TÓPICO DE SUBMISSÃO DO TRABALHO: 15 Melhoramento Genético CAPACIDADE ANTIOXIDANTE EM GOIABAS DE DIFERENTES REGIÕES DO BRASIL

Tuany Priscila Pereira Costa¹, Luiz Claudio Corrêa², Carlos Antonio Fernandes Santos³, Giuseppina Pace Pereira Lima⁴,

- ¹ Mestranda em Recursos Genéticos Vegetais/ Universidade Federal do Recôncavo da Bahia, 44380-000, Cruz das Almas- BA. E-mail: tuanypriscila@hotmail.com
- ² Doutor em Fisiologia Vegetal, Universidade Estadual Paulista, C P 510, 18618-970, Botucatu- SP. E-mail: ccorrea@ibb.unesp.br
- ³ Pesquisador da Embrapa Semi-Árido. C P 23, 56302-970, Petrolina- PE. E-mail: casantos@cpatsa.embrapa.br
- ⁴ Professora da Universidade Estadual Paulista, C P 510, 18618-970, Botucatu- SP. E-mail: gpplima@ibb.unesp.br

INTRODUÇÃO

A procura por espécies ricas em compostos funcionais tem se consolidado como um dos principais focos de programas de melhoramento vegetal (Carvalho *et al.*, 2006). Entre os compostos funcionais considerados em programas de melhoramento vegetal estão os antioxidantes, tais como o ácido ascórbico e os compostos fenólicos, que exercem papel importante na neutralização dos efeitos danosos à célula causados por radicais livres. Diversos estudos têm demonstrado que a goiaba é um fruto rico em compostos antioxidantes (Yan *et al.*, 2006). O objetivo desse trabalho foi determinar os teores de ácido ascórbico e de compostos fenólicos totais, bem como a atividade antioxidante em goiabas de acessos do banco ativo de germoplasma de *Psidium* da Embrapa Semiárido, a fim de produzir subsídios a programas de melhoramento do gênero com foco na obtenção de cultivares ricas em compostos funcionais.

MATERIAL E MÉTODOS

Aquisição das amostras: Foram coletados frutos maduros de 35 acessos de goiabeira do banco ativo de germoplasma de *Psidium* da Embrapa Semiárido. Para cada acesso foram

utilizados frutos provenientes de 6 plantas, divididos em três lotes de 2 plantas, perfazendo 3 repetições. Foi utilizado o fruto inteiro sem sementes.

Ácido ascórbico: Foi determinado pelo método proposto por Carvalho et al. (1990), O extrato (500 mg do material fresco (M.F) para 50 mL de ácido oxálico a 0,5%) foi titulado com solução a 0,02% de DCFI (2,6-diclorofenol-indofenol) previamente padronizada com ácido ascórbico. Os resultados foram expressos em mg de ácido ascórbico (AA) 100 g⁻¹ M.F. **Fenóis totais:** Para a extração, 500 mg do material ficou sob agitação no escuro por 30 minutos com 3 mL de etanol a 90%, seguindo-se de centrifugação a 6500 rpm por 15 minutos a 4°C. Após e separação do sobrenadante, foi adicionado ao tubo 3 mL de acetona a 50% e o processo foi repetido com posterior união dos sobrenadantes para as análises. O extrato foi também utilizado para a análise da atividade antioxidante. A quantificação foi realizada utilizando-se o reativo de Folin-Ciocalteau, conforme proposto por Singlenton e Rossi (1965). Os resultados foram expressos em mg equivalentes em ácido gálico (EAG) 100 g⁻¹ M.F.

Atividade antioxidante: Foi determinada conforme descrito por Mensor et al. (2001) com modificações. A partir de uma solução padrão 100 μM DPPH (difenilpicril-hidrazila) e uma de ácido ascórbico a 250 μg mL⁻¹, foi construída uma curva de calibração. Para 6 tubos de ensaio, foram adicionados volumes correspondentes a 6,25 a 37,50 μg de AA. Os volumes foram ajustados a 0,15 mL com etanol a 96% e então foram adicionados 2,85 mL da solução de DPPH. Após incubação por 40 minutos no escuro, foram realizadas as leituras em espectrofotômetro a 517 nm, contra branco de etanol a 96%. Para determinação da atividade antioxidante, 2,85 mL de DPPH foram adicionados a 0,15 mL dos extratos. Os resultados foram expressos em mg equivalentes em AA (EAA) 100 g⁻¹ M.F.

Análise estatística: Os resultados foram submetidos à análise de variância e as médias comparadas pelo método de Scot-Knott a 5% de probabilidade.

RESULTADOS E DISCUSSÃO

Ácido Ascórbico: Foi observada variação de 44,66 a 409,77 mg 100 g⁻¹ de ácido ascórbico, sendo os maiores teores encontrados em G03MA, G47PE e G38PE (Tabela 1). Yan *et al.* (2006) encontraram 144 mg 100 g⁻¹ na cultivar "Kampuchea", enquanto Thaipong *et al.* (2006) relataram variação de 174 a 397 mg 100 g⁻¹ em 4 diferentes genótipos. Diversos dos acessos estudados se mostraram boas fontes de ácido ascórbico. A ingestão de 40 g de frutos do acesso G03MA é capaz de suprir a necessidade diária recomendada de 150 mg de vitamina C (Diplock *et al.*, 1998).

Fenóis totais: Expressos como equivalente em ácido gálico, a variação encontrada foi de 158 a 447 mg 100 g⁻¹, com os maiores teores em G03MA, G10MA e G01MA (Tabela 1),

valores similares aos encontrados por Thaipong et al. (2006), que relataram variação de 170a 340 mg 100 g⁻¹ EAG em estudo na Tailândia.

<u>Tabela 1</u>. Compostos antioxidantes em goiabas do banco ativo de germoplasma da Embrapa Semiárido.

Acesso	AΑ		FEN	AOX
G 01 MA	233,75	е	389,03 d	729,84 e
G 02 MA	95,22	b	318,31 c	615,81 d
G 03 MA	409,77	h	447,28 d	811,80 e
G 07 MA	254,20	f	253,73 b	502,30 c
G 10 MA	293,19	g	423,55 d	798,61 e
G 16 MA	223,39	е	335,16 c	649,38 d
G 17 MA	166,09	d	337,16 c	636,79 d
G 22 MA	261,55	f	340,24 c	603,78 d
G 28 PI	65,33	а	204,65 a	383,20 a
G 30 PI	103,86	b	221,89 b	424,30 b
G 31 PI	230,58	е	323,80 c	581,24 d
G 32 PE	76,01	b	251,53 b	446,62 b
G 33 PE	49,38	а	228,18 b	352,51 a
G 34 PE	44,66	а	195,46 a	375,31 a
G 38 PE	317,13	g	315,63 c	575,11 d
G 47 PE	397,14	h	324,07 c	601,50 d
G 48 SE	204,61	е	270,79 b	512,06 c
G 49 SE	77,01	b	157,76 a	302,73 a
G 52 SE	122,30	С	210,26 a	418,70 b
G 53 SE	108,84	С	198,18 a	387,27 a
G 55 SE	79,56	b	252,40 b	526,44 c
G 58 SE	78,22	b	222,16 b	438,33 b
G 59 SE	94,68	b	190,89 a	331,33 a
G 64 BA	144,74	d	232,07 b	423,25 b
G 65 RO	119,14	С	231,41 b	423,90 b
G 66 RO	121,02	С	215,16 a	393,43 a
G 67 RO	111,65	С	223,42 b	415,59 b
G 68 RO	91,62	b	227,72 b	338,46 a
G 69 RO	90,40	b	230,52 b	442,31 b
G 73 RO	113,19	С	312,06 c	557,70 d
G 83 AM	132,29	С	186,11 a	373,17 a
G 87 AM	135,86	С	233,01 b	430,25 b
G 92 AM	158,66	d	234,28 b	426,56 b
G 96 AM	100,68	b	213,69 a	391,48 a
G 98 AM	80,83	b	260,19 b	469,57 c
cv (%)	10,08	1 8 4	11,16	9,52

AA: ácido ascórbico (mg AA 100 g⁻¹ M.F); FEN: Fenóis totais (mg EAG 100 g⁻¹ M.F); AOX: atividade antioxidante expressa como equivalente em ácido ascórbico (mg EAA 100 g⁻¹ M.F). Médias seguidas da mesma letra na coluna não diferem entre si de acordo com o teste Scot-Knott a 5% de probabilidade.

AM (Amazonas); BA (Bahia); MA (Maranhão); PE (Pernambuco); PI (Piauí); RO (Rondônia); SE (Sergipe).

Atividade antioxidante: Observou-se variação de 303 a 812 mg equivalente em ácido ascórbico (EAA) 100 g⁻¹ M.F nos frutos analisados, resultados bem acima dos encontrados por Yan et al. (2006), que descreveram variação de 218 a 310 mg EAA 100 g⁻¹ MF em frutos verdes e maduros, respectivamente. Chen & Yan (2007) apontam os compostos fenólicos como principais responsáveis pela alta atividade antioxidante em goiabas. Entretanto, os resultados encontrados no presente trabalho mostraram que o ácido ascórbico e os compostos fenólicos são igualmente importantes na constituição da atividade antioxidante em goiabas, uma vez que nos acessos de maior atividade, ambos os compostos foram encontrados em alta quantidade.

CONCLUSÃO

O estudo revelou que os frutos analisados são importantes fontes de compostos antioxidantes, característica que, aliada à boa aceitação dos frutos, deve servir de incentivo para estudos de melhoramento do gênero *Psidium*. Destacam-se como alternativas os acessos provenientes do Maranhão, que apresentam teores elevados de ácido ascórbico e de compostos fenólicos, aumentando significativamente sua capacidade antioxidante.

REFERÊNCIAS BIBLIOGRÁFICAS

- CARVALHO, C. R. L. et al. *Análises químicas de alimentos*. Campinas: Instituto de Tecnologia de Alimentos, 1990. 121p. (Manual Técnico).
- CARVALHO, P. G. B.; et al. Vegetable crops as functional food. **Horticultura Brasileira**, v. 24, p. 397-404, 2006.
- CHEN, H. Y.; YEN, G. C. Antioxidant activity and free radical-scavenging capacity of extracts from guava (*Psidium guajava* L.) leaves. **Food Chemistry**, v. 101, p. 686–694, 2007.
- DIPLOCK, A. T. et al. Functional food science and defence against reactive oxygenspecies. **British Journal of Nutrition**, v. 80, p. 77–S112, 1998.
- MENSOR, L. L. et al. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. *Phytotherapy Resources*, v. 15, p. 127-130, 2001.
- SINGLETON, V. L.; ROSSI, J. A. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. **American Journal of Enology Viticulture**, v. 16, p. 144–153, 1965.
- THAIPONG, K. et al. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. **Journal of Food Composition and Analysis**, v. 19, p. 669–675, 2006.

YAN, L. Y.; TENG, L. T.; JHI, T. J. Antioxidant properties of guava fruit: comparison with some local fruits. **Sunway Academic Journal**. 3: 9–20, 2006.