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ABSTRACT 
We define and model the research production at Embrapa, the major Brazilian 

institution responsible for applied agricultural research. The main theoretical framework is Data 
Envelopment Analysis – DEA. We explore the economic interpretation and the statistical 
properties of these models to compute confidence intervals for output oriented efficiency 
measurements. It was based on a parametric flexible model, defined by the truncated normal 
distribution. Intervals are calculated exploring a bootstrap approach. These results provide a 
better insight on the efficiency classification and allow comparisons among the DMUs involved 
in the evaluation process, taking into account random errors and inefficiency random variation.  

KEYWORDS. Data envelopment analysis. Confidence intervals. Bootstrap. Agricultural 
research.  

RESUMO 
Neste artigo foi estudado o sistema de produção de pesquisa da Embrapa, a maior 

instituição brasileira de pesquisa agropecuária. A principal ferramenta teórica usada foi a Análise 
de Envoltória de Dados – DEA. Exploraram-se a interpretação econômica e as propriedades 
estatísticas desses modelos, para calcular intervalos de confiança para medidas de eficiência 
orientadas a output. Tomou-se como base um modelo paramétrico flexível, definido pela 
distribuição normal truncada. Os intervalos foram calculados por reamostragem. Estes resultados 
geraram melhores entendimentos sobre as medidas de eficiência e permitiram comparações entre 
as DMUs envolvidas na análise. O modelo considerou erros de ineficiência e erros aleatórios.  

PALAVRAS-CHAVE. Análise de Envoltória de Dados. Intervalos de confiança. 
Reamostragem. Pesquisa Agropecuária.  

 



 

1. Introduction 
It is of importance to administrators of research institutions to have at their disposal 

measures and procedures making feasible an evaluation of the quantum of production, as well as 
the technical efficiency of the production process of their institutions. In times of competition 
and budget constraints, a research institution needs to know by how much it may increase its 
production, without absorbing additional resources. The quantitative monitoring of the 
production process allows for an effective administration of the resources available and the 
observation of predefined research patterns and goals. In this context, the Brazilian Agricultural 
Research Corporation (Embrapa) developed a production model based on the input-output data 
of its research units. The theoretical framework for this model is the analysis of production 
frontiers, known as Data Envelopment Analysis (DEA).  

Several uses are made of the efficiency measurements by Embrapa’s administration. Those 
include monitoring of production targets, resource allocation and rewarding. Administrative 
actions regarding a given ranking of units will have more impact if they take into account the 
stochastic variation imbedded in the measurements of production variables. This leads to the 
consideration of statistical production models, from which one may infer statistical properties for 
efficiency estimates. For the stochastic frontier analysis, with proper parametric specifications of 
the production or cost functions, this is a natural process, as can be seen in Kumbhakar and 
Lovell (2000) and Coelli et al. (2005).  

For the nonparametric frontier approaches induced by classical DEA (Coelli et al., 2005) or 
the Free Disposal Hull of Deprins et al. (1984), some technical issues arise and a proper approach 
has to be put forward to guarantee the derivation of sound statistical results. This is the line of 
work carried out by Banker (1993), Banker and Natarajan (2004, 2008), Simar and Wilson 
(2004, 2007), Daraio and Simar (2007), Souza and Staub (2007) and Souza et al. (2009a). 

In this article we combine the results of Banker (1993), Banker and Natarajan (2008), Simar 
and Wilson (2007) and Souza and Staub (2007) to come up with confidence intervals for DEA 
efficiency measurements, robust relative to production function choices and efficiency 
distributions within reason. These intervals are more appealing than those generated by the 
bootstrap of Simar and Wilson (2004, 2007) that may produce unexpected results, like one unit 
being regarded as inefficient after being observed as a benchmark or generating confidence limits 
that do not include observed efficiency measurements.  

Our discussion proceeds as follows. In Section 2 we review the concepts leading to the 
models for which one may view DEA estimates as nonparametric maximum likelihood, and for 
which statistical properties may be derived for efficiency estimates. In Section 3 we review 
Embrapa’s production model. Section 4 deals with the statistical results of our application and, 
finally, in Section 5 we summarize our findings.  

2. DEA Production Models 
Consider a production process composed of n decision making units (DMUs). Each DMU 

uses varying quantities of m different inputs to produce varying quantities of s different outputs.  
Denote by ),...,,( 21 nyyyY =  the ns×  production matrix of the n DMUs. The rth column of 

Y is the output vector of DMU r. Denote by ),...,,( 21 nxxxX =  the nm×  input matrix. The rth 
column of X is the input vector of DMU r. The matrices )( ijyY =  and )( ijxX =  must satisfy: 

0 ,0 >∑≥ ijiij pp  and 0>∑ ijj p , where p  is x  or y .  
The measure of technical efficiency of production (under constant returns to scale) for DMU 

} ..., ,2 ,1{    no ∈ , denoted )(ECR o , is the solution of the linear programming problem (1). 
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If we look at the coefficients u and v as input and output prices, we see that the measure of 

technical efficiency of production is very close to the notion of productivity (output income/input 
expenditure). Technical efficiency, in this context, basically, is looking for the price system 

),( vu  for which DMU o achieves the best relative productivity ratio. 
The dual problem of the linear programming problem (1) has an important economic 

interpretation, which we will explore. This is θλθ ,min , subject to 
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equivalently, formulation (2). 
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The matrix products λY  and λX , with 0≥λ , represent linear combinations of the columns 

of Y and X, respectively, i.e., a sort of weighted averages of output and input vectors. In this way, 
for each λ  we can generate a new production relation, a new “pseudo” producer. Trivially, the 
set of DMUs 1, 2,..., n are included among those new producers. Making allowance for these 
newly defined production relationships, the question that the dual intends to answer is: What 
proportional reduction of inputs ox θ  it is possible to achieve for DMU o and still produce at 
least output vector oy ? The solution ),(*

oo yxθ  is the smallest θ  with this property.  
We can define the concept of technical efficiency of production in a context of fixed inputs 

instead of fixed outputs, i.e., in a program of output augmentation. In this environment the 
measure of technical efficiency of production of DMU o, under constant returns to scale (CCR 
model – Charnes et al., 1978), is the one defined in (3). 
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In the output augmentation program the question we ask is: what proportional rate φ  can be 

uniformly applied to augment the output vector oy , without increasing the input vector ox ? The 
solution *φ  is the largest φ  with this property. This is the approach we will explore here.  

Questions of scale can be dealt properly imposing proper restrictions in the linear 
programming problem. One obtains the variable returns DEA imposing the additional condition 
1 1λ′ =  on the weight vector λ . This is called the BCC model (Banker et al., 1984). 

We now turn our attention to production statistical models. We follow along the lines of 
Banker (1993). Suppose s = 1 (a single output) and assume the existence of a continuous frontier 
production function RKg →:  defined on the convex and compact subset K of the positive 
orthant of sR . For each DMU o, the input observations ox  are points in K. Let (4). 
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The DEA frontier production function is defined for *Kx∈  by (5), and it can be shown that 

for DMU o, * *( )o o og x yφ= , where we are assuming variable returns to scale. 
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Suppose that observations ),( oo yx  are interior points to K and that they are generated in 

accordance with the statistical model (6) (Banker, 1993). 
 

ooo xgy ε−= )(          (6) 
 

In (6): 
a) The inefficiencies oε  are iid with a common density )(εf .  
b) The common distribution function F(x) of the inefficiencies is strictly positive in ),0( +∞ . 
c) The inputs ox  represent a random sample from a density h(x) strictly positive in the 

interior of K. 
d) The inputs ox  and the inefficiencies are independent. 
Then (Banker, 1993): 
1. )(*

oxg  is the nonparametric maximum likelihood estimate of )( oxg  if )(εf  is 
monotonically decreasing in ),0( +∞ . 

2. )(*
oxg  is weakly consistent for )( oxg . 

3. Let M be any fixed subset of DMUs. If n is large, the joint distribution of the estimated 
inefficiencies Mjxgy jjj ∈−=  ),(ˆ *ε , is, approximately, the joint distribution of the 
true inefficiencies Mjj ∈ ,ε . 

These results can be used to test hypothesis about the nature of the production process. An 
example is the verification of whether the technology shows constant returns to scale or variable 
returns to scale. We may perform this test comparing the empirical distribution functions of the 

oε̂  (estimated inefficiency errors) under the assumptions of constant and variable returns to scale 
computing Kolmogorov-Smirnov test statistic (Conover, 1998). 

The statistical properties of univariate DEA estimates were extended by Souza and Staub 
(2007) to allow for non iid inefficient components. Suppose in this context that the sequence of 
pairs ( )j jx ε, , satisfying the statistical model ( )j j jy g x ε= − , are drawn independently from the 

product probability density functions ( ) ( )j jh x f ε , where the sequence of input densities ( )jh x  

satisfies 0 ( ) ( ) ( ) ( )supinf j j jjl x h x h x L x< ≤ ≤ ≤ , for integrable functions ( )l x  and ( )L x , and x  

interior to K . The inefficiency densities ( )jf ε  are such that ( ) ( ) 0 0j jF u inf F u u= > , > , where 

0
( ) ( )

u

j jF u f dε ε= ∫ . 

Then if 0x  is a point in K ∗  interior to K , *
0( )g x  converges almost surely to 0( )g x . The 

property stated in 3. above is still true. In this context let q̂  be the quantile of order 100(1 )%α−  

for residual distribution corresponding to production observation ( ),j jx y . The interval 



 

ˆ[ ( ) ( ) ]j j ig x g x q∗ ∗, +  has asymptotically level 1 α−  for ( )j j jg x yφ= . Dividing the one sided 

interval by jy  provides an interval for jφ .  

Following Banker and Natarajan (2004, 2008) we assume now that observations ( ),j jx y  on 
production follow the statistical model (7), 
 

( ) 1j j j jy g x v u j n= + − = K
       (7) 

 
where g(.) is a continuous production function. The random variables jv and ju  represent 
random and inefficiency errors, respectively. The random errors have a two sided continuous 
distribution with a non null density function on ( ),M MV V− . The inefficiency error component 

is positive. Thus (8): 
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The component jε  is strictly positive. Since identical distributions are not required and one 

may let the mean μ  of the inefficiency distribution be dependent on a linear function ' zδ  of 
covariates or contextual variables. We consider a two-stage statistical procedure to estimate δ , 

MV , as well as any other parameters indexing the inefficiency distribution. Motivated by Simar 
and Wilson (2007), we use maximum likelihood methods to estimate inefficiency errors 
parameters from the model ( )j j jy g x ε= −% , where  ( ) ( ) M

j jg x g x V= +% . Notice that ( )g x%  is an 
unknown production function. Only the inefficient firms enter in this analysis. For example one 
may fit a gamma distribution ( , )jp λΓ  with mean /j jpμ λ= , where exp( ' )j jzλ δ= − , by 

maximum likelihood, to DEA residuals ( )*ˆ 1j j jyε φ= − , or alternatively use the truncated normal 
2( , )jN μ σ+ . We obtain information on the constant MV  assuming that the efficient units are 

producing on the technological frontier. In this context an optimum estimate would be 

1
ˆ ˆ /lnM

l ll
V nμ

=
=∑ , where ˆ lμ  is the maximum likelihood estimate of lμ  and the sum is over the 

efficient units.  
The maximum likelihood estimate of lμ  is computed from the inefficient units. This is a 

subtle modification on the methods proposed by Banker and Natarajan (2008). The use of the 
gamma and truncated normal distributions and the adaptation of the procedure of Simar and 
Wilson (2007) to the present instance are original contributions. Notice that once MV is 
estimated, the output observations should be adjusted for the inefficient units by subtracting this 
quantity, and new efficiency measurements are then computed to estimate the unknown 
production function ( )g x and the corresponding set of technical efficiency scores. 

Checking whether or not the production model fits the data is a matter of verifying if the 
postulated inefficiency distribution fits the efficiency observations. As in stochastic frontier 
analysis, the three commonly used family of distributions used to model inefficiency errors are 
the exponential, the half-normal and the truncated normal, the latter having flexibility properties 
(Coelli et al., 2005). Goodness of fit statistics can be used to assess the best fit. 

To compute standard error for the technical efficiency estimates one should use bootstrap 
estimates. Shorter confidence limits are obtained using this approach. In this context we suggest 



 

here an adaptation of the algorithm proposed by Löthgren and Tambour (1999). This is achieved 
following the steps: 

1. Let *,ˆ 1b b
i i iyφ ε= + , where *,b

iε  is generated from the error model fitted by maximum 
likelihood.  

2. Let the bootstrap pseudo-data be given by ( )*, ˆ,[ ] , 1b
i i i ix y i nφ φ = K . 

3. Estimate bootstrap efficiencies *,b
iζ  using the BCC version of the linear programming (3) 

for the pseudo data.  
4. Repeat 1-3 B times to create a set of B firm-specific bootstrapped efficiency estimate 

*, , 1b
i b Bζ = K . Compute the efficiency standard errors with equation (9) (Efron and 

Tibshirani, 1986, 1993). 
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With knowledge of the standard errors, one may compute the one-sided confidence intervals 

as 1
ˆ ˆ[ , ]i i iz sαφ φ −+ , where 1 ,  (0,1)z α α− ∈  is the standard normal quantile of order 1-α . 

3. Embrapa’s Production System 
Embrapa’s research system comprises 37 units (DMUs) of research centers. Input and output 

variables are defined from a set of performance indicators known to the company since 1991. The 
set comprises 28 outputs and 3 inputs. 

We begin our discussion with the output. The output variables are classified into four 
categories: Scientific production; Production of technical publications; Development of 
technologies, products, and processes; Diffusion of technologies and image.  

By scientific production we mean the publication of articles and book chapters aimed mainly 
to the academic world. We require each item to be specified with complete bibliographical 
reference.  

The category of technical publications groups publications produced by research centers 
aiming, primarily, at agricultural businesses and agricultural production.  

The category of development of technologies, products and processes groups indicators 
related to the effort made by a research unit to make its production available to society in the 
form of a final product. Only new technologies, products and processes are considered. Those 
must be already tested at the client’s level in the form of prototypes, or through demonstration 
units, or be already patented.  

The category of diffusion of technologies and image encompasses production variables 
related to Embrapa’s effort to make its products known to the public and to market its image.  

The input side of Embrapa’s production process is composed of three variables. Personnel 
expenditure, Operational costs (consumption materials, travel and services less income from 
production projects), and Capital (measured by depreciation). 

All output variables are measured as counts and normalized by the mean. Likewise, the 
inputs are normalized by the mean. As a final output we take a weighted average of all variables 
in all categories of production. The weights are user defined and reflect the administration 
perception of the relative importance of each variable to each research center or DMU. A single 
output allows the use of the statistical tests described in the previous section. 

Defining weights is a hard and questionable task. In our application in Embrapa we followed 
an approach based on the Law of Categorical Judgments of Thurstone (Torgerson, 1958). More 
details on this issue may be seen in Gomes and Souza (2008). The model is competitive with the 



 

AHP method of Saaty (1994) and is well suited when several judges are involved in the 
evaluation process. Basically, we sent out about 500 questionnaires to researchers and 
administrators and asked them to rank in importance – scale from 1 to 5, each production 
category and each production variable within the corresponding production category. A set of 
weights was determined under the assumption that the psychological continuum of the responses 
projects onto a normal distribution. 

DEA models implicitly assume that the DMUs are comparable. This is not strictly the case in 
Embrapa. To make them comparable it is necessary an effort to define an output measure 
adjusted for differences in operation and perceptions. At the level of the partial production 
categories we induced this measure allowing a distinct set of weights for each DMU. In principle 
one could go ahead and use DEA with multiple outputs. This would minimize the effort of 
defining weights leaving to DEA the task of finding these coefficients. The problem with such 
approach is that there is a kind of dimensionality curse in DEA models. As the number of factors 
(inputs and outputs) increases, the ability to discriminate between DMUs decreases. Thus we 
found convenient to extend the weight system to produce a single measure of output oy . 

A personnel score was created for each unit dividing its number of employees by the 
company’s mean. Outputs and inputs were normalized by this variable. This further established a 
common basis to compare research units (regarding scale) and avoided the incidence of spurious 
efficient units and zero output (shadow) prices, another common occurrence in multiple output 
models, and also a disturbing fact for management interpretation. It’s important to mention that at 
Embrapa the dedication is the same for all employees, and they are grouped into two categories: 
Research and Research Support.  

We see the use of ratios to define production variables in our application as unavoidable. 
Different denominators are used with the virtue of being independent of sizes of the units. 
Therefore facilitate comparisons between units and the postulation of a common production 
function. In the context of a pure DEA analysis, the problem of efficiency comparisons may be 
solved imposing the BCC assumption. See Hollingsworth and Smith (2003) and Emrouznejad 
and Amin (2007). These authors state that when using ratio variables, the constant returns to 
scale assumption is not valid. 

DEA models are known to be sensitive to outliers. In our application, the control of outliers 
is particularly important for output variables. In this context we use box plot fences to adjust the 
values of outlying observations. Values above ( )3 1.5 3 1Q Q Q+ −  are reduced to this value for 
any variable. Here Q1 and Q3 denote the first and third quartiles, respectively. This approach led 
to the exclusion of a research unit from our analysis (DMU 25), leaving in 36 the total number of 
research centers.  

4. Statistical Results 
Table 1 shows Embrapa’s production data for 2008. Table 2 shows goodness of fit statistics 

related to the fit of the truncated normal and gamma distributions. The best fit is the truncated 
normal. The models were estimated by maximum likelihood including two contextual variables: 
size and type of unit. Statistical results for the truncated normal are shown in Table 3. We see 
that size and type are non significant effects.  

Notice that the log likelihood function for the gamma distribution is given by (10). Here 
(.)Γ  is the gamma function (11), where 1 2andz z   are size dummy variables, and 3 4andz z are 

type dummy variables.  
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Table 1. Embrapa’s production variables, 2008. Y is the output, X1 is personnel expenditures, X2 
is other expenses and X3 is capital 

Research center X1 X2 X3 Y 
DMU1 1.4285 1.7996 1.9869 1.4648 
DMU2 1.0406 0.8825 0.7318 1.1044 
DMU3 0.9636 1.2486 1.2576 1.5316 
DMU4 0.8268 0.8671 0.8701 0.5759 
DMU5 1.1502 1.4076 1.3486 1.6424 
DMU6 0.9569 1.1446 0.8559 0.8694 
DMU7 1.2329 1.4955 3.2180 1.6424 
DMU8 1.3082 0.9091 0.8137 1.2856 
DMU9 0.9549 1.2279 1.7311 0.6554 
DMU10 1.0142 0.6820 1.1481 0.8453 
DMU11 0.8218 0.8497 0.8237 0.7458 
DMU12 1.1466 0.7993 1.2703 0.9808 
DMU13 1.0392 1.0231 0.7336 0.9043 
DMU14 0.9563 1.1583 0.9729 1.0867 
DMU15 1.2210 0.8054 1.0168 0.6387 
DMU16 0.9203 0.8012 0.9762 0.7622 
DMU17 0.9700 1.3267 1.0159 0.8086 
DMU18 1.0105 0.9849 0.9225 0.8708 
DMU19 1.3536 1.1611 1.3020 1.6424 
DMU20 0.8867 1.1050 1.4015 0.9909 
DMU21 0.9520 0.6988 0.6651 0.5428 
DMU22 0.8707 0.8008 0.7752 0.6733 
DMU23 0.9221 0.8977 0.9196 1.3127 
DMU24 1.0654 1.2284 1.0347 0.6907 
DMU25 1.0959 1.2664 0.6881 0.3206 
DMU26 0.8993 0.6251 0.5248 0.8848 
DMU27 0.9960 1.0876 1.2457 1.1711 
DMU28 0.7806 0.7354 0.4612 0.6676 
DMU29 0.9650 1.0785 0.8520 0.9645 
DMU30 1.1376 0.9332 0.8409 0.9248 
DMU31 1.0952 1.0729 0.7107 0.8512 
DMU32 0.7762 0.9055 0.6025 1.0238 
DMU33 1.0156 0.8010 0.6685 0.6344 
DMU34 1.1596 1.1730 1.2072 1.0884 
DMU35 0.9298 1.2288 1.0984 0.9716 
DMU36 1.0945 1.2404 1.7440 1.0571 
DMU37 1.2123 1.2335 3.0235 1.2627 



 

 
Table 2. Goodness of fit statistics for inefficiency errors 

Distribution  -2ll AIC BIC
Truncated normal -128.3 -116.3 -108.6
Gamma -20.3 -8.3 -0.6

 
 

Table 3. Maximum likelihood estimates for the truncated normal distribution 
Parameter Estimate Standard error p-value 
z1 (size) 0.0524 0.0634 0.4161 
z2 (size) 0.0611 0.0587 0.3069 
z3 (type) 0.0335 0.0589 0.5738 
z4 (type) -0.0384 0.0615 0.5374 
α (constant) 0.3412 0.0533  <0.0001 
ρ 0.1170 0.0114  <0.0001 

MV  0.3907 0.0347  
 
 

The log likelihood function for the product of truncated normals ( , )jN μ σ+  is given by (12). 
Here (.)φ  denotes the probability density function of the standard normal distribution and (.)Φ  
the distribution function. 
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Table 4 shows final efficiency estimates under the assumption of variable returns to scale, 

their standard errors and 95% parametric bootstrap individual confidence intervals. The 
confidence intervals are shown within [0,1], since efficiency measurements are usually presented 
between zero and 1.  

The constant B, of the firm-specific bootstrapped efficiency estimates *,b
iζ , was chosen to be  

2,000 in our study. According to Efron and Tibshirani (1986, 1993), setting B=1,000 is enough to 
ensure that the confidence intervals converge adequately. 

The main advantage of the technique used here relative to other confidence intervals 
suggested in the literature, as for example the proposal of Simar and Wilson (2004, 2007), is that 
the actual efficiency estimates are lower bounds and they define real possibilities for the 
corresponding population values. The specification of random errors actually reduces efficiency 
estimates for inefficient units. This would not happen for the purely deterministic frontier 
specification.  

The evaluation process at Embrapa is carried out on a year basis with many changes making 
it difficult to properly model dependency through time. To assess the evolution of raw efficiency 
measurements through time we considered a dynamic panel data model of Arellano and Bond 
(1991), Arellano and Bover (1995) e Blundell and Bond (1998), as in (13). 
 

( )1 2 1 3 2 4 3 5 4 61it t t t t t i iti teff c eff z z z z timeβ β β β β β τ ε−= + + + + + + + +   (13) 

 



 

 
Table 4. Adjusted product oriented measures of technical and [0,1] scaled 95% confidence limits. 
Italic rows mean unitary upper bound 

Research 
center 

Standard 
deviation (*) 

Efficiency 
(**) 

Lower 
bound 

Upper 
bound 

Interval 
length 

DMU1 0.079 1.529 0.603 0.654 0.051 
DMU2 0.087 1.634 0.563 0.612 0.049 
DMU3 0.064 1.000 0.906 1.000 0.094 
DMU4 0.415 5.800 0.154 0.172 0.018 
DMU5 0.054 1.000 0.919 1.000 0.081 
DMU6 0.139 2.643 0.348 0.378 0.030 
DMU7 0.051 1.000 0.923 1.000 0.077 
DMU8 0.067 1.000 0.901 1.000 0.099 
DMU9 0.345 5.691 0.160 0.176 0.016 
DMU10 0.212 2.143 0.402 0.467 0.065 
DMU11 0.217 2.927 0.305 0.342 0.037 
DMU12 0.124 1.963 0.462 0.510 0.048 
DMU13 0.134 2.289 0.399 0.437 0.038 
DMU14 0.099 1.946 0.474 0.514 0.040 
DMU15 0.296 4.709 0.193 0.212 0.019 
DMU16 0.205 3.126 0.289 0.320 0.031 
DMU17 0.160 3.316 0.280 0.302 0.022 
DMU18 0.143 2.762 0.334 0.362 0.028 
DMU19 0.057 1.000 0.914 1.000 0.086 
DMU20 0.123 2.203 0.416 0.454 0.038 
DMU21 0.601 6.577 0.132 0.152 0.020 
DMU22 0.226 3.791 0.240 0.264 0.024 
DMU23 0.073 1.000 0.894 1.000 0.106 
DMU24 0.204 4.713 0.198 0.212 0.014 
DMU26 0.131 1.000 0.823 1.000 0.177 
DMU27 0.085 1.861 0.500 0.537 0.037 
DMU28 0.176 1.000 0.776 1.000 0.224 
DMU29 0.115 2.201 0.419 0.454 0.035 
DMU30 0.121 2.399 0.385 0.417 0.032 
DMU31 0.155 2.514 0.361 0.398 0.037 
DMU32 0.116 1.000 0.841 1.000 0.159 
DMU33 0.272 4.441 0.205 0.225 0.020 
DMU34 0.090 2.217 0.423 0.451 0.028 
DMU35 0.133 2.440 0.376 0.410 0.034 
DMU36 0.105 2.363 0.394 0.423 0.029 
DMU37 0.077 1.851 0.506 0.540 0.034 
Average - 2.529 0.484 0.539 0.055 

(*) Based on “Efficiency” column. 
(**) Output oriented DEA BCC model. Output adjusted. 
 
 

In this model i denotes a research center, t is the year under analysis and time is a time trend. 
The z’s are dummies for size (z1 and z2) and type (z3 and z4). The components τ  and ε  are 
independent random errors, possibly showing heteroscedasticity and first order autocorrelation in 
the componentε . Table 5 shows the statistical results found. We see that there is no second order 
residual autocorrelation, and size and type are not significant effects. There is no permanent 
residual efficiency effect, since the lag coefficient is not significant, and efficiency grows at a rate 
of 1.5% per year. These results will spill over the adjusted efficiency values.  



 

 
Table 5. Efficiency evolution through time. Dynamic panel analysis 

 Estimate Standard error z P>|z| 
lag 0.1234317 0.1234853 1.00 0.318 
time 0.0153581 0.0061681 2.49 0.013 
z1 0.8387450 1.028.493 0.82 0.415 
z2 0.2780564 1.283.786 0.22 0.829 
z3 -0.1965680 1.230.432 -0.16 0.873 
z4 -0.0136601 0.582840 -0.02 0.981 
c 0.2462017 0.913219 0.27 0.787 

5. Summary and Conclusions 
Under the assumption of a non parametric production model containing random and 

inefficiency errors we compute DEA based efficiency measurements. The application studied is 
aimed to Embrapa’s research system. Embrapa, the Brazilian Agricultural Research Corporation, 
is a state company responsible for most of applied agricultural research in Brazil.  

Inefficiency error components follow a truncated normal distribution, which is used to 
compute the 95% upper limits for the individual efficient measurements via bootstrap. Only non 
efficient units are used for parameter estimation via maximum likelihood. The gamma 
distribution fails to provide a good fit. The intervals provided include actual adjusted efficiency 
measurements as possible values. The analysis carried out indicates that size and type of research 
centers are not significant factors, and that raw efficient measurements grow at a rate of 1.5% a 
year.  
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