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Abstract. This paper introduces a privacy preservation masking method to sup-
port business collaboration, called Dimensionality Reduction-Based Transfor-
mation (DRBT). This method relies on the intuition behind random projection to
mask the underlying attribute values subject to cluster analysis. Using DRBT,
data owners are able to find a solution that meets privacy requirements and
guarantees valid clustering results. DRBT was validated taking into account
five real datasets. The major features of this method are: a) it is independent of
distance-based clustering algorithms; b) it has a sound mathematical founda-
tion; and c) it does not require CPU-intensive operations.

1. Introduction
In the business world, data clustering has been used extensively to find the optimal cus-
tomer targets, improve profitability, market more effectively, and maximize return on in-
vestment supporting business collaboration [Berry and Linoff 1997]. Combining differ-
ent data sources provides better clustering analysis opportunities. For example, it does
not suffice to cluster customers based on their purchasing history, but combining purchas-
ing history, vital statistics and other demographic and financial information for clustering
purposes can lead to better and more accurate customer behavior analysis.

The fundamental question addressed in this paper is: how can data owners share
data for clustering, supporting business collaboration, without jeopardizing the privacy of
their customers? Clearly, achieving privacy preservation when sharing data for clustering
poses new challenges for novel uses of data mining technology. Each application poses a
new set of challenges. Let us consider the following real-life motivating example:

Two organizations, an Internet marketing company and an on-line retail company, have
datasets with different attributes for a common set of individuals. These organizations
decide to share their data for clustering to find the optimal customer targets so as to max-
imize return on investments. How can these organizations learn about their clusters using
each other’s data without learning anything about the attribute values of each other?

The above scenario describes a problem of privacy-preserving clustering (PPC),
which is referred to as PPC over vertically partitioned data. To address such a scenario,
this paper introduces a privacy preservation masking method to support business collab-
oration, called Dimensionality Reduction-Based Transformation (DRBT). This method
allows data owners to find a trade-off between privacy, accuracy, and communication
cost. Communication cost is the cost (typically in size) of the data exchanged between
parties in order to achieve secure clustering.
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Dimensionality reduction techniques have been studied in the context of pattern
recognition [Fukunaga 1990], information retrieval [Bingham and Mannila 2001], and
data mining [Faloutsos and Lin 1995]. To our best knowledge, dimensionality reduction
has not been used in the context of data privacy in any detail. The notable exception is
our preliminary work presented in [Oliveira and Zaı̈ane 2004].

Although there exists a number of methods for reducing the dimensionality of
data, such as feature extraction methods, multidimensional scaling and principal com-
ponent analysis (PCA), this paper focuses on random projection, a powerful method
for dimensionality reduction. The accuracy obtained after the dimensionality has
been reduced, using random projection, is almost as good as the original accuracy
[Kaski 1999, Achlioptas 2001]. The key idea of random projection arises from the
Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss 1984]: “if points in a vector
space are projected onto a randomly selected subspace of suitably high dimension, then
the distances between the points are approximately preserved.”

The motivation for exploring random projection is based on the following as-
pects. First, it is a general data reduction technique. In contrast to the other meth-
ods, such as PCA, random projection does not use any defined interestingness crite-
rion to optimize the projection. Second, random projection has shown to have promis-
ing theoretical properties for high dimensional data clustering [Fern and Brodley 2003,
Bingham and Mannila 2001]. Third, despite its computational simplicity, random projec-
tion does not introduce a significant distortion in the data. Finally, the dimensions found
by random projection are not a subset of the original dimensions but rather a transforma-
tion, which is relevant for privacy preservation.

In this work, random projection is used to mask the underlying attribute values
subject to clustering, protecting them from being revealed. In tandem with the benefit
of privacy preservation, the method DRBT benefits from the fact that random projection
preserves the distances (or similarities) between data objects quite nicely. It is shown
analytically and experimentally that using DRBT, a data owner can meet privacy require-
ments without losing the benefit of clustering. The major features of the method DRBT
are: a) it is independent of distance-based clustering algorithms; b) it has a sound mathe-
matical foundation; and c) it does not require CPU-intensive operations.

This paper is organized as follows. Section 2 provides the basic concepts that
are necessary to understand the issues addressed in this paper. In Section 3, the research
problem is described. In Section 4, we introduce the method DRBT to address PPC over
vertically partitioned data. Related work is reviewed in Section 5. The experimental
results are presented in Section 6. Finally, Section 7 presents our conclusions.

2. Background
2.1. Data Matrix
Objects (e.g., individuals, observations, events) are usually represented as points (vectors)
in a multi-dimensional space. Each dimension represents a distinct attribute describing
the object. Thus, objects are represented as an m × n matrix D, where there are m rows,
one for each object, and n columns, one for each attribute. This matrix may contain
binary, categorical, or numerical attributes. It is referred to as a data matrix, as can be
seen in Figure 1.
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

Figure 1. The data matrix
structure.
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Figure 2. The dissimilarity matrix
structure.

The attributes in a data matrix are sometimes transformed before being used. The
main reason is that different attributes may be measured on different scales (e.g., centime-
ters and kilograms). When the range of values differs widely from attribute to attribute,
attributes with large range can influence the results of the cluster analysis. For this reason,
it is common to standardize the data so that all attributes are on the same scale. There are
many methods for data normalization [Han and Kamber 2001]. We review only two of
them in this section: min-max normalization and z-score normalization.

Min-max normalization performs a linear transformation on the original data.
Each attribute is normalized by scaling its values so that they fall within a small spe-
cific range, such as 0.0 and 1.0. When the actual minimum and maximum of an attribute
are unknown, or when there are outliers that dominate the min-max normalization, z-score
normalization (also called zero-mean normalization) should be used. In z-score normal-
ization, a value for an attribute A is normalized by subtracting it from the mean of A and
then dividing the result by the standard deviation of A.

2.2. Dissimilarity Matrix
A dissimilarity matrix stores a collection of proximities that are available for all pairs of
objects. This matrix is often represented by an m × m table. In Figure 2, we can see
the dissimilarity matrix DM corresponding to the data matrix D in Figure 1, where each
element d(i, j) represents the difference or dissimilarity between objects i and j.

In general, d(i, j) is a non-negative number that is close to zero when the objects
i and j are very similar to each other, and becomes larger the more they differ. Several
distance measures could be used to calculate the dissimilarity matrix of a set of points in
d-dimensional space [Han and Kamber 2001]. The Euclidean distance is the most popular
distance measure. If i = (xi1, xi2, ..., xin) and j = (xj1, xj2, ..., xjn) are n-dimensional data
objects, the Euclidean distance between i and j is given by:

d(i, j) =
[

∑n
k=1

|xik − xjk|2
]1/2 (1)

The Euclidean distance satisfies the following constraints: (1) d(i, j) ≥ 0: distance is a
non-negative number; (2) d(i, i) = 0: the distance of an object to itself; (3) d(i, j) =
d(j, i): distance is a symmetric function; and (4) d(i, j) ≤ d(i, k) + d(k, j): distance
satisfies the triangular inequality.

2.3. Dimensionality Reduction
When data vectors are defined in a high-dimensional space, it is computationally in-
tractable to use data analysis or pattern recognition algorithms which repeatedly compute
similarities or distances in the original data space. It is therefore necessary to reduce the
dimensionality before, for instance, clustering the data [Faloutsos and Lin 1995].
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The goal of the methods designed for dimensionality reduction is to map d-
dimensional objects into k-dimensional objects, where k � d [Kruskal and Wish 1978].
One of the methods designed for dimensionality reduction is random projection. This
method has been shown to have promising theoretical properties since the accuracy
obtained after the dimensionality has been reduced, using random projection, is al-
most as good as the original accuracy. More formally, when a vector in d-dimensional
space is projected onto a random k dimensional subspace, the distances between any
pair of points are not distorted by more than a factor of (1 ± ε), for any 0 <
ε < 1, with probability O(1/n2), where n is the number of objects under analysis
[Johnson and Lindenstrauss 1984].

A random projection from d dimensions to k dimensions is a linear transformation
represented by a d×k matrix R, which is generated by first setting each entry of the matrix
to a value drawn from an i.i.d. ∼N (0,1) distribution (i.e., zero mean and unit variance) and
then normalizing the columns to unit length. Given a d-dimensional dataset represented
as an n× d matrix D, the mapping D×R results in a reduced-dimension dataset D ′, i.e.,

D′

n×k = Dn×dRd×k (2)

Random projection is computationally very simple. Given the random matrix R
and projecting the n × d matrix D into k dimensions is of the order O(ndk), and if the
matrix D is sparse with about c nonzero entries per column, the complexity is of the order
O(cnk) [Bingham and Mannila 2001, Johnson and Lindenstrauss 1984].

Clearly, the choice of the random matrix R is one of the key points of interest.
The elements rij of R are often Gaussian distributed, but this need not to be the case.
Achlioptas [Achlioptas 2001] showed that the Gaussian distribution can be replaced by a
much simpler distribution, as follows:

rij =
√

3 ×







+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(3)

In fact, practically all zero mean, unit variance distributions of rij would give a
mapping that still satisfies the Johnson-Lindenstrauss lemma. Achlioptas’ result means
further computational savings in database applications since the computations can be per-
formed using integer arithmetics.

3. Privacy-Preserving Clustering: Problem Definition
The goal of privacy-preserving clustering (PPC) is to mask the underlying attribute values
of objects subjected to clustering analysis. In doing so, the privacy of individuals would
be protected.

The problem of PPC can be stated as follows: Let D be a relational database and
C a set of clusters generated from D. The goal is to transform D into D ′ so that the
following restrictions hold:

• A transformation T when applied to D must preserve the privacy of individual
records, so that the released database D′ conceals the values of confidential at-
tributes, such as salary, disease diagnosis, credit rating, and others.
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• The similarity between objects in D′ must be the same as that one in D, or just
slightly altered by the transformation process. Although the transformed database
D′ looks very different from D, the clusters in D and D′ should be as close as
possible since the distances between objects are preserved or marginally changed.

3.1. PPC over Vertically Partitioned Data
Consider a scenario wherein k parties, such that k ≥ 2, have different attributes for a
common set of objects, as mentioned in the real-life example, in Section 1. Here, the goal
is to do a join over the k parties and cluster the common objects. However, before sharing
the data for clustering, each party k must apply random projection to its set of attributes
to ensure privacy preservation. The data matrix for this case is given as follows:

` Party 1 a` Party 2 a` . . . a` Party k a






a11 . . . a1i a1i+1 . . . a1j a1p+1 . . . a1n
...

... . . .
...

am1 . . . ami ami+1 . . . amj amp+1 . . . amn






(4)

In this approach for PPC over vertically partitioned data, one of the parties is the
central one which is in charge of merging the data and finding the clusters in the merged
data. After finding the clusters, the central party would share the clustering results with
the other parties. The challenge here is how to move the data from each party to a central
party concealing the values of the attributes of each party. However, before moving the
data to a central party, each party must transform its data to protect the privacy of the
attribute values. We assume that the existence of an object (ID) should be revealed for the
purpose of the join operation, but the values of the associated attributes are private.

4. The Privacy Preservation Masking Method
In this section, it is shown that the triple-goal of achieving privacy preservation and valid
clustering results at a reduced communication cost in PPC can be accomplished by ran-
dom projection. We refer to this solution as the Dimensionality Reduction-Based Trans-
formation (DRBT).

4.1. General Assumptions
The solution to the problem of PPC based on random projection draws the following
assumptions:

• The data matrix subjected to clustering contains only numerical attributes that
must be transformed (masked) to protect individuals’ data values before the data
sharing for clustering occurs.

• In PPC over vertically partitioned data, the IDs of the objects are used for the join
purposes between the parties involved in the solution.

One interesting characteristic of the solution based on random projection is that,
once the dimensionality of a database is reduced, the attribute names in the released data-
base are irrelevant. We refer to the released database as a disguised database, which is
shared for clustering.
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4.2. PPC over Vertically Partitioned Data

In this approach, each party k (k ≥ 2) must apply the random projection over its
dataset and then send the reduced data matrix to a central party. Note that any of
the k parties can be the central one. These k parties must satisfy the following con-
straint: The attributes split across the k parties are mutually exclusive. More formally, if
A(D1), A(D2)..., A(Dk) are a set of attributes of the k parties, ∀i 6= j A(Di)∩A(Dj) =
∅. The only exception is that IDs are shared for the join purpose.

The solution based on random projection for PPC over vertically partitioned data
is performed as follows:

• Step 1 - Individual transformation: If k parties, k ≥ 2, share their data in a collab-
orative project for clustering, each party ki must transform (by masking) its data
using random projection.

• Step 2 - Data exchanging or sharing: Once the data are disguised by using ran-
dom projection, the k parties are able to exchange the data among themselves.
However, one party could be the central one to aggregate and cluster the data.

• Step 3 - Sharing clustering results: After the data have been aggregated and mined
in a central party ki, the results could be shared with the other parties.

To illustrate how this solution works, let us consider the sample relational data-
base in Table 1. For simplicity, this example is only for one party. This sample contains
real data from the Cardiac Arrhythmia Database available at the UCI Repository of Ma-
chine Learning Databases [Blake and Merz 1998]. The attributes for this example are:
age, weight, h rate (number of heart beats per minute), int def (number of intrinsic de-
flections), QRS (average of QRS duration in msec.), and PR int (average duration between
onset of P and Q waves in msec.).

ID age weight h rate int def QRS PR int
123 75 80 63 32 91 193
342 56 64 53 24 81 174
254 40 52 70 24 77 129
446 28 58 76 40 83 251
286 44 90 68 44 109 128
Table 1. A sample of the cardiac arrhythmia database.

In this case, the dimension of the dataset was reduced from 6 to 3, i.e., 50% of
the attributes in the original dataset. Two random projections were used, RP1 and RP2.
The first refers to the random projection using a random matrix in which each entry was
drawn from an i.i.d. N (0,1) distribution and then normalizing the columns to unit length.
In the second, each element rij of the random matrix was computed using Equation (3).

After applying random projection to the dataset, the attribute values of the trans-
formed dataset are masked to preserve the privacy of individuals. Table 2 shows the
attribute values of the transformed database with 3 dimensions, using both RP1 and RP2.
In this table, we have the attributes labeled Att1, Att2, and Att3 since we do not know the
labels for the disguised dataset.
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ID D′ using RP1 D′ using RP2

Att1 Att2 Att3 Att1 Att2 Att3
123 -50.40 17.33 12.31 -55.50 -95.26 -107.96
342 -37.08 6.27 12.22 -51.00 -84.29 -83.13
254 -55.86 20.69 -0.66 -65.50 -70.43 -66.97
446 -37.61 -31.66 -17.58 -85.50 -140.87 -72.74
286 -62.72 37.64 18.16 -88.50 -50.22 -102.76

Table 2. The disguised dataset D
′ using RP1 and RP2.

As can be seen in Table 2, the attribute values are entirely different from those in
Table 1.

4.3. How Secure is the DRBT?

In the previous sections, we showed that masking a database using random projection is
a promising solution for PPC over vertically partitioned data. Now we show that random
projection also has promising theoretical properties for privacy preservation. In particular,
we demonstrate that a random projection from d dimensions to k, where k � d, is a non-
invertible transformation.

Lemma 1 A random projection from d dimensions to k dimensions, where k � d, is a
non-invertible linear transformation.

Proof: A classic result from Linear Algebra asserts that there is no invertible linear trans-
formation between Euclidean spaces of different dimensions [Auer 1991]. Thus, if there
is an invertible linear transformations from <m to <n, then the constraint m = n must
hold. A random projection is a linear transformation from <d to <k, where k � d. Hence,
a random projection from d dimensions to k dimensions is a non-invertible linear trans-
formation. �

Even when sufficient care is taken, a solution that adheres to DRBT can be still
vulnerable to disclosure. For instance, if an adversary knows the positions of d + 1 points
(where d is the number of dimensions) and the distances between these points, then he can
make some estimates of the coordinates of all points. In [Caetano 2004], Caetano shows
that if an adversary knows the dissimilarity matrix of a set of points and the coordinates
of d + 1 points, where d is the number of dimensions of the data points, it is possible to
disclose the entire dataset. However, this result holds if and only if the d+1 points do not
lie in a (d − 1)-dimensional vector subspace.

On the other hand, it is important to note that the violation of the solution that
adheres to DRBT becomes progressively harder as the number of attributes (dimensions)
in a database increases since an adversary would need to know d + 1 points to disclose
the original data.

4.4. The Accuracy of the DRBT

When using random projection, a perfect reproduction of the Euclidean distances may
not be the best possible result. The clusters in the transformed datasets should be equal
to those in the original database. However, this is not always the case, and we have some
potential problems after dimensionality reduction: a) a noise data point ends up clustered;
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c′1 c′2 ... c′k
c1 freq1,1 freq1,2 ... freq1,k

c2 freq2,1 freq2,2 ... freq2,k
...

...
... . . . ...

ck freqk,1 freqk,2 ... freqk,k

Table 3. The number of points in cluster ci that falls in cluster c
′

j in the trans-
formed dataset.

b) a point from a cluster becomes a noise point; and c) a point from a cluster migrates
to a different cluster. In this research, we focus primarily on partitioning methods. In
particular, we use K-means [Macqueen 1967, Han and Kamber 2001], one the most used
clustering algorithms. Since K-means is sensitive to noise points and clusters all the
points in a dataset, we have to deal with the third problem mentioned above (a point from
a cluster migrates to a different cluster).

Our evaluation approach focuses on the overall quality of generated clusters after
dimensionality reduction. We compare how closely each cluster in the transformed data
matches its corresponding cluster in the original dataset. To do so, we first identify the
matching of clusters by computing the matrix of frequencies showed in Table 3. We refer
to such a matrix as the clustering membership matrix (CMM), where the rows represent
the clusters in the original dataset, the columns represent the clusters in the transformed
dataset, and freqi,j is the number of points in cluster ci that falls in cluster c′j in the
transformed dataset.

After computing the frequencies freqi,j , we scan the clustering membership ma-
trix calculating precision, recall, and F-measure for each cluster c′j with respect to ci in
the original dataset [Larsen and Aone 1999]. These formulas are given by the following
equations:

Precision (P ) =
freqi,j

|c′i|
(5)

Recall (R) =
freqi,j

|ci|
(6)

where |X| is the number of points in the cluster X .

F − measure (F ) =
2 × P × R

(P + R)
(7)

For each cluster ci, we first find a cluster c′j that has the highest F-measure among
all the c′l, 1 ≤ l ≤ k. Let F (ci) be the highest F-measure for cluster ci, we denote the
overall F-measure (OF) as the weighted average of F (ci), 1 ≤ i ≤ k, as follows:

OF =

∑k
i=1

|ci| × F (ci)
∑k

i=1
|ci|

(8)

In section 6., the results of the performance evaluation are based on Equation (8).
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4.5. The Complexity of the DRBT

One of the major benefits of a solution that adheres to the DRBT is the communication
cost to send a disguised dataset from one party to a central one. In general, a disguised
data matrix is of size m × k, where m is the number of objects and k is the number of
attributes (dimensions). The complexity of DRBT is of the order O(m × k), however
k � m.

To quantify the communication cost of one solution, we consider the number of
bits or words required to transmit a dataset from one party to a central or third party.
Using DRBT, the bit communication cost to transmit a dataset from one party to another
is O(mlk), where l represents the size (in bits) of one element of the m×k disguised data
matrix.

5. Related Work

Some effort has been made to address the problem of PPC over distributed data. The
existing solutions fall in two categories: PPC over horizontally partitioned data and PPC
over vertically partitioned data. In the former approach, different objects are described
with the same schema in all partitions, while in the latter approach, the attributes of objects
are split across many partitions.

A solution for PPC over horizontally partitioned data was proposed in
[Meregu and Ghosh 2003]. This solution is based on generative models. In this approach,
rather than sharing parts of the original data or perturbed data, the parameters of suitable
generative models are built at each local site. Then such parameters are transmitted to
a central location. The best representative of all data is a certain “mean” model. It was
empirically shown that such a model can be approximated by generating artificial samples
from the underlying distributions using Markov Chain Monte Carlo techniques. This ap-
proach achieves high quality distributed clustering with acceptable privacy loss and low
communication cost.

Regarding PPC over over vertically partitioned data, the idea behind this solution
is that two or more parties want to conduct a computation based on their private inputs.
The issue here is how to conduct such a computation so that no party knows anything
except its own input and the results. This problem is referred to as the secure multi-
party computation problem [Pinkas 2002]. The existing solution that falls in this category
was introduced in [Vaidya and Clifton 2003]. Specifically, a method for k-means was
proposed when different sites contain different attributes for a common set of entities. In
this solution, each site learns the global clusters, but learns nothing about the attributes at
other sites. This work ensures reasonable privacy while limiting communication cost.

In the approach presented in this paper, the attributes of a database are reduced
to a smaller number. The idea behind this data transformation is that by reducing the
dimensionality of a database to a sufficiently small value, one can find a trade-off between
privacy and accuracy. Once the dimensionality of a database is reduced, the released
database preserves (or slightly modifies) the distances between data points. In addition,
this solution protects individuals’ privacy since the underlying data values of the objects
subjected to clustering are completely different from the original ones.
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6. Experimental Results

6.1. Datasets

DRBT was validated taking into account five real datasets. These datasets are described
as follows:

1. Accidents: This dataset concerning traffic accidents was obtained from the National
Institute of Statistics (NIS) for the region of Flanders in Belgium. There are 340,183 traf-
fic accident records included in the dataset, and 18 columns of this dataset were used after
removing missing values.
2. Mushroom: This dataset is available at the UCI Repository of Machine Learning Data-
bases [Blake and Merz 1998]. Mushroom contains records drawn from The Audubon
Society Field Guide to North American Mushrooms. There are 8,124 records and 23 nu-
merical attributes.
3. Chess: The format for instances in this database is a sequence of 37 attribute values.
Each instance is a board-descriptions of a chess endgame. The first 36 attributes describe
the board. The last (37th) attribute is the classification: “win” or “nowin”. Chess is avail-
able at the UCI Repository of Machine Learning Databases [Blake and Merz 1998] and
contains 3,196 records.
4. Connect: This database contains all legal 8-ply positions in the game of connect-4 in
which neither player has won yet, and in which the next move is not forced. Connect is
composed of 67,557 records and 43 attributes without missing values. This dataset is also
available at the UCI Repository of Machine Learning Databases [Blake and Merz 1998].
5. Pumsb: The Pumsb dataset contains census data for population and housing. This
dataset is available at http://www.almaden.ibm.com/software/quest. There are 49,046
records and 74 attribute values without missing values.

6.2. Methodology

Two series of experiments were performed to evaluate the effectiveness of DRBT when
addressing PPC over vertically partitioned data. Our evaluation approach focused on the
overall quality of generated clusters after dimensionality reduction. One question that
we wanted to answer was: What is the quality of the clustering results mined from the
transformed data when the data are both sparse and dense?

Our performance evaluation was carried out through the following steps:

• Step 1: we normalized the attribute values of the five real datasets used in our
experiments using the z-score normalization. Normalization gives to all attributes
the same weight.

• Step 2: we considered random projection based on two different approaches to
mask a database before data sharing. First, the traditional way to compute random
projection, by setting each entry of the random matrix R1 to a value drawn from an
i.i.d. N (0,1) distribution and then normalizing the columns to unit length. Second,
we used the random matrix R2 where each element rij is computed using Equation
(3). We refer to the former random projection as RP1 and the latter as RP2. We
repeated each experiment (for random projection) 5 times. The results shown later
are the average values.
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• Step 3: we selected K-means to find the clusters in our performance evalua-
tion. K-means is one of the best known clustering algorithm and is scalable
[Macqueen 1967, Han and Kamber 2001].

• Step 4: we compared how closely each cluster in the transformed dataset matches
its corresponding cluster in the original dataset. We expressed the quality of the
generated clusters by computing the F-measure given in Equation (8). Considering
that K-means is not deterministic (due to its use of random seed selection), we
repeated each experiment 10 times. We then computed the minimum, average,
maximum, and standard deviation for each measured value of the F-measure. We
present the results by showing only the average value.

6.3. Measuring the Effectiveness of the DRBT in each Party Individually

Table 4 shows the results of the F-measure for the dataset Accidents. We reduced the
original 18 dimensions to 12. Considering that K-means is not deterministic, we repeated
each experiment 10 times and computed the minimum, average, maximum, and standard
deviation for each measured value of the F-measure. We simplify the results by showing
only one dataset (Accidents). The values of the F-measure for the other datasets followed
the same patterns. We present the values of the F-measure only for the random projection
RP2 since its results were slightly better than those yielded by RP1.

Data k = 2 k = 3
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.931 0.952 0.941 0.014 0.903 0.921 0.912 0.009
Data k = 4 k = 5

Transformation Min Max Avg Std Min Max Avg Std
RP2 0.870 0.891 0.881 0.010 0.878 0.898 0.885 0.006
Table 4. Average of the F-measure (10 trials) for the Accidents dataset.

We noticed that the values of the F-measure for the Chess and Connect datasets were
relatively low when compared with the results of the F-measure for the other datasets. The main
reason is that the data points in these datasets are densely distributed. Thus, applying a partitioning
clustering algorithm (e.g., K-means) to datasets of this nature increases the number of misclassified
data points. On the other hand, when the attribute values of the objects are sparsely distributed,
the clustering results are much better.

6.4. Measuring the Effectiveness of the DRBT over Vertically Partitioned Data

Now we move on to measure the effectiveness of DRBT to address PPC over vertically partitioned
data. To do so, we split the Pumsb dataset (74 dimensions) from 1 up to 4 parties (partitions)
and fixed the number of dimensions to be reduced (38 dimensions). Table 5 shows the number
of parties, the number of attributes per party, and the number of attributes in the merged dataset
which is subjected to clustering. Recall that in a vertically partitioned data approach, one of the
parties will centralize the data before mining.

In this example, each partition with 37, 25, 24, 19, and 18 attributes was reduced to 19,
13, 12, 10, and 9 attributes, respectively. We applied the random projections RP1 and RP2 to each
partition and then merged the partitions in one central repository.
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No. of parties No. of attributes per party No. of attributes
in the merged dataset

1 1 partition with 74 attributes 38
2 2 partitions with 37 attributes 38
3 2 partitions with 25 and 1 with 24 attributes 38
4 2 partitions with 18 and 2 with 19 attributes 38

Table 5. An example of partitioning for the Pumsb dataset.

Subsequently, we also evaluated the quality of clusters generated by mining the merged
dataset and comparing the clustering results with those mined from the original dataset. To do so,
we computed the F-measure for the merged dataset in each scenario, i.e., from 1 up to 4 parties.
We varied the number of clusters from 2 to 5. Table 6 shows values of the F-measure (average and
standard deviation) for the Pumsb dataset over vertically partitioned data. These values represent
the average of 10 trials considering the random projection RP2.

No. of k = 2 k = 3 k = 4 k = 5
parties Avg Std Avg Std Avg Std Avg Std

1 0.909 0.140 0.965 0.081 0.891 0.028 0.838 0.041
2 0.904 0.117 0.931 0.101 0.894 0.059 0.840 0.047
3 0.874 0.168 0.887 0.095 0.873 0.081 0.801 0.073
4 0.802 0.155 0.812 0.117 0.866 0.088 0.831 0.078

Table 6. Average of the F-measure (10 trials) for the Pumsb dataset over vertically
partitioned data.

We notice from Table 6 that the results of the F-measure slightly decrease when we in-
crease the number of parties in the scenario of PPC over vertically partitioned data. Despite this
fact, the DRBT is still effective to address PPC over vertically partitioned data in preserving the
quality of the clustering results as measured by F-measure.

6.5. Discussion on the DRBT When Addressing PPC
The evaluation of the DRBT involves three important issues: security, communication cost, and
quality of the clustering results. We discussed the issues of security in Section 4.3 based on
Lemma 1, and the issues of communication cost and space requirements in Section 4.5. In this
Section, we have focused on the quality of the clustering results. We have learned some lessons
from this evaluation, as follows:

• The application domain of the DRBT: we observed that the DRBT does not present ac-
ceptable clustering results in terms of accuracy when the data subjected to clustering are
dense. Slightly changing the distances between data points by random projection results
in misclassification, i.e., points will migrate from one cluster to another in the transformed
dataset. This problem is somehow understandable since partitioning clustering methods
are not effective to find clusters in dense data. The Connect dataset is one example which
confirms this finding. On the other hand, our experiments demonstrated that the quality
of the clustering results obtained from sparse data is promising.

• The versatility of the DRBT: using the DRBT, a data owner can tune the number of di-
mensions to be reduced in a dataset trading privacy, accuracy, and communication costs
before sharing the dataset for clustering.
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• The choice of the random matrix: from the performance evaluation of the DRBT we no-
ticed that the random projection RP2 yielded the best results for the values of F-measure,
in general. The random projection RP2 is based on the random matrix proposed in Equa-
tion (3).

7. Conclusions
In this paper, we have showed analytically and experimentally that Privacy-Preserving Clustering
(PPC) is to some extent possible. To support our claim, we introduced a new masking method to
address PPC over vertically partitioned data, called the Dimensionality Reduction-Based Transfor-
mation (DRBT). This method was designed to support business collaboration considering privacy
regulations. The DRBT relies on the idea behind random projection to mask the underlying at-
tribute values subject to clustering. In doing so, the privacy of individuals would be protected.
Random projection has recently emerged as a powerful method for dimensionality reduction. It
preserves distances between data objects quite nicely, which is desirable in cluster analysis.

We evaluated the DRBT taking into account three important issues: security, communi-
cation cost, and accuracy (quality of the clustering results). Our experiments revealed that using
DRBT, a data owner can meet privacy requirements without losing the benefit of clustering since
the similarity between data points is preserved or marginally changed. From the performance eval-
uation, we suggested guidance on which scenario a data owner can achieve the best quality of the
clustering when using the DRBT. In addition, we suggested guidance on the choice of the random
matrix to obtain the best results in terms of the error produced on the datasets and the values of
F-measure.

The highlights of the DRBT are as follows: a) it is independent of distance-based cluster-
ing algorithms; b) it has a sound mathematical foundation; and c) it does not require CPU-intensive
operations.

Currently, we are expanding our work with a probabilistic analysis to supplement the
empirical results, which require further exploration. In particular, we are interested in analyzing
under which conditions privacy can be violated.
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