Avaliação de co- produtos de biodiesel como suplemento em dietas de bovinos: Macaúba (Acrocomia auleata)

Marcela Macedo De Martin (Estagiária/ CNPGL, mmdemartin@hotmail.com), Heloisa Carneiro (EMBRAPA/CNPGL, heloisa@cnpgl.embrapa.br), Pedro Castro Neto (DEG/UFLA, pedro@ufla.br), Antônio Carlos Fraga (DAG/UFLA, fraga@ufla.br), Juliana de Souza Bento Faria (Estagiária/CNPGL, julisouza@hotmail.com)

Palavras Chave: biodiesel, co- produto, macaúba, torta

1 - Introdução

A palmeira Macaúba Acrocomia aculeata é uma espécie nativa das florestas tropicais, e se destaca por ser uma palmeira oleaginosa altamente produtiva e adaptada a regiões semi-áridas. Por possuir estas características é considerada uma ótima alternativa para a produção do biodiesel. Já seus co-produtos poderão servir como suplemento animal devido aos seus altos teores de proteína, extrato etéreo e, alta digestibilidade permitindo assim sua utilização em ração animal. O fruto de macaúba se constitui no produto economicamente mais representativo da espécie. Dos frutos pode ser extraído o óleo, que atualmente vem sendo bastante visado para produção de biodiesel. No processo de extração do óleo são geradas grandes quantidades de biomassa residual e, o seu aproveitamento implica na redução dos custos finais do óleo vegetal. Por isso a necessidade de usar esses resíduos na alimentação de ruminantes. Os co-produtos foram adquiridos de usinas de biodiesel distribuídas em todo o território nacional.

2 - Material e Métodos

O laboratório de análises de alimentos da Embrapa Gado de Leite está analisando co-produtos de biodiesel como suplemento em dietas de bovinos sendo um dos principais objetivos o aproveitamento desse co-produtos na cadeia produtiva do leite, com o intuito de eliminar os entulhos do meio ambiente gerado na extração do biodiesel.

Um destes co-produtos analisados foi do coco e do fruto da palmeira macaúba utilizado na produção de biodiesel. A tabela 1 mostra as características do co-produto após o processo de extração do biodiesel. As análises présecas, destinadas ás análises químicas, foram moídas em moinho tipo Wiley a 1,0 mm.

Na tabela I encontra-se a composição bromatológica e mineral torta do coco e do fruto da macaúba após extração do óleo, podendo-se compará-las.

As análises pré-secas, destinadas ás análises químicas foram moídas em moinho tipo Wiley a 1,0 mm. A matéria seca (MS a 105°C), proteína bruta (PB) e extrato etéreo (EE) bem como os constituintes da parede celular, e minerais foram analisado segundo metodologia descrita por Silva e Queiroz (2002). O coeficiente de digestibilidade "in vitro" da matéria orgânica foi determinado pelo método de Tilley & Terry (1963), utilizando-se líquido de rúmen de vacas,

coletados através de fistula ruminal. Macro e microminerais pela absorção atômica.

3 - Resultados e Discussão

A tabela 1 apresenta os dados bromatológicos, matéria seca (MS), proteína bruta (PB), fibra detergente neutro(FDN), fibra detergente ácido (FDA), DIVMS, cinzas, extrato etéreo (EE) e composição mineral, cobre, cálcio, magnésio, fósforo, potássio, sódio, zinco, ferro, manganês, nitrogênio, manganês, cobre.

O presente resultados mostrou semelhanças quando comparados com os estudos de Pinto (1963), e Silva (1994). Segundo Silva, o fruto possui 35% de umidade, pesando 18 g quando seco e é composto de quatro partes distintas: 19,77% de casca externa (epicarpo), 41,17% de massa oleosa (mesocarpo), 28,97% casca lenhosa do endocarpo e 10,09% de amêndoa oleosa.

Segundo Silva (1994), a macaúba tem possibilidade de se tornar a palmeira oleaginosa mais importante comercialmente no contexto brasileiro, pois seus frutos fornecem 20 a 30% de óleo, 5% de farinha comestível e 35% de tortas forrageiras.

Tabela 1. Composição bromatológica e mineral de três diferentes amostras de co-produto de macaúba (coco e fruto).

Item	Coco 1	Coco 2	Coco 3	Fruto 1	Fruto 2	Fruto 3
MS %	90,01	90,41	94,27	87,46	82.95	87,12
PB %	34,78	34,96	36,08	8,12	8.92	8.12
FDA %	34,91	33,35	33,94	34,66	34.77	32.20
FDN %	52,07	48,31	48.36	44,70	43,69	42,53
EE %	9,64	12,71	9.33	14,16	15,17	9.37
Cinzas	4,51	4,33	4.54	4,64	5.13	4.99
DIVMS	70,42	68,60	71,83	50,91	50.90	53.17
Composição		200-200-000	The second	5000 2 500		
Mineral%						
Nitrogênio %	5,56	5,59	5.77	1,30	1,43	1.30
Cálcio %	0.16	0.16	0.18	0.17	0.19	0.18
Magnésio%	0,36	0,37	0.38	0.24	0.26	0.25
Fósforo%	0,93	0,94	0.96	0.17	0.18	0.17
Potássio%	0,96	0,94	0,94	1.87	2.15	2,01
Sódio%	0,01	0,01	0,01	0.01	0.01	0.01
Cobre ppm	25,58	23,31	23,74	12,14	12,85	11,99
Ferro ppm	118,37	384,20	891,96	376,22	392.94	368,27
Manganês ppm	47,70	45,42	48,94	10,33	11.53	9.93
Zinco ppm	50,47	48,43	50,73	13,74	14,96	15,59

 Laboratório de Análises de Alimentos da Embrapa Gado de Leite

BELO HORIZONTE - MINAS GERAIS 05 a 08 DE OUTUBRO DE 2010

SP 3483

4º Congresso da Rede Brasileira de Tecnologia de Biodiesel 7º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel

O óleo da amêndoa é de alta qualidade estudos comprovam que este óleo pode substituir o azeite de oliva no tempero de saladas; apresenta alto teor de ácido láurico, o que facilita as reações de transesterificação com etanol, resultando em eficiência na obtenção do biodiesel de macaúba (Lima et al. 2007).

Depois da extração do óleo da amêndoa, a torta que sobra pode ser utilizada tanto na alimentação humana (fabricação de doce, tipo cocada) como na de animais. A aplicação mais simples é usar esse farelo como ração animal.

O farelo da amêndoa tem ótimo índice de proteína e pode ser utilizado nas composições de rações para animais. A polpa, adocicada e suavemente aromática é muito apreciada pelas crianças, sendo também consumida em sua forma natural pelos ruminantes. Adicionalmente, a polpa pode ser usada diretamente ou como farinha na alimentação humana, sendo que a farinha só pode ser obtida dos frutos frescos. Por outro lado, quando os frutos estão velhos pode-se retirar o óleo da polpa, que tem diversas aplicações possíveis.

A farinha serve também como ração animal de excelente qualidade (Lorenzi, 2006). Como ração animal, a polpa oleosa tem maior emprego na engorda de suínos. Além disso, a torta da polpa pode ser utilizada como adubo e combustível para caldeiras.

E finalmente, a casca (exocarpo) da macaúba pode servir como ração animal de alta qualidade conforme comprovado na tabela 1..

4 - Agradecimentos

Agradecemos à EMBRAPA CNPGL, ao CNPq e à FAPEMIG pela preciosa colaboração.

5 - Bibliografia

BELTRÃO, N. E. de M.; OLIVEIRA, M,I,P da.; Oleaginosas Potenciais do Nordeste para a Produção de Biodiesel. Campina Grande, PB. 2007. Embrapa Algodão. *Documentos 177.*

BAER FILHO, R.; CARNEIRO, A. C. O.; VITAL, B. R.; DUARTE, A. P. C. Endocarpo de Macaúba (Acrocomia aculeata (Jacq.) Lodd. ex Martius) comparado a madeira de Eucalyptus grandis Hill ex Maiden para produção de carvão vegetal. Congresso Brasileiro de Agrobiologia & Simpósio Internacional de Biocombustível—CONBIEN. Anais do CONBIEN 2008, Uberlândia, Minas Gerais, Brasil, 28 de setembro a 03 de outubro de 2008.

HIANE, P. A.; PENTEADO, M. V. C. Carotenóides de valores de vitamina A do fruto e da farinha de bocaiúva (Acrocomia mokayayba Barb. Rodr.) do Estado do Mato Grosso do Sul. Revista de Farmácia e Bioquímica da Universidade de São Paulo, São Paulo, v. 25, n. 2, p. 158-168, 1989.

LIMA, J. R. O.; SILVA, R. B. S.; SILVA, C. C. M. et al. Biodiesel de Babaçu (Orbignya sp.) obtido por via etanólica. **Química Nova**, v. 30, n. 3, p. 600-603, 2007.

LORENZI, G. M. A. C. Acrocomia aculeata (Lodd.) ex Mart. – arecaceae bases para o extrativismo sustentável. 2006, 172 f. Tese (Doutorado) - Programa de Pósgraduação em Agronomia, Universidade Federal do Paraná, Curitiba.

PINTO, G. P. Características físico-químicas e outras informações sobre asprincipais oleaginosas do Brasil. Recife: Instituto de Pesquisa e Experimentação Agropecuárias do Nordeste. 1963. 83 p. (Boletim Técnico, 18).

SILVA, J. C. Macaúba: fonte de matéria-prima para os setores alimentício, energético e industrial. 1994, 41 p. Trabalho de conclusão da disciplina (Cultivo de essências exóticas e nativas) - Departamento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa.

SILVA, D.J.; QUEIROZ, A.C.de.Análise de Alimentos: métodos químicos e biológicos. Viçosa: UFV, 2002. 235p.

TILLEY, J.M.A.; TERRY, R.A. A two-stage technique for the in vitro digestion of forage crops. **Journal of British Grassland Society**, v.18, p. 104-111, 1963.