Metazoários e protozoários parasitas do pirarucu, *Arapaima gigas* Schinz, 1822 (Arapaimatidae), cultivado em uma piscicultura semi-intensiva na Amazônia Central, Brasil

Cleusa Suzana Oliveira Araújo¹,²; Marcos Tavares-Dias³; Ana Lúcia Gomes¹,⁴; Sanny Maria Sampaio Andrade¹; Andréia Belém-Costa⁴; João Tito Borges⁵; Hellen Emília Menezes de Souza¹; Marieta Nascimento Queiroz⁶ & Gabriela Viana⁶

¹Centro Universitário Milton Lins; ²Universidade do Estado do Amazonas; ³Embrapa Amapá; ⁴Universidade Federal do Amazonas; ⁵Fundação Centro de Análise, Pesquisa e Inovação Tecnológica; ⁶Acadêmica de Biologia, Centro Universitário Milton Lins.

1. Introdução

O pirarucu, *Arapaima gigas* Schinz, é um peixe Osteoglossiforme com respiração dupla, que ocorre somente na América do Sul. Este peixe chega a medir cerca de três metros de comprimento e pesar 200 kg (Gomes et al., 2006). Na natureza, os peixes albergam pelo menos uma espécie de parasito, que raramente é fatal para o hospedeiro, pois a intensidade parasitária é mantida sob controle pelo sistema imunológico (Silva-Souza et al., 2006; Thatcher, 2006). Assim, visando conhecer as distintas estratégias usadas pelos diferentes grupos de parasitos, seus aspectos zootécnicos e ecológicos, estudos realizados no rio Solimões relataram a presença dos Monogenoidea *Dawestrema cycloancistrium* Price & Nowlin; 1967; *D. cycloancistrioides* Kritsky, Boeger & Thatcher, 1985 e *D. punctatum* Kritsky, Boeger & Thatcher, 1985 nas brânquias de *A. gigas* (Kritsky et al., 1985) e dos Nematoda *Procamallanus rarus* Travassos, Artigas e Pereira, 1928; *Goezia spinulosa* Diesing, 1839; *Terranova serrata* Drasche, 1884; *Camallanus tridentatus* Drasche, 1884 e *Caballerootrema arapaimense* Thatcher, 1980, no estômago (Gomes et al., 2006). Os peixes respondem ao estresse de forma a refletir a severidade e a duração do estressor. As respostas ao estresse são divididas em três categorias: primária, secundária e terciária. As respostas primárias são as hormonais; as secundárias são mudanças

262
nos parâmetros fisiológicos e bioquímicos; e as terciárias são o comprometimento no desempenho, mudanças no comportamento e aumento da suscetibilidade a doenças (Brandão et al., 2006). Estudos com prevalência e intensidade de parasitos durante o desenvolvimento de A. gigas, bem como a resposta fisiológica do hospedeiro ao parasito no meio natural, são raros; em piscicultura, inexistentes. Portanto, esta pesquisa trouxe informações que contribuem para programas de desenvolvimento sustentável, bem como monitoramento e análise das causas de ocorrência de doenças e dados epidemiológicos no Estado do Amazonas.

2. Métodos
Os exemplares de peixes foram coletados durante 18 meses em uma propriedade comercial que cultiva o pirarucu em sistema semi-intensivo, em Manacapuru, Amazonas. Após a captura, foram tomadas as medidas biométricas do peixe e, em seguida, adotadas as metodologias de coleta de parasitas e sangue. Após a coleta dos peixes, foi feito raspado de pele e de brânquias. Em seguida foram retiradas as brânquias, as fossas nasais, o trato digestivo, e fixados em formol a 10% para possível detecção de parasitos. Para identificação dos parasitos, foram utilizadas as metodologias descritas por Martins (1998) e Eiras et al. (2000). Foram coletados exemplares com diferentes intervalos de comprimento, para poder determinar as variações nos índices de infecção/infestação em função do crescimento do peixe (Bush et al., 1997). Após a coleta, o material foi transportado para os laboratórios. As amostras de sangue foram coletadas de cada animal por punção do vaso caudal. Este sangue destinou-se à determinação de parâmetros hematológicos, lactato e obtenção de plasma.

3. Resultados
Foram coletados 210 peixes no período de 18 meses de coleta e analisados 190. Neste período, os peixes tiveram o tamanho médio variando de 10,7 a 42,8 cm e apresentaram altos índices parasitários nas brânquias pelos monogenéticos pertencentes às espécies Dawestrema cycloancistrioides e D. cycloancistrium. No primeiro mês de coleta, a intensidade média foi de 0,6 parasito por peixe; após
um ano, os peixes com tamanho médio de 42,8 cm apresentaram intensidade média de 650,4 parasitos por peixe. A abundância durante este período variou entre os meses de coleta. Contudo, a prevalência tendeu a uma estabilidade após o quinto mês, quanto atingiu 100%. Além dos monogenéticos, os peixes estavam infectados por *Trichodina* sp. (protozoário), *Argulidae* (crustáceo) e *Ictiobodo* sp. (protozoário), nas prevalências de 9,1, 2,7 e 19,1, respectivamente. Na fase juvenil, nos primeiros seis meses de coleta, verificou-se baixa ocorrência de outros grupos de parasitos. Os peixes estavam infectados na pele por Monogenéticos, *Trichodina* sp., *Argulidae* e *Ictiobodo* sp., nas prevalências 36,4, 69,0, 0,9 e 0,9, respectivamente; no trato intestinal, por Nematoda distribuídos em *Terranova serrata*, *Camallanus tridentatus* e *Goezia spinulosa*, nas prevalências, 2,7, 4,5 e 5,4, respectivamente. O estresse causado pelo parasitismo foi evidenciado por meio das alterações fisiológicas em nível das constantes hematológicas, quanto se verificou que os peixes não parasitados apresentaram diferença significativa em nível de trombócitos totais (μL), com 9967±10364, quando comparados aos parasitados, com 16288±11080; os neutrófilos (μL), não-parasitados com 901,9±1099,2 e parasitados com 316±305; eosinófilos (μL), não-parasitados com 1358±1423 e parasitados com 848±800. Os demais parâmetros bioquímicos não apresentaram diferenças significativas quando comparados os peixes não-parasitados com os parasitados.

4. Discussão e Conclusão

O desenvolvimento de técnicas para o controle de parasitoses passa pela necessidade do diagnóstico da situação epidemiológica e sanitária dos estabelecimentos de cultivo, para que se possa interferir de forma eficiente no processo (Tavares-Dias *et al.*, 2006) e melhoria da qualidade do pescado produzido. Em alevinos de pirarucu cultivados semi-intensivamente houve elevada ocorrência de Monogenoidea e *Trichodina*, seguida por *Argulidae*, *Ictiobodo* sp. e nematóides, parasitos também descritos para outras espécies de peixes cultivados no Brasil (Martins *et al.*, 2002; Piazza *et al.*, 2006; Tavares-Dias *et al.*, 2006; Lemos *et al.*, 2007). Porém, no tegumento de *A. gigas* a maior prevalência e intensidade foram de *Trichodina,*
seguida por Monogenoidea, enquanto nas brânquias ocorreu o inverso. A ocorrência de *Argulus* sp. e *Dolops discoidalis* em *A. gigas* foi feita por Thatcher (2006). Portanto, esta elevada prevalência e intensidade de infecção por Monogenoidea e protozoário se devem à predileção destes parasitos por este tipo de ambiente. Somente três espécies de Monogenoidea são conhecidas infectando *A. gigas* de ambiente natural: *D. cycloancistrium, D. cycloancistrioides* e *D. punctatum* (Kritsky *et al.*, 1985), mas neste mesmo hospedeiro coletado de cultivo semi-intensivo foram encontradas somente *D. cycloancistrioides* e *D. cycloancistrium*. Contudo, no tegumento houve ocorrência somente de *D. cycloancistrium*, enquanto nas brânquias foram encontradas *D. cycloancistrioides* e *D. cycloancistrium*. Possivelmente, esta preferência sugere competição intraespecífica na organização desta comunidade de monogenético. Em *A. gigas*, o nível de infecção branquial por *D. cycloancistrioides* e *D. cycloancistrium* foi positivamente correlacionado com o comprimento total dos hospedeiros. Similarmente, outros estudos também descrevem correlação entre o comprimento do hospedeiro e os níveis de parasitismo (Sasal *et al.*, 1999; Marques & Cabral, 2007). Sasal *et al.* (1999) destacam que a riqueza parasitária de Monogenea específico estava provavelmente com o tamanho do hospedeiro. Os nematóides são parasitos mais comuns em peixes de água doce, têm ciclo de vida complexo, necessitando de dois ou mais hospedeiros para completar seu ciclo de vida. Assim, os peixes podem servir de hospedeiros definitivos ou intermediários. Quando hospedeiros definitivos, os vermes adultos parasitam principalmente o seu trato digestório, mas também podem ser encontrados em todos os órgãos e estruturas. Quando hospedeiros intermediários, as formas larvais podem permanecer encistadas ou migrar em direção a diversos órgãos, provocando lesões. Os prejuízos causados no hospedeiro são bastante variáveis, dependendo da espécie de nematóide, dos órgãos atacados e da intensidade de infecção (Thatcher, 2006). No estômago de *A. gigas* de ambiente natural, foi descrita a ocorrência de quatros espécies de nematóides, o *P. rarus* (10,2%), *G. spinulosa* (65,8%), *T. serrata* (80,4%) e *C. tridentatus* (0,41%), mas somente *P. rarus* e *C. tridentatus* são específicos para este hospedeiro (Gomes *et al.*, 2006).
Porém, em *A. gigas* coletados em viveiros de cultivo semi-intensivo, somente os nematóides (25,0%) *G. spinulosa e C. tridentatus* foram encontrados no intestino deste hospedeiro. Este estudo foi o primeiro a descrever a infestação parasitária em piscicultura para *A. gigas*. Os resultados indicam alta prevalência e abundância dos Monogenea *D. cycloancistrioides* e *D. cycloancistrium* e do protozoário *T. farai*, elementos importantes para definição das condições de saúde do cultivo de peixes e dados relevantes de epizootias, que podem refletir em perdas econômicas na aquicultura. Altas taxas de infestações parasitárias podem ser diagnosticadas usando-se as alterações hematológicas.

5. Referências Bibliográficas


Financiamento: MCT/CNPq/PPG7.