

QUALIDADE DA FIBRA DO ALGODÃO COLORIDO EM FUNÇÃO DA APLICAÇÃO FOLIAR DE N E B

Tancredo Augusto Feitosa de Souza ¹; Roberto Wagner Cavalcanti Raposo²; Aylson Jackson de Araújo Dantas²; Carolline Vargas e Silva²; Antonio Dantas Gomes Neto²; Luiz Cláudio Nascimento dos Santos²; Rodolfo César de Albuquerque Araujo²; Heitor Régis Nascimento Rodrigues²; Diego Alves de Andrade²; Diego Almeida Medeiros²; Jefferson Alves Dias²; Edgley Soares da Silva²; Glêvia Kamila Lima²; Eduardo Henrique Lima de Lucena²; Cristine da Silveira Figueiredo Prates²

¹ PPGMSA/CCA/UFPB; DSER/CCA/UFPB; Email: tancredo_agro@hotmail.com

RESUMO – O algodoeiro é uma planta que evoluiu sobre solos ricos em nutrientes, tendo necessidade de solos férteis para produzir adequadamente e, assim, extrai grandes quantidades de nutrientes do solo durante o seu ciclo. O objetivo do trabalho foi avaliar o efeito de aplicações foliares de nitrato de amônio e ácido bórico a partir do florescimento sobre a qualidade de fibra do algodão colorido. O experimento foi instalado em ambiente protegido pertencente ao DSER/CCA/UFPB, o delineamento experimental utilizado foi inteiramente casualizado com 13 tratamentos e quatro repetições. Os tratamentos constituíram-se de uma testemunha, de quatro freqüências de aplicação e três tipos de adubação foliar. As fontes utilizadas foram o nitrato de amônio – 35% de N (sol. 10%), e o ácido bórico – 17% de B (sol. 0,5%), aplicando-se um volume de calda equivalente a 250 L ha-1. Analisaram-se o comprimento de fibras, uniformidade de fibras, índice de fibras curtas, resistência, alongamento à ruptura, índice micronaire, maturidade, reflectância, grau de amarelo, índice de fiabilidade. Os resultados permitiram concluir que a adubação foliar nitrogenada, boratada, a freqüência de aplicação e suas interações interferem na qualidade da fibra do algodão colorido. O aumento da freqüência das adubações provocou retardamento na maturação em comparação a testemunha.

Palavras-chave – Gossypium hirsutum L.; Adubação foliar; Interação N-B; Nutrição mineral

INTRODUÇÃO

A indústria têxtil brasileira tende a consumir, anualmente, perto de 1 milhão de toneladas de fibra de algodão, que, se não foram aqui produzidas, implicarão dispêndio de divisas em torno de um bilhão de dólares anuais (BARBOSA, 2000).

Nos últimos anos, a produtividade média de algodão no Brasil tem crescido, em função da utilização de cultivares mais produtivas e com maior rendimento de beneficiamento. Entretanto, ainda a espaço para que se obtenham, nas condições brasileiras, produtividades médias acima das que se

vem obtendo (ROSOLEM, 2001). Além de elevada produtividade, outro fator relevante é a qualidade intrínseca da fibra, que deve atender aos avanços da industria têxtil.

O algodoeiro é uma planta que evoluiu sobre solos ricos em nutrientes, tendo necessidade de solos férteis para produzir adequadamente e, assim, extrai grandes quantidades de nutrientes do solo durante o seu ciclo (FUNDAÇÃO MT, 2001). Tendo em vista a obrigatoriedade do uso, na cultura, de um esquema definido para o controle de pragas, que inclui várias pulverizações durante o ciclo, tem-se a oportunidade de conjugar as duas práticas – adubação e controle de pragas e doenças – em uma só aplicação.

A aplicação de N via solo, geralmente, não é recomendada após as primeiras semanas do florescimento, pois aumenta o ciclo vegetativo, o consumo de luxo, retarda o processo de maturação e produz fibras de baixa qualidade (CARVALHO et al., 2001). Quanto ao boro, embora seja exigido em pequenas quantidades, este diminui drasticamente a produção de algodão quando em baixa disponibilidade. Pode, no entanto, provocar distúrbios ao ser adicionado em doses inadequadas (SILVA et al., 1995). A adubação foliar, portanto seria a opção viável, para corrigir e complementar a adubação via solo, visando ao aumento da eficiência de uso de nutrientes, da produtividade e do lucro.

O objetivo deste trabalho foi avaliar o efeito de aplicações foliares de nitrato de amônio e ácido bórico a partir do florescimento sobre a qualidade da fibra do algodão colorido BRS Rubi.

METODOLOGIA

O experimento foi instalado em ambiente protegido no período de Abril de 2008 a Março de 2009, localizado no Departamento de Solos e Engenharia Rural (DSER), do Centro de Ciências Agrárias (CCA), da Universidade Federal da Paraíba (UFPB).

O delineamento utilizado foi inteiramente casualizado, com quatro repetições e uma planta por unidade experimental (composta por vasos plásticos de 8,0 dm³ de capacidade). Os fatores avaliados foram quatro freqüências de aplicação de adubo foliar a partir do florescimento (início do florescimento, 3, 5 e 7 semanas após o florescimento) e três tipos de adubação foliar (Nitrogenada, Boratada e Nitrogenada-Boratada) distribuídos em esquema fatorial 4x3 +1, mais um adicional que foi a testemunha totalizando 13 tratamentos.

Os tratamentos foram aplicados no início do florescimento da cultura onde foi realizada as seguintes aplicações: testemunha (sem adubação foliar); N₁ = aplicação de N na primeira semana após

o florescimento fornecendo 25 kg ha-1 de N; N_2 = aplicação de N na 1°, 2° e 3° semana após o florescimento fornecendo 25 kg ha-1 de N, totalizando 75 kg ha-1 de N; N_3 = aplicação de N na 1°, 2°, 3°, 4° e 5° semana após o florescimento fornecendo 125 kg ha-1 de N; N_4 = aplicação de N na 1°, 2°, 3°, 4°, 5°, 6° e 7° semana após o florescimento fornecendo 175 kg ha-1 de N; B_1 = aplicação de B na 1° semana após o florescimento fornecendo 1,25 kg ha-1 de B; B_2 = aplicação de B na 1°, 2° e 3° semana após o florescimento fornecendo 3,75 kg ha-1 de B; B_3 = aplicação de B na 1°, 2°, 3°, 4° e 5° semana após o florescimento fornecendo 6,25 kg ha-1 de B; B_4 = aplicação de B na 1°, 2°, 3°, 4°, 5°, 6° e 7° semana após o florescimento fornecendo 8,75 kg ha-1 de B. B_4 = aplicação de N e B na 1° semana após o florescimento fornecendo 25 e 1,25 kg ha-1 de N e B, respectivamente; B_2 = aplicação de N e B na 1°, 2° e 3° semana após o florescimento fornecendo 75 e 3,75 kg ha-1 de N e B, respectivamente; B_3 = aplicação de N e B na 1°, 2°, 3°, 4°, 5°, 6° e 7° semana após o florescimento fornecendo 125 e 6,25 kg ha-1 de N e B, respectivamente; B_4 = aplicação de N e B na 1°, 2°, 3°, 4°, 5°, 6° e 7° semana após o florescimento fornecendo 125 e 6,25 kg ha-1 de N e B, respectivamente; B_4 = aplicação de N e B na 1°, 2°, 3°, 4°, 5°, 6° e 7° semana após o florescimento fornecendo 175 e 8,75 kg ha-1 de N e B, respectivamente.

As aplicações foliares foram realizadas com atomizadores individualizados por tratamento, tendo como fonte o nitrato de amônio – 35% de N (sol. 10%), e o ácido bórico – 17% de B (sol. 0,5%), aplicando-se um volume de calda equivalente a 250 L ha-1 no início do dia.

As variáveis estudadas foram: comprimento de fibras, uniformidade de fibras, índice de fibras curtas, resistência, alongamento à ruptura, índice micronaire, maturidade, reflectância, grau de amarelo, índice de fiabilidade.

Os resultados obtidos foram submetidos à análise de variância sendo o nível de significância determinado pelo teste F.

RESULTADOS E DISCUSSÃO

Os valores médios de comprimento de fibra, uniformidade de fibras, índice de fibras curtas, resistência, alongamento à ruptura, índice micronaire, maturidade, reflectância, grau de amarelo, índice de fiabilidade, valor de F e coeficiente de variação estão descritos na tabela 1. Através do exposto observa-se que para todas as variáveis exceto o índice de micronaire e o grau de amarelo, houve efeito dos tratamentos aplicados na qualidade de fibra do algodão colorido.

Durante a condução do experimento foi observado que conforme o aumento das freqüências de aplicação de nitrogênio ocorreu acamamento das plantas, maturidade atrasada em comparação ao tratamento testemunha. Carvalho et al., (2001) citam que o nitrogênio é um elemento exigido em grandes quantidades pelo algodoeiro, contudo quando aplicado em quantidades excessivas ou em épocas inadequadas, pode ser prejudiciais a produção e melhoria da qualidade de fibra.

Com relação às aplicações de boro foi verificado que com o aumento das pulverizações, ocorria também elevado índice de abortamento de capulhos. Souza (2008) avaliando o comportamento da mamoneira em função do fornecimento de boro no solo observou que com o aumento das doses de boro ocorreu aumento do número de frutos e redução do abortamento, o que sugere que a aplicação de boro provocou distúrbios na cultura do algodão, mesmo esse elemento sendo exigido em pequenas quantidades (SILVA et al., 1995).

Ao se avaliar os fatores de variação separadamente, percebe-se que os adubos foliares, a freqüência de aplicação e a interação não apresentaram efeito significativo sobre o comprimento de fibras, o índice de micronaire e grau de amarelo. A testemunha por sua vez diferiu estatisticamente dos tratamentos aplicados na resistência de fibras, alongamento à ruptura, grau de amarelo e índice de fiabilidade.

CONCLUSÃO

A adubação foliar nitrogenada, boratada, a freqüência de aplicação e suas interações interferem na qualidade da fibra do algodão colorido.

O aumento da freqüência das adubações provocou retardamento na maturação em comparação a testemunha.

REFERÊNCIAS BIBLIOGRÁFICAS

BARBOSA, M. Z. Algodão: aspectos da cultura no Estado de São Paulo em 2000/2001. **Informações Econômicas**, v.30, n.12, p. 59-63, 2000.

FUNDAÇÃO MT. **Boletim de pesquisa do Algodão**. Rondonópolis, 2001. 283p. (Fundação MT. Boletim, 4).

ROSOLEM, C. A. **Ecofisiologia e manejo da cultura do algodoeiro**. Botucatu: POTAFOS, 2001. 9p. (INFORMAÇÕES AGRONÔMICAS, N° 95).

SILVA, N. M.; CARVALHO, L. H.; KONDO, J. I.; BATAGLIA, O. C.; ABREU, C. A. Dez anos de sucessivas adubações com boro no algodoeiro. **Bragantia**, Campinas, v. 54, n. 1, p. 177-185, 1995.

SOUZA, T. A. F. **Nitrogênio e boro no crescimento, produção e nutrição mineral da mamoneira**. Areia, 2008, 42 f. Trabalho de Conclus**ão** de Curso (Monografia), Centro de Ciências Agrárias, Universidade Federal da Paraíba.

Trat.	Adubo	Apl ic.	UHM	UNF	SFI	STR	ELG	MIC	MAT	Rd	+b-	CSP
1	N	1	24,1	76,9	34,3	25,9	4,4	2,4	82,7	27,6	24,5	1946,9
2	N	2	24,9	78,7	17,7	20,8	5,3	2,9	83,7	28,5	24,5	1704,9
3	N	3	24,9	77,9	28,8	26,7	3,9	2,5	83,7	23,5	25,4	2078,4
4	N	4	25,7	77,8	15,3	19,9	6,6	2,7	81,7	23,7	24,9	1667,1
5	В	1	26,5	77,5	15,3	18,5	6,3	2,6	81,7	23,5	25,4	1592,1
6	В	2	24,7	77,7	26,9	30,9	5,7	3,5	84,7	28,5	24,5	2057,1
7	В	3	24,9	78,4	22,6	24,7	5,3	2,7	83,7	29,4	24,5	1923,9
8	В	4	25,0	78,7	16,5	21,9	5,7	2,9	83,7	26,7	24,9	1769,2
9	NB	1	25,7	82,5	6,7	27,4	5,5	2,5	82,7	25,8	24,7	2615,8
10	NB	2	25,6	80,6	4,7	23,4	5,7	2,5	82,7	25,7	23,9	2170,1
11	NB	3	25,7	79,5	18,9	27,7	5,9	3,5	84,7	23,9	24,8	2114,0
12	NB	4	23,9	75,9	30,3	18,5	6,7	2,3	80,7	25,3	24,7	1404,1
13	Testemunha		24,8	78,5	20,4	27,5	6,7	2,8	82,7	25,9	23,9	2069,9
	Trat.		3,2**	22,8**	780,8**	130,7**	7,0**	1,4 ^{NS}	12,5**	40,3**	1,7 ^{NS}	292408**
	Adubo		1,1 ^{NS}	30,1**	770,2**	7,4**	8,7**	1,2 ^{NS}	5,3**	33,7**	1,2 ^{NS}	222065**
√alor de	Aplic.		0,9 ^{NS}	12,6**	256,9**	173,9**	8,7**	1,8 ^{NS}	26,0**	33,5**	2,3 ^{NS}	391863*
F	Adubo x Aplic.		1,5 ^{NS}	27,8**	1102,7**	144,6**	5,1**	1,7 ^{NS}	10,3**	57,4**	1,3 ^{NS}	306370*
	Test x Fatorial		0,6 ^{NS}	0,3 ^{NS}	2,8 ^{NS}	101,1**	12,1**	0,1 ^{NS}	0,9 ^{NS}	0,2 ^{NS}	4,8*	62685**
C.V (%)			2,7	0,7	2,7	2,4	9,6	19,5	0,7	2,1	2,4	0,1

ns: não significativo; **,* significativos a 1 e 5%, respectivamente.UHM = comprimento de fibras (mm), UNF = uniformidade de fibras (%), SFI = índice de fibras curtas, STR = resistência (g/tex), ELG = alongamento à ruptura (%), MIC = índice micronaire, MAT = maturidade, Rd = reflectância (%), +b- = grau de amarelo, CSP = índice de fiabilidade.

