. Disponível em:< http://mapas.ibge.gov.br/solos/viewer.htm>. Acesso em: 28 dez. 2009.

IBOMCHA SINGH, L.; YADAVA, P. S. Spatial distribution of microbial biomassa in relation to land-use in subtropical systems of north-east India. **Tropical Ecology**, v. 47, p. 63-70, 2006.

INSAM, H.; DOMSCH, K.H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. **Microbial Ecology**, v.15, p. 177-188, 1988.

ISLAM, K. R.; WEIL, R. R. Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. **Journal of Soil and Water Conservation**, v. 55, p. 69-78, 2000.

JACKSON, M.L. Analisis quimico de suelos. Barcelona: Omega, 1982. p. 282-309.

JANIK, L.J.; MERRY, R.H.; SKJEMSTAD, J.O. Can mid infra-red diffuse reflectance analysis replace soil extractions? Australian Journal of Experimental Agriculture, v. 38, n. 7, p. 681–696, 1998.

JENKINSON, D. S.; POWLSON, D.S. The effects of biocidal treatments on metabolism in soil-I. Fumigation with chloroform. **Soil Biology and Biochemistry**, v. 8, p. 167-177, 1976.

JENKINSON, D. S.; LADD, J. N. Microbial biomass in soil: measurement and turnover. In: PAUL, E. A. ; LADD, J. N. **Soil Biochemistry**, v. 5, p. 415-473, 1981.

KIRK, J. L.; BEAUDETTE, L. A.; HART, M.; MOUTOGLIS, P.; KLIRONOMOS, J. N.; LEE, H.; TREVORS, J. T. Methods of studying soil microbial diversity. **Journal of Microbiological Methods**, v. 58, p. 169–188, 2004.

KOENIG, J.L. Spectroscopy of polymers. Washington: American Chemical Society, 1992. 328 p.

LAMBAIS, M. R.; CURY, J. C.; MALUCHE-BARETTA, C. R.; BULL, R. C. Diversidade microbiana do solo: definindo novos paradigmas. **Tópicos em Ciência do Solo**, v. 4, p. 43-84, 2005.

LEONARDO, H.C.L. Indicadores da qualidade de solo e água para a

avaliação do uso sustentável da microbacia hidrográfica do rio Passo Cue,

região oeste do estado do Paraná. 2003.121 f. Dissertação (Mestrado em Recursos Florestais). Escola Superior Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2003.

LIMA, A.; CAPOBIANCO, J. P. R. Alcance territorial da legislação ambiental e a consolidação do uso agropecuário de terras no Brasil. Belém: Instituto de Pesquisa Ambiental da Amazônia, 2009. 5 p.

LIN, Q.; BROOKES, P. C. An evaluation of the substrate-induced respiration method. Soil Biology and Biochemistry, v. 31, p. 1969-1983, 1999.

LINCOLN, T.; ZEIGER, E. Fisiologia Vegetal. 4. ed., Porto Alegre: Artmed, 2009, 848 p.

LUDWIG, B.; KHANNA, P. K.; BAUHUS, J.; HOPMANS, P. Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. **Forest Ecology and Management**, v. 171, p. 121-132, 2002.

MCCARTY, G. W.; REEVES III, J. B.; REEVES, V. B.; FOLLETT, R. F.; KIMBLE, J. M. Midinfrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. **Soil Science Society of America Journal** v. 66, p. 640–646, 2002.

MADARI, B. E.; REEVES III, J. B.; COELHO, M.R.; MACHADO, P.L.O.A.; DE-POLLI, H.; COELHO, R.M.; BENITES, V.M.; SOUZA, L.F.; MCCARTY, G.W. Mid- and Near-infrared Spectroscopic Determination of Carbon in a Diverse Set of Soils from the Brazilian National Soil Collection. **Spectroscopy Letters**, v. 38, p. 721–740. 2005.

MADARI, B. E.; REEVES, J. B.; MACHADO, P. O. A.; GUIMARÃES, C. M.; TORRES, E.; McCARTY, G.W. Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferrasols. **Geoderma**, v. 136, p. 1-15, 2006a.

MADARI, B. E.; REEVES III, J. B.; COELHO, M. R.; MACHADO, P. L. O. A.; DE-POLLI, H.; COELHO, R. M.; BENITES, V. M.; SOUZA, L. F.; McCARTY, G. W. Espectroscopia infravermelha para a determinação de carbono do solo: Perspectiva de um método economicamente viável e ambientalmente seguro. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2006b. 6 p. (Comunicado Técnico, 126).

MADARI, B. E.; REEVES III, J. B. Espectroscopia no infravermelho aplicada à análise qualitativa e quantitativa de solos e plantas. In: ENCONTRO SOBRE METODOLOGIAS DA EMBRAPA, 23., 2008, Belém. Disponível em: http://xiiimet.cpatu.embrapa.br/arquivos/Minicurso%20-%20Espectroscopia%20no%20Infravermelho%20Aplicada%20a%20Analise.pdf>. Acesso em: 02 jan. 2010.

MARCOLIN, C.D. **Propriedades físicas de nitossolo e latossolos argilosos sob plantio direto.** 2006. 110 f. Dissertação (Mestrado em Agronomia) - Universidade de Passo Fundo, Passo Fundo, 2006.

MARK, H.; WORKMAN, J. **Statistics in spectroscopy.** 2. ed. San Diego: Academic Press, 2003. 328 p.

MARTIN-NETO, L.; MILORI, D.M.B.P; DA SILVA, W.T.L. (Ed.) Humic substances in the soil and water environment. São Carlos: Embrapa/Rima, 2004. v. 1.

MESSERSCHMIDT, I. Análise quantitativa por espectroscopia no infrafermelho médio empregando técnicas de refletância e calibração multivariada. 1999. 138 f. Tese (Doutorado em Química). Instituto de Química, Universidade Estadual de Campinas, Campinas, 1999.

MITTELMANN, A.; SOBRINHO, F.S.; OLIVEIRA, J.S.; FERNANDES, S.B.V.; LAJÚS, C.A.; MIRANDA, M.; ZANATTA, J.C.; MOLETTA, J.L. Avaliação de híbridos comerciais de milho para utilização como silagem na Região Sul do Brasil. **Ciência Rural**, v. 35 n. 3, p. 684-690, 2005.

MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e bioquímica do solo. 2. ed. Lavras: Editora UFLA, 2006. 729 p.

MOREIRA, A.; MALAVOLTA, E. Dinâmica da matéria orgânica e da biomassa microbiana em solo submetido a diferentes sistemas de manejo na Amazônia Ocidental. **Pesquisa Agropecuária Brasileira,** v. 39, n.11, p. 1103-1110, 2004.

MORGAN, C. L. S.; WAISER, T. H.; BROWN, D. J.; HALLMARK, C. T. Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. **Geoderma**, v. 151, p. 249-256, 2009.

NAES, T.; ISAKSSON, T.; FEARN, T.; DAVIES, T. A user friendly guide to multivariate calibration and classification. Chichester: NIR Publications, 2002. 344 p.

NAUMANN, D., SCHULTZ, C. P., HELM, D. What can infrared spectroscopy tell us about structure and composition of intact bacterial cells? In: MANTSCH, H. H., CHAPMANN, D. (Ed.) Infrared Spectroscopy of biomolecules. New York: Wiley-Liss, 1996. 359 p.

NELSON, D. W.; SOMMERS, L. E. Total carbon, organic carbon and organic matter. In: SPARKS, D. L. **Methods of soil analysis**. Madison: Soil Science Society of America and American Society of Agronomy, 1996. Pte. 3. p. 963-1010. (Chemical Methods-SSSA Book Series, 5).

NIEMEYER, J.; CHEN, Y.; BOLLAG, J.M. Characterization of humic acids, composts and peat by diffuse reflectance Fourier-transform infrared spectroscopy. **Soil Science Society of America Journal**, v. 56, p. 130-135, 1992.

NOGUEIRA, A. R.; SOUZA, G. B.; BATISTA, L. A. R. Determinação espectrofotométrica de nitrogênio em digeridos de plantas em sistema de análise por injeção em fluxo. **Química Nova**, v. 19, p. 1, 1996.

OLENDZKI, R.N. **Caracterização das interações de substâncias húmicas com a matéria inorgânica em solos de cultivo de arroz irrigado:** contribuição à aquisição de dados essenciais para avaliação global do sequestro de carbono no solo. 2006. 134 f. Tese (Doutorado em Química) - Universidade Federal do Paraná, Curitiba, 2006.

OSIRO, D.; COLETA-FILHO, H. D.; MACHADO, M.A.; COLNAGO, L.A. Uso de FTIR par a análise de bactérias causadoras do cancro cítrico e CVC. São Carlos: Embrapa Instrumentação Agropecuária, 2000. 5 p. (Comunicado Técnico, 40).

PALMBORG, C.; NORDGREN, A. Modelling microbial activity and biomass in forest soil with substrate quality measured using near infrared reflectance spectroscopy. **Soil Biology and Biochemistry**, v. 25, n. 12, p. 1713-1718, 1993.

PREVEDELLO, C. L. Física do solo: com problemas resolvidos. Curitiba: SAEAFS, 1996. 446p.

PRIMAVESI, O.; PRIMAVESI, A. C. P. A.; PEDROSO, A. F.; CAMARGO, A. C.; RASSINI, J. B.; ROCHA-FILHO, J.; OLIVEIRA, G. P.; CORREA, L. A.; ARMELIN, M. J. A.; VIEIRA, S. R.; DECHEN, S. C. F. **Microbacia hidrográfica do ribeirão Canchin:** um modelo real de laboratório ambiental. São Carlos:Embrapa Pecuária Sudeste, 1999. 133 p. (Boletim de Pesquisa n.5).

REEVES III, J.B.; McCARTY, G.W. Quantitative analysis of agricultural soils using near infrared reflectance spectroscopy and fibre-optic probe. **Journal of Near Infrared Spectroscopy** v. 9, p. 25–34, 2001.

REEVES III, J.B. Mid-infrared diffuse reflectance spectroscopy: Is sample dilution with KBr necessary, and if so, when. **American Laboratory**, v. 35 n. 8, p. 24-28, 2003.

REEVES, J. B.; FRANCIS B. A; HAMILTON S. K. Specular reflection and diffuse reflectance spectroscopy of soils. **Applied Spectroscopy**, v. 59, p. 39-46, 2005.

RESCK, D. V. S.; FERREIRA, E. A. B.; FIGUEIREDO, C. C.; ZINN, Y. L. Dinâmica da matéria orgânica no Cerrado. In: SANTOS, G.de A.; CAMARGO, F.A.de O. (Ed.) **Fundamentos da matéria orgânica do solo:** ecossistemas tropicais e subtropicais. Porto Alegre: Metrópole, 2008. p. 359-406.

RINNAN, R.; RINNAN, A. Application of near infrared reflectance (NIR) and fluorescence spectroscopy to analysis of microbiological and chemical properties of artic soil. **Soil Biology and Biochemistry**, v. 39, p. 1664-1673, 2007.

RODRIGUES, R. Ex-ministro da Agricultura, 2009. Disponível em: http://www.bbc.co.uk/portuguese/noticias/2009/03/090331_brasil_agricultura_ac.shtml. Acesso em: 29 dez. 2009.

RUSSELL, J. D.; FRASER, A. R. Infrared methods. In: WILSON, M. J. (Ed.) Clay mineralogy: spectroscopy and chemical determinative methods. London: Chapman e Hall, 1994. cap. 2.

SCHUMACHER, B. A. Methods for the determination of total organic carbon (TOC) in soils and sediments. United States Environmental Protection Agency, Environmental Sciences Division, National Exposure Research Laboratory, Las Vegas, 2002. Disponível em: http://www.epa.gov/esd/cmb/research/papers/bs116.pdf>. Acesso: 02 jan. 2010.

SEGNINI, A. Estrutura e estabilidade da matéria orgânica em áreas com potencial de seqüestro de carbono do solo. 2007. 131 f. Tese (Doutorado em Química Analítica), Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, 2007.

SEGNINI, A.; dos SANTOS, L.M.; da SILVA, W.T.L.; MARTIN-NETO, L.; BORATO, C.E.; MELO, W.J.; BOLONHEZI, D. Estudo comparativo de métodos para a determinação da concentração de carbono em solos com altos teores de Fe (Latossolos). **Química Nova,** v. 31, n. 1, p. 94-97, 2008.

SENA, M. M.; POPPI, R. J.; FRIGHETTO, R. T. S.; VALARINI, P. J. Avaliação do uso de métodos quimiométricos em análise de solos. **Química Nova,** v. 23, n. 4, p. 547-556, 2000.

SHENK, J.S.; WESTERHAUS, M.O. The application of near infrared spectroscopy (NIRS) to forage analysis. In: FAHEY, G.C.; MOSSER, L.E.; MERTENS, D.R.; COLLINS, M. (Ed.) **Proceedings of the National conference on Forage Quality Evaluation and Utilization**. Madison: American Society of Agronomy, 1994. p. 406-449.

SILVA, A. C.; TORRADO, P. D.; ABREU JUNIOR, J. S. Métodos de quantificação da matéria orgânica do solo. **Revista da Universidade de Alfenas**, v. 5, p. 21-26, 1999.

SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. **Identificação espectrométrica de compostos orgânicos.** 7. ed.Tradução de Ricardo Bicca de Alencastro. Rio de Janeiro: LTC, 2007. 490 p.

SMITH, B. C. Fundamentals of Fourier transform infrared spectroscopy. Bota Raton: CRC Press, 1996. 202 p.

SOUZA, E. D.; CARNEIRO, M.A.C.; BARBOSA, H.P.; SILVA, C.A.; BUZZETTI, S. Frações do carbono orgânico, biomassa e atividade microbiana em um Latossolo Vermelho sob cerrado

submetido a diferentes sistemas de manejos e usos do solo. Acta Scientiarium Agronomy, v. 28, n. 3, p. 323-329, 2006.

SPARLING, G.P.; ROSS, D.J. Biochemical methods to estimate soil microbial biomass: current development and applications. In: MULUNGOY, K.; MERCKX, R. (Ed.). Soil organic matter dynamics and sustainability of tropical agriculture. Leuven: Willey- Sayce, 1993. p. 21-37.

TABATABAI, M.A. Soil organic matter testing: an overview. In: TABATABAI, M.A. **Soil organic matter:** analysis and interpretation. Madison: SSSA, 1996. p. 1-9. (SSSA Special Publication, 46).

TERHOEVEN-URSELMANS, T., SCHMIDT, H.; JOERGENSEN, R. G.; LUDWIG, B. Usefulness of near-infrared spectroscopy to determine biological and chemical soil properties: Importance of sample pre-treatment. **Soil Biology and Biochemistry**, v. 40, p. 1178-1188, 2008.

TERRA-FILHO, M.; SATOSHI, K. Câncer pleuropulmonar ocupacional. Jornal Brasileiro de Pneumologia, v. 32 (Supl 2), p. 78-86, 2006.

VANCE, E.D.; BROOKES, P.C.; JENKINSON, D.S. An extraction method for measuring soil microbial biomass. **Soil Biology and Biochemistry**, v. 19, p. 703-707, 1987a.

VANCE, E. D.; BROOKES, P. C.; JENKINSON, D. S. Microbial biomass measurements in forests soils: the use of the chloroform fumigation-incubation method in strongly acid soils. **Soil Biology and Biochemistry**, v. 19, p. 697-702, 1987b.

VERGNOUX, A.; DUPUY, N.; GUILIANO, M.; VENNETIER, M.; THÉRAULAZ, F.; DOUMENQ, P. Fire Impact on forest soils evaluated using near-infrared spectroscopy and multivariate calibration. **Talanta**, v. 80, p. 39-47, 2009.

VISCARRA-ROSSEL, R.A.; WALVOORT, T.D.J.J.; MCBRATNEY, A.B.; JANIK, L.J.; SKJEMSTAD, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. **Geoderma**, v. 131, p. 59–75, 2006.

WARDLE, D.A. Metodologia para quantificação da biomassa microbiana do solo In: HUNGRIA, M.; ARAÚJO, R.S. (Ed.) Manual de métodos empregados em estudos de microbiologia agrícola. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 1994. 542 p. (Documentos, 46).

WESTAD, F.; SCHMIDT, A.; KERMIT, M. Incorporating band-assignment in near infrared spectroscopy regression models. Journal of Near Infrared Spectroscopy, v. 16, p. 265-273, 2008.

WILLIAMS. P.; NORRIS, K. Near-infrared Technology in the Agricultural and Food Industries. 2. ed. St. Paul: American Association of Cereal Chemists, 2001. 312 p.

WHIFFEN, D. H. Spectroscopy. 2. ed. New York: John Wiley and Sons, 197. 206 p.

WORKMAN, J. R. Optical Spectrometers. In: WORKMAN J. R., J.; SPRINSTEEN, A. (Ed.) Applied spectroscopy: a compact reference for practitioners. San Diego: Academic Press, 1998. p. 4-91.

ANEXO I

Mapa de solos do Brasil. Fonte: IBGE, 2005.

ANEXO II

Resultados de validação cruzada e validação externa referentes aos modelos de calibração em NIRS para o grupo amostral TODOS sem transformação dos dados e com a 1ª e 2ª derivadas

	Transformação	RVC	SEV	n° de fatores	Intecepto	Inclinação	RVE	Erro (%)
C _{MIC}	d ₀	0,6065	127,51	7	146,28	0,59	0,8297	47,87
C _{MIC}	d_1	0,3711	161,53	6	172,80	0,50	0,7544	59,48
C _{MIC}	d_2	0,1898	155,19	2	304,98		0,0145	73,04
N _{MIC}	d_0	0,7350	51,09	7	16,34	0,74	0,9212	34,38
N _{MIC}	d_1	0,5906	61,63	4	32,46	0,55	0,7873	40,91
N _{MIC}	d_2	0,4707	67,19	3	50,75		0,4925	51,66
RB	d_0	0,4040	0,67	8	1,09	0,22	0,4538	106,82
RB	d_1	0,4433	0,64	6	0,84	0,56	0,7572	61,64
RB	d_2	0,3882	0,67	5	1,09		0,4133	80,45
qCO ₂	d_0	0,3469	6,35	6	4,03	0,45	0,6209	118,69
qCO ₂	d_1	0,3710	6,50	6	4,57	0,34	0,4150	131,96
qCO ₂	d_2	0,2291	7,04	4	6,29		0,1545	151,76
CN _{MIC}	d_0	0,7743	1,87	3	2,18	0,66	0,9012	49,38
CN _{MIC}	d_1	0,7949	1,79	4	1,82	0,71	0,8986	35,51
CN _{MIC}	d_2	0,7510	1,95	3	2,51		0,8567	55,01
COT	d_0	0,7649	5,77	7	4,74	0,84	0,9519	26,07
COT	d_1	0,6913	6,44	5	9,31	0,70	0,8796	41,36
COT	d_2	0,4222	8,19	4	18,97	0,26	0,4689	64,70
qMIC	d_0	0,4179	3,86	4	11,21	0,03	0,2041	51,20
qMIC	d_1	0,2073	4,11	1	11,73	-0,02	-0,2590	53,75
qMIC	d_2	0,1589	4,16	1	11,54	-0,02	-0,2519	51,89

ANEXO III

	Transformação	RVC	SEV	n° de fatores	Intecepto	Inclinação	RVE	Erro (%)
C _{MIC}	d ₀	170,01	0,3156	6	221,94	0,31	0,3937	77,64
C_{MIC}	d_1	165,64	0,3958	5	223,13	0,29	0,3626	72,29
C _{MIC}	d_2	170,10	0,3354	5	265,09	0,17	0,2023	84,67
N _{MIC}	d_0	51,17	0,5363	3	48,48	0,29	0,5696	82,13
N _{MIC}	d_1	52,19	0,5751	6	33,80	0,44	0,6402	63,30
N _{MIC}	d_2	53,88	0,5182	5	37,72	0,43	0,6670	67,83
RB	d_0	1,20	0,6082	7	0,98	0,44	0,7144	79,79
RB	d_1	1,29	0,5280	6	0,96	0,43	0,6171	84,28
RB	d_2	1,34	0,4951	7	0,89	0,44	0,6428	78,16
qCO ₂	d_0	5,20	0,4719	5	6,17	0,12	0,3624	70,35
qCO ₂	d_1	5,52	0,3676	5	6,05	0,11	0,2754	84,94
qCO ₂	d_2	5,54	0,3836	5	6,31	0,07	0,2252	78,95
CN _{MIC}	d_0	2,51	0,5411	5	5,29	0,07	0,2815	69,17
CN _{MIC}	d_1	2,71	0,4648	6	5,30	0,09	0,3603	69,09
CN _{MIC}	d_2	2,60	0,5046	4	5,45	0,06	0,2714	76,15
COT	d_0	7,45	0,6026	6	15,03	0,46	0,5890	28,10
COT	d_1	7,80	0,5595	5	15,92	0,42	0,5054	30,15
COT	d_2	8,02	0,5227	3	19,34	0,29	0,4052	36,68
qMIC	d_0	7,00	0,1243	6	10,05	0,06	0,2931	77,30
qMIC	d_1	7,01	0,1254	10	10,12	0,08	0,2758	77,74
qMIC	d_2	7,17	0,0140	4	10,84	0,03	0,1661	75,34

Resultados de validação cruzada e validação externa referentes aos modelos de calibração em DRIFTS para o grupo amostral TODOS sem transformação dos dados e com a 1ª e 2ª derivadas