Elaetao4 ^{13 a 15 de outubro de 2010} Curitiba, Paraná, Brasil

Ecological classification of Brazilian earthworms: a first attempt using morphological data

Daniel Piacentini de Andrade⁽¹⁾; George Gardner Brown⁽²⁾ & Mac Aaron Callaham Jr⁽³⁾

⁽¹⁾ Majoring in Biology/ CNPq Scholarship, Faculdade Integrada Espírita, Campus Bezerra de Menezes, Rua Tobias de Macedo Júnior, nº 246 Santo Inácio – Curitiba – Paraná CEP 82.010-340 danielpda0@hotmail.com; ⁽²⁾ Agronomist, Embrapa Florestas Researcher, Estrada da Ribeira, km 111 Cx. Postal: 31, Colombo – Paraná – BR, CEP 83411-000, browng@cnpf.embrapa.br; ⁽³⁾ Biologist, USDA Forest Service Researcher, 1400 Independence Ave., SW, Washington, D.C. 20250-0003, mac.callaham@gmail.com

Pôster

INTRODUCTION

About 300 species of earthworms are known in Brazil, but little is known of their biology and ecology. Earthworms can be ecologically classified according to their morphology, behavior and feeding habits, and Bouché's (1977) classification system is the most widely used. This classification separates the worms into three main categories, depending on 15 anatomical and behavioral characteristics: epigeic, anecic and endogeic. The epigeic earthworms are small, pigmented, live in the litter and consume fresh organic matter, and rarely ingest mineral soil. The anecic species tend to have larger individual size and live in soil, which they consume mixed with fresh organic matter, collected on the soil surface. The endogeic species have variable size, consume soil organic matter and inhabit the mineral soil horizons, rarely rising to the soil surface. Lavelle (1981) further subdivided the endogeic earthworms into three sub-groups (polyhumic, mesohumic and oligohumic), depending on the quality of organic matter they ingest. Most of the Brazilian species have yet to be classified into ecological categories, mainly due to lack of data.

MATERIAL AND METHODS

We chose seven morphological parameters from the original taxonomic descriptions for 41 earthworm species currently known from Brazil to test if the available data could be used to classify them into ecological categories. The traits used included: length, diameter, pigmentation, muscular development of the gizzard and surrounding segments, calciferous glands (development and number) and typhlosole (Table 1). These characters were chosen because they were considered potentially related to the behavior, nutrition and depth of soil inhabited by these earthworms. Data were extracted from the original or other taxonomic descriptions in the literature. To standardize the diameter and length used in the Table 1, only the greater measures mentioned in the descriptions were used, then the ratio length/diameter was calculated, and this ratio was used in statistical modeling instead of both data separately. For pigmentation, the criteria used were the intensity and location (dorsal, ventral or complete). In the development of typhlosole, two variables were considered: the length of the intestine occupied by typhlosole, and the form and degree of folding of the typhlosole. The last character used was the development of the gizzard musculature and the muscular development of the forward segments, which was basically classified as absent, weak, moderate and strong. For each of these characters we devised a categorization with values ranging from 0-3 to indicate the degree of development of the character. The characters used, and the categorization scheme are shown in Table 1. Forty-one earthworm species found in Brazil were evaluated (18 exotic, 23 native), of which 18 (Table 2) had previously been assigned an ecological category. We included these species in order to establish whether the morphological parameters would serve to correctly separate them according to their known classifications.

We used two different statistical approaches to analyze the earthworm morphological data. The first was a Principal Components Analysis using the software Canoco®, and the second was a Clustering analysis using the software SAS®.

We conducted five separate PCA analyses: 1) using all of the categorical data for only the species with known ecological strategies; 2) using all the categorical data for unknown species including two species with known ecological strategies as "references"; 3) using limited datasets (i.e. without calciferous gland data) for species with known ecological categories; 4) using the limited dataset for unknown species with references as in #2 above; and 5) using all available data for all 41 species.

Additionally, we conducted a series of cluster analyses using several combinations of data (raw data, categorical data, and a combination of raw and categorical), which were designed to generate different numbers of clusters (3, 5, or 7) to simulate Elaetao4 ^{13 a 15 de outubro de 2010} Curitiba, Paraná, Brasil

the different number of ecological categories expected in the species we evaluated.

RESULTS AND DISCUSSION

PCA Analyses

Results from the principal components analysis using all of the available data for the earthworm species with known ecological strategies indicated good separation of two main groups. The factors that were most important in this ordination were pigmentation and muscular development. The resulting two groups can be interpreted as representing endogeic species in one group, with the other group consisting of species that spend at least some time at or near the soil surface including both epigeic and epi-endogeic types (Fig. 1a). The PCA using all available data for the species with ecological unknown strategies resulted in considerably less spread, with pigmentation and muscular development still being important factors influencing the spread of species in the ordination, but size and typhlosolar development having equal or greater influence on the ordination. The two "reference" species. Eisenia andrei. and Pontoscolex corethrurus were loosely grouped with species having similar pigmentation, for example, but these were not completely satisfactory, as some pigmented species were located on the opposite side of the ordination from E. andrei (Fig. 1b). It is possible that the lack of spread among the set of species in the second ordination is due to the fact that they are more closely related, taxonomically and geographically, than those in the first analysis.

Principal components analyses that utilized limited datasets (not including calciferous gland parameters) resulted in ordinations with very good separation of endogeic and epigeic/epiendogeic species, and reinforced the importance of pigmentation and muscular development as discriminating characters (Fig. 2a). However, results of the PCA using the limited dataset for earthworms with unknown ecological strategies were essentially identical to the analysis using the entire dataset with only minor changes in position for individual species in the ordination plot (Fig. 2b, 3).

Cluster analysis

It is difficult to draw conclusions from the results of the various different analyses using clustering techniques. In general, it appears that the clustering analysis was sensitive enough to group the species along taxonomic lines, but that the utility of this technique for discriminating ecological or behavioral differences may be limited. For example, clustering the entire dataset (41 species) into five groups resulted in all of the megascolecid species being assigned to a single group, and all the species of the genus Dichogaster assigned to another group (with some other species). Furthermore, there was only a single instance of congeneric species being assigned to different groups, with Glossoscolex giganteus australis being separated from the other Glossoscolex spp. (Table 2). Cluster analysis of species with known ecological strategies showed the sensitivity of the technique to unusual characteristics 3). (Table with two groups containing only single species (Glossoscolex giganteus australis, unusually large; Dichogaster annae, the only heavily pigmented Dichogaster in our analysis).

Although we observed separation of the species studied using both analytical tools, and the groups sometimes coincided with the five known ecological categories, neither of the statistical approaches perfectly indicated the ecological and behavioral attributes of the subset of species for which the information was known. This suggests that the information contained in taxonomic descriptions is probably insufficient to determine precisely the categories of species for which there is no behavioral information, and we suggest that future taxonomic descriptions might be modified to contain as much ecological information for described species as possible.

CONCLUSION

The results of our analysis are not perfect, but they demonstrate that ecological classification may be a promising field, which can be improved if performed with more exact parameters. Including more ecological data in species descriptions, when possible, would greatly facilitate the process.

ACKNOWLEDGMENTS

We would like to thank CNPq for scholarships to D. Andrade and G. Brown.

REFERENCES

BOUCHE, M.B. Strategies lombriciennes. In: LOHM, U.; PERSSON, T. (Eds.). Soil organisms as components of ecosystems. Ecological Bulletins, vol. 25, Stockholm, p.122-132, 1977. LAVELLE, P. (1981). "Stratégies de reproduction chez les vers de terre." Acta Œcologica, v.2, p.117-133, 1981.

775

Table 1. Selected characters used in the ecological category analysis. Categorical values were assigned for each character based on the criteria in the table.

Category assigned	Size (Lenght / Diameter)	Pigment ation	Typhlosole development		Calciferous gland development / number		Muscular development
0	20 or less	Absent	I	Absent		Absent	n/a
1	20-32	Anterior or anterio- dorsal only	Simple, length < 1/2 diameter of gut.		Simple, few lamellae, large lumen, low surface area to volume ratio		Weak
2	33-48	Dorsal for full body length, or complet e but light in color	Simple, single blade, > ½ diameter of gut, or multiple low blades		(S:V) Lamellar, Reniform, intermediate S:V	I ()	Moderate
3	49 or more	Complet ely pigment ed along and around the body	Complex, T – shaped, folded, or otherwise occupying much of the gut lumen		Panicled tubular, intertwined tubular, high S:V		Strong

Table 2: Selected species of known and unknown ecological categories divided into exotic and native groups.

Exotic		Native		
Fukerria saltensis	Endogeic	Alexidrilus lourdesae		
Lukernu suitensis	Endogene	mexia mus touriesae		
Ocnerodrilus occidentalis	Polyhumic endogeic	Andiorrhinus bucki		
Eudrilus eugeniae	Epigeic	Chibui bari		
Hyperiodrilus africanus	Epigeic endogeic	Diachaeta kannerae		
Aporrectodea rosea	Endogeic	Enantiodrilus borelli		
Bimastos parvus		Fimoscolex sporadochaetus		
Eisenia andrei	Epigeic	Glossodrilus parecis		
Murchieona minuscula		Glossoscolex paulistus	Endogeic anecic	
Octolasion cyaneum		Glossoscolex matogrossensis		
Amynthas corticis	Epigeic endogeic	Pontoscolex cuasi		
Amynthas gracilis	Epigeic endogeic	Rhinodrilus hoeflingae		
Metaphire schmardae	Endogeic	Rhinodrilus motucu		
Polypheretima elongata	Mesohumic endogeic	Urobenus brasiliensis	Epigeic endogeic	
Dichogaster affinis	Polyhumic endogeic	Belladrilus pocaju	Endogeic	
Dichogaster annae	Epigeic	Haplodrilus tagua		
Dichogaster bolaui	Endogeic	Lourdesia paraibaensis		
Dichogaster gracilis		Eukerria emete		

Dichogaster ibaia Neogaster angeloi

Wegeneriona belenensis Andiorrhinus meansi

Glossoscolex giganteus australis Endogeic anecic

Pontoscolex corethrurus

Mesohumic endogeic

Elaetao4 ^{13 a 15 de outubro de 2010} Curitiba, Paraná, Brasil

Table 3: Results of the cluster analyses including with all species, and only with known ecological groups species.

Cluster number	All species	Species with known ecological classes	
1	Murchieona minuscula	Glossoscolex giganteus australis	
	Octolasion cyaneum		
2	Amynthas corticis, Amynthas gracilis	Dichogaster annae,	
	Metaphire schmardae, Microscolex phosphoreus		
	Polypheretima elongate		
3	Fimoscolex sporadochaetus, Hyperiodrilus africanus	Amynthas corticis, Amynthas gracilis	
	Glossodrilus parecis, Haplodrilus tagua	Glossoscolex paulistus, Eisenia andrei	
	Glossoscolex giganteus australis	Metaphire schmardae	
4	Andiorrhinus meansi, Andiorrhinus bucki	Pontoscolex corethrurus, Aporrectodea rosea,	
	Dichogaster annae, Dichogaster bolaui	Dichogaster affinis, Urobenus brasiliensis	
	Dichogaster gracilis, Dichogaster ibaia	Hyperiodrilus africanus, Dichogaster bolaui	
	Diachaeta kannerae, Eudrilus eugeniae	Eudrilus eugeniae	
	Pontoscolex corethrurus, Pontoscolex cuasi		
	Aporrectodea rosea, Chibui bari		
	Dichogaster affinis, Rhinodrilus hoeflingae		
	Rhinodrilus motucu, Urobenus brasiliensis		
5	Alexidrilus lourdesae, Bimastos parvus	Eukerria saltensis, Ocnerodrilus occidentalis	
	Eisenia andrei, Belladrilus pocaju	Polypheretima elongata, Belladrilus pocaju	
	Enantiodrilus borelli, Eukerria emete		
	Eukerria saltensis, Glossoscolex matogrossensis		
	Lourdesia paraibaensis, Ocnerodrilus occidentalis		
	Glossoscolex paulistus, Neogaster angeloi		
	Wegeneriona belenensis		

Figure 1a: Analysis of all of the categorical data only for the species with known ecological strategies; **1b:** Analysis of all the categorical data for unknown species including two species with known ecological strategies as "references"; l/d = length / diameter; Pigm = Pigmentation; Typhl = Typhlosole; Musc = Muscular development in gizzard and surrounding area; CalcNo = Number of calciferous glands; CalcTy = Type of calciferous glands.

Figure 2a: Analysis using limited datasets (i.e. without calciferous gland data) for species with known ecological categories; **2b**: Analysis using the limited dataset for unknown species with "references".

Figure 3: Analysis using all available data for all 41 species