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Introduction 
Genotype by environment interaction (G × E) implies that different genotypes will respond 
differentially to environmental changes, possibly leading to re-rankings of performance in 
different environments (Falconer and Mackay, 1996; Lynch and Walsh, 1998). From a 
selection standpoint, this means that the animals with the best genetic merit in a given 
environment will not necessarily be the top performers or have the top offspring in a 
different environment. 
 
In some genetic evaluation models, G × E has been specified by defining the phenotypic 
expression of the same measure of performance in different environments as different traits 
(Falconer, 1952). More recently, this approach has been generalized to an infinite number of 
environments (or traits) through the use of covariance functions (Kirkpatrick et al., 1990), 
thus allowing the prediction of reaction norms or environmental sensitivities of animals to 
gradual variations in the environment (Falconer, 1990; de Jong, 1995).  
 
Extensive evidence of G × E in several species for livestock production (e.g., Lee and 
Bertrand, 2002; Pollott and Greeff, 2004; Knap and Su, 2008; e.g., Hammami et al., 2009) 
highlight the need to consider this effect when predicting genetic merit of populations raised 
under diverse environmental conditions. The objectives of this work were to review methods 
for genetic evaluation under the presence of G × E interaction, to assess evidence of G × E 
interaction in livestock performance and to illustrate the prediction of environmentally 
specific genetic merit using beef cattle data from Brazil.  

Material and methods 
Statistical Models. The fundamental equation used to consider G × E in livestock 
performance is given by (Falconer and Mackay, 1996): P = G + E + G × E, where the 
phenotype (P) is modeled as function of the genotype (G), the environment (E) and their 
interaction (G × E). The three main approaches to model G × E in quantitative genetics have 
been: 1) to include a sire by environment interaction based on a sire model; 2) to treat the 
performance in each environment as a different trait using a sire or animal multitrait model, 
and 3) to use a random regression model specifying the genotype as a continuous function of 
the environment, i.e., the reaction norms model. Even though the first approach has been 
historically useful to quantify G × E (e.g., Bertrand et al., 1985; Notter et al., 1992), its 
utility to predict environment specific genetic merit is restricted to sire × environment 
combinations observed in the data. This is a major limitation given the unbalanced nature of 
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most livestock performance records. The other two procedures are more commonly used to 
predict genetic merit specific to each environment under a broader range of models. The 
multitrait model is more appropriate to applications where there is limited number of 
environmental sub-classes such as, for example, countries in international evaluations 
(Schaeffer, 1994; Costa et al., 2000; de Mattos et al., 2000) or geographical areas in national 
evaluations (Ferreira et al., 2001; Bryant et al., 2007). In this case, if the genetic correlations 
between the same trait in different environments are significantly different from unity, G × E 
is inferred such that the trait is controlled by partially different sets of genes in each 
environment (Falconer, 1952) and genetic merit is specific to each environmental sub-class. 
On the other hand, the reaction norms are obtained by random regression of genotypes 
performance on the average production level observed in each environment (Calus et al., 
2002; Kolmodin et al., 2002) or other proper environmental descriptors (Fikse et al., 2003; 
Calus et al., 2005; Bohmanova et al., 2008). Even though some modifications may be 
required for particular implementations such as the multicountry dairy evaluation (Schaeffer, 
1994), the multitrait model is well established and straightforward; therefore, we focus our 
methods presentation hereinafter on the third approach, the reaction norms obtained by 
random regression. This approach has been widely used to investigate G×E interaction in 
livestock production during the last few years, including dairy cattle (Kolmodin et al., 2002; 
Calus et al., 2006; Strandberg et al., 2009), beef cattle (Correa et al., 2009; Pegolo et al., 
2009), sheep (Pollott and Greeff, 2004) and swine (Knap and Su, 2008). 
 
Linear reaction norms models. Consider the following animal model (AM): 
 ij j j j ijy a e′ ′= + + +x β w h , (0) 
where yij is a phenotypic record of animal j in the environment i;  is the vector of fixed 
effects; h is the vector of random environmental effects; 

β

j′x  and j′w  are row incidence 
vectors; aj  is the jth animal additive genetic effect and eij is the residual term. To obtain the 
reaction norm or environmental sensitivity of animal j, its genetic value must be expressed as 
a function of the environment (Falconer, 1990). The most commonly used approach is based 
on a two step procedure, first obtaining estimates of the environmental variable and then 
using these estimates as values of a "known" covariate in a linear random regression model 
(Kolmodin et al., 2002). Let  be a solution to ith element of h, which can be used as a 
covariate in the following reaction norms model: 

îh

 ˆ ˆ
ij j i j j i ijy h a b h eφ′= + + + +x β . (1) 

Here aj corresponds to the random additive genetic intercept or reaction norm level of animal 
j, and bj is random additive linear regression coefficient or reaction norm slope of animal j on 
the environmental level represented by . Moreover, φ is a fixed regression coefficient of yij 

on . The specification of the reaction norms model in Equation (1) has a linear form and 
parameters can be estimated using standard likelihood or Markov Chain Monte Carlo 
methods (MCMC) procedures. Nevertheless, this specification has the limitation of using a 
function of the data, , in place of an actually unknown covariate, hi, in the sampling model. 
These may lead to an understatement of the uncertainty by treating environmental variables 
as known and may also lead to biased genetic merit prediction, for example due to different 

îh

îh

îh



genetic means across herds and to genetic trends (Su et al., 2006). To overcome this 
limitation, Su et al. (2006) proposed the following one step model:  
 ij j i j j i ijy h a b h e′= + + + +x β . (2) 

In this nonlinear model all unknowns, β, hi, aj  and bj,  are jointly estimated using a Bayesian 
approach. If conjugated prior specifications are adopted, this model can be implemented via 
Gibbs sampling, first sampling the environmental variables hi’s using adjusted records 

( ) ( )1ij j j j i ijh ijy y a b h′= − − = + +x β

( ) ijij

e  and then obtain all other parameters conditioning on 

sampled values of hi’s from i j j j i ijy y h a b h e′= − = + + +x βθ  (Su et al., 2006). 

 
Residual environmental heteroskedasticity. It is reasonable to expect a scale effect on 
residual variances of reaction norms models, whereby larger environmental values would be 
associated with larger environmental variability (Falconer and Mackay, 1996). Therefore, we 
propose an extension of model (2) to allow for residual variances that are specific to each 
environmental level, i.e.: 
 ij j i j j i ijy h a b h e′= + + + +x β , with ( )2~ 0,σij iee N  for all i. (3) 

Here 2 2 ih
ie eσ σ η= × , where 2

eσ  is a reference residual variance and η is a residual 
heteroskedasticity parameter, following the structural model proposed by Cardoso et al. 
(2005). Note that this multiplicative model is equivalent to an additive model relating the 
environmental level hi to the log of 2

ieσ  by 2 2log log logiie e hσ σ η= + × . 

Angus data. To illustrate the utility of the reaction norms models to predict genetic merit 
under G × E, we studied post weaning gain adjusted for a 345 days period (PWG) of 63,098 
Angus calves. These data was collected on herds taking part of the Brazilian Angus 
Improvement Program run by the National Breeders Association “Herd Book Collares” from 
1974 to 2005. There were 95,896 animals in the pedigree file. 
 
Bayesian inference. All models were implemented using MCMC. The prior distributions of 
the location parameters where uniform for β and multivariate normal for h and for the 
reaction norms intercepts and slopes. Moreover, we adopted inverted gamma distributions as 
priors for the environmental and residual variances and for the heteroskedasticity parameter. 
Furthermore, an inverted Wishart prior distribution was presumed for the additive reaction 
norms covariance matrix. Gibbs sampling was used to obtain samples of all parameters in 
Models (0), (1), and (2), but Metropolis-Hastings steps were required to sample from non-
recognizable full conditional densities of environmental variables hi’s and heterogeneity 
parameter η in Model (3). All MCMC chains were implemented using Intergen software 
(Cardoso, 2008) with 100,000 cycles after 50,000 cycles of burn-in and their convergence 
was assessed by the Geweke’s Z criterion (Geweke, 1992). Model fit comparisons were 
based on the Deviance Information Criterion – DIC (Spiegelhalter et al., 2002). 
 
Sire environmental sensitivity. The genetic value of sire j specific to a given environment 
H can be obtained from models 1, 2 and 3 by j j jg H a b H= + . For values of bj close to 
zero, gj will be relatively constant on H and sire j is said to be a robust genotype to 



environmental changes, whereas plastic genotypes are those that substantially change their 
performance on the environmental gradient. The larger the departure of bj from zero, the 
greater the environmental sensitivity (de Jong, 1995). The consequences of G×E on selection 
across different environments were assessed comparing the slope of the reaction norms of 
these sires according to their origin, North America (NA) or Brazil (BR), and by rank 
correlations of genetic prediction for all animals in low, medium and high environmental 
levels, which were respectively defined by the values representative of the first quartile, 
median and third quartile of the environmental effects distribution.   

Results and discussion 
Model comparison. Model fit and convergence results on Angus PWG data are shown in 
table 1. The Geweke Z criterion was not significant when applied to the Bayesian deviance 
of all four models, thereby suggesting convergence of their MCMC chains to the stationary 
posterior distributions. The animal model showed a poorer fit when compared to the three 
alternative reaction norms specifications, which account for G × E and genetic heterogeneity 
of variance on the environmental gradient. Among the reaction norms models, model (2), 
being the unknown covariate model with homogeneous residual variances, had the best fit 
followed by models (1) and (3). Jointly estimating all unknown was previously shown to be a 
better approach than using environmental means to regress genetic effects in reaction norms 
models (Su et al., 2006). The heteroskedastic model (3) was surprisingly poorer than its 
homoskedastic counterparts, models (1) and (2). Further research may be needed to identify 
structural functions other than the one specified in model (3), since other investigators have 
found heteroskedastic residual variances with reaction norms applications (Calus et al., 2002; 
Pollott and Greeff, 2004; Knap and Su, 2008) and there is evidence that residual variances 
show a linear increase with increasing herd production levels (Kolmodin et al., 2002).  
 
Table 1: Average deviance, penalty for effective number of parameter, deviance 
information criterion (DIC), Geweke convergence Z statistics and p-value obtained for 
different models1 applied to Angus data 
Model Deviance Penalty DIC Geweke Z P-value Z 
(0) 581,151 8,270 589,421 0.15 0.8828 
(1) 542,509 26,068 568,576 1.15 0.2487 
(2) 539,380 22,640 562,020 0.96 0.3346 
(3) 561,929 14,424 576,353 -1.08 0.2786 
1Model (0) = Animal Model; Model (1) = Reaction norms on estimated environmental levels; 
Model (2)= Reaction norms with unknown environmental levels; Model (3) = Reaction 
norms with unknown environmental levels and residual heteroskedasticity. 
 
The environmental gradient for Angus PWG estimated by model (0) ranged from -90 to 
+240 kg, with little difference between models (Pearson correlation > 0.99). Heritabilities 
were lower at harsh environments and increased with the improvement of the production 
conditions for all reaction norms models (Figure 1). Models (1) and (2) showed larger 
estimated heritabilities on positive environmental values than Model (3) for which residual 
variance was also proportional to the environmental gradient. When compared to the 
traditional animal model, all reaction norms model allocated a greater proportion of the 



phenotypic variation to genetic components as opposed to unaccounted environmental 
factors. Consequently, a greater selection response could be expected, especially in the best 
environments (Kolmodin et al., 2003). 
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Figure 1: Posterior mean heritabilities as a function of the environmental gradient 
obtained by different models: (0) animal, (1) reaction norms on estimated 
environmental levels, (2) reaction norms with unknown covariate, and (3) 
heteroskedastic residual reaction norms 
 
Genetic merit predictions. Rank correlations among genetic merit predictions obtained by 
the traditional animal model (0) and the best fitting reaction norms model with unknown 
covariates (2) under low or high environmental levels (table 2) were below the suggestive 
biological importance threshold of 0.80 (Robertson, 1959), pointing out substantial G × E on 
Brazilian Angus PWG. This was also observed by the crossing of bulls reaction norms 
(Figure 2). The average environmental sensitivity of the NA bulls (0.077 ± 0.011 kg) was not 
significantly different from BR bulls with NA sires (0.046 ± 0.019 kg), but exceeded that for 
BR bulls with local sires (0.011 ± 0.027 kg), which in turn were more robust to 
environmental changes.  
 
Table 2: Spearman rank correlations among posterior mean genetic values for post-
weaning gain of Angus cattle obtained by an animal model and by a reaction norms 
with unknown covariates at different environmental levels 
Model (environmental level) Model 2 (low) Model 2 (average) Model 2 (high) 
Model 0 (overall) 0.76 0.80 0.78 
Model 2 (low)  0.88 0.81 
Model 2 (average)   0.99 
 
Accounting for G × E in genetic evaluations. The benefits of considering G × E on genetic 
evaluations will depend on the livestock specie, on the breeding and genetic structure of the 
target population and on the observed environmental diversity. Even though some evidence 
of G × E has been generated for poultry (Mathur and Horst, 1994; Deeb and Cahaner, 2001) 
and swine (Knap and Su, 2008), this should not be a main concern issue for these species due 
to the closed company based structure and highly uniform and controlled conditions of most 
breeding programs. Cattle and small ruminant populations, especially those raised under 



extensive grazing conditions, have greater potential to enhance selection progress by having 
environment-specific genetic predictions. In this case, seedstock herds owned by individual 
producers are often combined into large scale genetic evaluations as run by breed 
associations or international consortiums. The dairy sires’ international evaluation (Interbull) 
is the most noticeable genetic evaluation program that accounts for G × E. On the other hand, 
a similar initiative for beef cattle, the Pan American Hereford evaluation (Breedplan), 
assumes absence of G × E (de Mattos et al., 2000). Nevertheless, several studies with beef 
breeds under grazing conditions in Brazil (de Alencar et al., 2005; Cardoso, 2009; Correa et 
al., 2009; Mattar, 2009) demonstrate that genetics suitable for harsh environments is 
generally quite different from that for average or superior conditions as evident from low 
genetic correlations between environmental gradients extremes (Fig. 3). These breeds and 
other similar populations could benefit from implementing reaction norms predictions to 
select for robust animals or to optimize breeding programs that select seedstock for multiple 
environments (de Jong and Bijma, 2002; Kolmodin and Bijma, 2004). Safer exchange of 
genetics across countries or regions could also be achieved by adjusting genetic predictions 
from the exporting evaluation place by the G × E with the production conditions at the 
importing location (Costa et al., 2000; Montaldo et al., 2009). 
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Figure 2: Reaction norms for a random sample of 27 bulls over the post-weaning gain 
environmental gradient. 
 
Gene by environment interaction. As genomic selection becomes a reality for livestock 
improvement (Hayes et al., 2009), it may became necessary to consider G × E at a gene (or 
marker) by environment level for genetic merit prediction. Reaction norms models for 
assessing gene by environment interaction are available (Lillehammer et al., 2007) and have 
been applied to detect environmentally dependent QTL effects on milk yield (Lillehammer et 
al., 2008), although further work is warranted in this subject. 

Conclusion 
Evidence of genotype by environment interaction in several livestock species warrant the 
opportunity to optimize selection progress using environment specific genetic merit 
predictions. These predictions can be obtained in practice by multitrait models when there is 
limited number of environmental sub-classes or, preferably, by more general reaction norms 
models when proper continuous environmental descriptors are available. 



 
Figure 3: Genetic correlation for post-weaning performance on different environmental 
conditions for different breeds in Brazil: A = Angus (A), B = Canchim 3/8 Zebu 5/8 
Charolais (Mattar, 2009), C = Devon (Correa et al., 2009) and D = Hereford (Cardoso, 
2009). 
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