CULTIVO IN VITRO DE EMBRIÕES IMATUROS DE MANGA

Fernanda Vidigal Duarte Souza¹, Antônio da Silva Souza¹, Honorato Pereira da Silva Neto² e Ádila Melo Vidal³.

¹Pesquisadores, Doutores da Embrapa Mandioca e Fruticultura Tropical, Caixa Postal 007 – Cruz das Almas, BA. CEP: 44380-000; e-mail: fernanda@cnpmf.embrapa.br; assouza@cnpmf.embrapa.br; ²Assistente de Pesquisa A da Embrapa Mandioca e Fruticultura Tropical, e-mail: honorato@cnpmf.embrapa; ³Doutoranda do Programa de Pós – Graduação em Ciências Agrárias, UFRB, e-mail: amelovidal@yahoo.com.br

INTRODUÇÃO

O cultivo in vitro de embriões imaturos é uma técnica que vem sendo utilizada em apoio ao melhoramento genético de muitas espécies, contribuindo para a recuperação de plantas oriundas de cruzamentos, até então incompatíveis devido à barreiras pós-zigóticas que resultam no aborto do embrião nos estádios iniciais de desenvolvimento (HEE & ADACHI, 1997; ARBELOA et al., 2002).

Para o sucesso desta metodologia, é necessário, no entanto, considerar uma série de aspectos que na maioria das vezes dificultam sua aplicação. A idade do embrião é seguramente um dos fatores mais determinantes no ajuste desta metodologia. Embriões maduros são praticamente autotróficos e as exigências nutricionais são mínimas, o que não ocorre com os embriões imaturos, cujas necessidades nutricionais são extremamente complexas e difíceis de ajustar no meio de cultura.

No caso das mangueiras, esta técnica pode ser usada para diferentes finalidades, como o resgate de embriões zigóticos oriundos de hibridações controladas, permitindo a caracterização molecular da progênie em fase precoce e identificando plantas que tenham alto grau de semelhança, diminuindo de forma significativa o trabalho do melhorista em uma etapa posterior, pelo descarte de parte desses materiais. Outras finalidades são a conservação de germoplasma, no caso do cultivo de embriões nucelares de variedades poliembriônicas, e como fonte de explantes para a indução de embriogênese somática visando a micropropagação de variedades elite.

O objetivo desse trabalho foi uma avaliação preliminar para o estabelecimento das melhores condições de cultivo de embriões nucelares e zigóticos de mangas. Para isso, avaliou-se o efeito do tamanho dos embriões, assim como a forma de cultiva-los e a posterior aclimatização das plântulas obtidas. Para o estudo considerou-se uma variedade monoembriônica com vistas ao resgate de embriões híbridos e uma variedade poliembriônica visando, a conservação de germoplasma a partir de embriões nucelares.

METODOLOGIA

<u>Material vegetal</u>: Frutos imaturos das variedades Carlota e Santa Alexandrina foram coletados nos tamanhos de 2, 3 e 4 cm, lavados com detergente e secos com papel absorvente para posterior desinfestação em cabine de fluxo laminar. Os frutos pré-lavados foram imersos em uma solução de hipoclorito de sódio a 50% (1% de NaOCl ativo) com 3 gotas de Tween[®] 20 por 30 minutos sob agitação manual, seguido de três lavagens em água destilada e esterilizada.

Para a remoção dos embriões, os frutos foram cortados de duas maneiras: (1) longitudinalmente, com todo o cuidado para evitar ferimentos, retirando-se o embrião inteiro da cavidade e inoculando-o no meio de cultura ou (2) transversalmente, de modo que o embrião também fosse cortado, deixando apenas 1/3 do endosperma que continha o eixo embrionário.

<u>Cultivo de embriões imaturos</u>: Os embriões inteiros ou cortados foram introduzidos no meio de cultura MS/2 + 100 mg L⁻¹ de cisteína + 0,5 mg L⁻¹ de AG₃ + 500 mg L⁻¹ de carvão ativado e suplementado com 30 g L⁻¹ de sacarose, com base nos resultados obtidos por Matos & Souza (2007). O meio foi solidificado com 2,2 g L⁻¹ de Phytagel[®], sendo o pH ajustado para 5,8. Os embriões foram mantidos em condições de escuro e avaliados diariamente para monitoramento da abertura dos cotilédones, desenvolvimento das plântulas e oxidação.

Aclimatização das plântulas: Plântulas da variedade Carlota foram retiradas do meio de cultivo, lavadas para eliminação do ágar e plantadas em tubetes nas seguintes combinações de substratos: a) fibra de coco; b) Ecoterra[®], c) Plantamax[®], d) fibra de coco + Plantamax[®], e) fibra de coco + Ecoterra[®]; f) Ecoterra[®] + Plantamax[®], g) fibra de coco + Ecoterra[®] + Plantamax[®].

Foram utilizadas 10 repetições/tratamento, sendo cada repetição constituída de uma plântula/tubete. As plântulas foram mantidas em casa de vegetação sob sistema de nebulização intermitente. Aos 30 dias de cultivo procedeu-se a avaliação para determinar a porcentagem de sobrevivência.

RESULTADOS E DISCUSSÃO

Os embriões da variedade Santa Alexandrina cultivados inteiros iniciaram a abertura dos cotilédones entre o 3º e o 10º dia de cultivo, mostrando uma grande variação nesta resposta, assim como na liberação de polifenóis. Observou-se que quanto menor a estrutura maiores os danos causados e menor a chance de sobrevivência dos embriões, a exemplo daqueles retirados de frutos de 2 e 3 cm que morreram praticamente 100% nas primeiras 48

horas. Por outro lado, estruturas maiores, com mais tecidos, liberam grandes quantidades de fenóis, causando igualmente um efeito tóxico, o que foi observado com os embriões inteiros retirados dos frutos de 4 cm dessa variedade. Esses embriões, entretanto, ao serem reduzidos pelo corte de grande parte do endosperma (Figura 1), mostraram uma resposta promissora, já que no caso da variedade monoembriônica, a germinação in vitro alcançou 80% ao final do primeiro mês após a inoculação.

As respostas registradas com a variedade Carlota foram similares no que se refere aos embriões menores. A taxa de morte pela intoxicação por fenóis foi de 100%. Quanto aos embriões oriundos dos frutos maiores (4 cm), a abertura dos cotilédones aconteceu entre o 3º e o 7º dia. A partir do 15º dia foi possível observar o desenvolvimento de mais de um embrião registrando-se a formação de duas a três plântulas por fruto, de tamanhos bastante variáveis, ainda que alguns embriões tardaram até mais de 60 dias para dar início à emissão da radícula. No caso das variedades poliembriônicas esta característica abre uma possibilidade interessante para a conservação in vitro de germoplasma a partir do cultivo dos embriões nucelares.


Em ambas as variedades, observou-se que os embriões parcialmente seccionados contendo os eixos embrionários responderam ao meio de cultivo de forma mais eficiente e homogênea quando comparados com os embriões cultivados inteiros, muito provavelmente pela menor quantidade de fenol liberada no meio de cultivo. As plântulas originadas a partir dos eixos embrionários não apresentaram nenhum tipo de anormalidade morfológica, mostrando que essa pode ser uma estratégia simples e segura de germinar in vitro embriões híbridos de manga, ainda imaturos (Figura 1).

A aclimatização das plântulas da variedade Carlota foi realizada em diferentes substratos, tendo a fibra de coco misturado ao Plantmax[®] promovido os melhores resultados, em relação à taxa de sobrevivência (90%), como pode ser observado na Figura 2. Entretanto, as plântulas que apresentaram melhor desenvolvimento foram as aclimatizadas em fibra de coco+Ecoterra+Plantmax (Figura 3). O Ecoterra é um substrtato rico em matéria orgânica, o que pode ter favorecido esse melhor desenvolvimento.

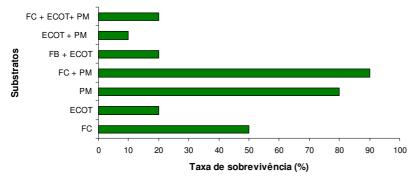

Os resultados desse trabalho mostraram que é possível o uso desta metodologia para o resgate precoce de embriões oriundos de cruzamentos dirigidos, visando avaliações que podem permitir o descarte precoce de muitos indivíduos da progênie, ou que não corresponderiam ao que é desejado ou que apresentem alto grau de semelhança entre si, reduzindo trabalho posterior. Outra aplicação interessante, em caso dos embriões nucelares, é seu uso, tanto para conservação de germoplasma, como para o desenvolvimento de protocolos de micropropagação.

Figura 1. Plântulas de manga oriundas de eixos embrionários da variedade Carlota.
*Seta mostra o corte do endosperma.

Figura 3. Plantas de manga aclimatizadas em diferentes substratos: Fibra de coco (a), Ecoterra[®] (b), Fibra de coco + Ecoterra[®] (e); Plantmax[®] (c); Ecoterra[®] + Plantmax[®] (f), Fibra de coco + Plantmax[®] (d), Fibra de coco + Ecoterra[®] + Plantmax[®] (g) (Cruz das Almas, setembro 2009).

Figura 2. Taxa de sobrevivência de plântulas de manga em diferentes substratos.

CONCLUSÕES

Embriões oriundos de frutos muito pequenos não sobrevivem pelo excesso de fenol liberado no meio; O corte de parte do endosperma favorece o início da germinação e permite melhor desenvolvimento da plantula; A aclimatização deve ser feita em Fibra de coco + Plantmax[®]

REFERÊNCIAS BIBLIOGRÁFICAS

ARBELOA, A.; DAORDEN, M. E.; GARCÍA, E.; MARÍN, J. A. Successful establishment of in vitro cultures of *Prunus cerasifera* hybrids by embryo culture of immature fruits. **Acta Horticulturae**. 2002.

HEE, W. S.; ADACHI, T. Production of interspecific hybrids between *Fagopyrum esculentum* and *F. homotropicum* through embryo rescue. **Sabrao Journal**, v. 29 n. 2 p. 89-96, 1997.

MATOS, L. A; SOUZA, F. V.D. Controle de polifenóis em folhas jovens de Mangueira (*Mangifera indica* L.) In: 16º Congresso Brasileiro de Floricultura e Plantas Ornamentais, 3º Congresso Brasileiro de Cultura de Tecidos de Plantas e 1º Simpósio de Plantas Ornamentais Nativas, 2007, Goiânia. **Revista Brasileira de Horticultura Ornamental**. Goiânia: Sociedade Brasileira de Floricultura e Plantas Ornamentais, 2007. v.13. p.1243 – 1243.