International Conference on Food and Agriculture Applications of Nanotechnologies

Editors:

Caue Ribeiro
Odílio Benedito Garrido de Assis
Luiz Henrique Capparelli Mattoso
Sergio Mascarenhas

São Pedro, SP 2010

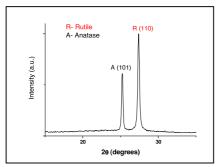
1st Edition 1st print: 500 copies

Anais da 1. International Conference of Food and Agriculture Applications of Nanotechnologies – São Pedro: Aptor Software, 2010. 284 p.

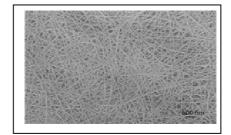
ISBN 978-85-63273-02-4

1. Nanotechnologies – Events. 2. Ribeiro, Caue. 3. Assis, Odílio Benedito Garrido de. 4. Mattoso, Luiz Henrique Capparelli. 5. Mascarenhas, Sergio

Synthesis of TiO₂ Nanoparticles by Hydrothermal Treatment and Preparation of Nanocomposite Fibers


R. G. F. Costa^{(1),(2)}, C. Ribeiro^{(2)*} and L. H. C. Mattoso⁽²⁾

- (1) Departamento de Química, Universidade Federal de São Carlos, São Carlos SP, Brazil
- (2) Laboratório Nacional de Nanotecnologia Aplicada ao Agronegócio, Embrapa Instrumentação Agropecuária, Rua XV de Novembro, 1452, São Carlos-SP, 13560-970, Brazil, e-mail: caue@cnpdia.embrapa.br
- * Corresponding author.


Abstract – Titanium dioxide nanoparticles were prepared by hydrothermal treatment of amorphous precursor under acidic conditions. Nanocomposite fibers were produced successfully by electrospinning of a PVA/water solution with TiO₂. The PVA/TiO₂ nanocomposite fibers were characterized by SEM and XRD. The SEM images showed that the diameter of electrospun fibers attained average values around 108 nm. The X-ray diffraction patterns confirmed the presence of rutile and anatase phase on the nanocomposite fibers.

Titanium dioxide nanoparticles have been synthesized by several methods, such as, solvothermal, polymeric precursor, sol-gel and hydrothermal [1]. In this sense, the hydrothermal method can be a good choice to obtain TiO₂ nanoparticles with control of size, shape and phase [2]. Due the good properties of TiO₂ particles regarding photocatalytic activity, high photostability and lack of toxicity, this material has been studied as a filler in nanocomposites [1]. In the present study, TiO2 nanopowders were prepared by hydrothermal treatment of amorphous precursor under acidic conditions (pH = 0). The aqueous suspensions were hydrothermallized at 200°C for 2 h in a controlled reactor to crystallize the material. The TiO₂ nanoparticles were isolated by centrifuging, washed several times by distilled water, and then dried for 48 h. A known amount of TiO₂ was added to the PVA solution and ultrasonicated for 20 min. Thus, PVA/TiO₂ composites were obtained with TiO₂ contents of 2.5 and 5.0 wt% (wt. TiO₂/wt. PVA). These solutions were electrospun at two conditions of applied electric field (KV.cm⁻¹) and injection rate (ml.h⁻¹), i.e., (A)14 KV.cm⁻¹ and 0.2 ml.h⁻¹ and (B) 20 KV.cm⁻¹ and 0.2 ml.h⁻¹. The working distance was 10 cm, and the collector speed was 200 rpm. The nanocomposite fibers were dried for 8h at 60°C for subsequent characterization. The crystal structures of the TiO₂ nanopowder and the PVA/TiO₂ nanocomposite fibers were examined with a Xray diffractometer (Rigaku Max 2500 PC). The phase composition was calculated based on the area of (101) anatase and (110) rutile peaks. The morphology of PVA/TiO2 nanocomposite fibers was examined by scanning electron microscopy (SEM) (Leo 440).

Figure 1 shows XRD patterns of TiO_2 nanopowder synthesized by hydrothermal treatment of amorphous precursor under acidic conditions. It can be seen that the main peaks of anatase and rutile phase appeared clearly, at $2\theta = 25.2^{\circ}$ and 27.4° . The phase composition of sample was 67% of rutile and 33% of anatase. The SEM image of the PVA nanofiber with 2.5 wt% TiO_2 is shown in Figure 2. It can be seen that the morphology was uniform, and the average fiber diameter was 108 nm. Also, there wasn't visual segregation of phases, probably indicating a good distribution of the loaded TiO_2 nanoparticles.

Figure 1: X-ray diffraction patterns of TiO₂ nanopowder.

Figure 2: SEM image of electrospun PVA/TiO₂ (2.5 wt%).

References

[1] H. A. J. L. Mourão, V. R. de Mendonça, A. R. Malagutti e C. Ribeiro. Química Nova, 32, 8, 2009, 2181-2190.

[2] C. Ribeiro, C. M. Barrado, E. R. de Camargo, E. Longo and E. R. Leite. Chemistry A European Journal, 15, 2009, 2217-2222.