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Abstract Peanut (Arachis hypogaea) is amongst the most
important legume crops in the world. One of its main yield
constraints is the root-knot nematode Meloidogyne arena-
ria. A number of wild Arachis species, including A.
stenosperma, are resistant to nematodes, and are a potential
source of new resistance alleles for cultivated peanut. Using
in silico subtraction of ESTs and macroarray analysis, we
identified genes differentially expressed in A. stenosperma
roots during its resistance response to M. arenaria. The
three most differentially expressed genes [Auxin Repressed
Protein (AsARP), Cytokinin Oxidase (AsCKX) and Metal-
lothionein Type 2 (AsMET2)] were further analyzed using
northern-blot and showed distinct expression profiles in the

resistant A. stenosperma and susceptible A. hypogaea, both
after, and sometimes even before, challenge with nemat-
odes. Of the three most differentially expressed genes,
AsARP and AsCKX are potentially involved in plant
hormonal balance, and AsMET2 may be related to the
reactive oxygen reaction triggered by the hypersensitive
response (HR).
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Introduction

Legumes are an important source of protein for humans and
livestock. Peanut (Arachis hypogaea) is amongst the most
important legumes in the world, with a global production of
48 million tons and a key role in food security in Africa and
Asia (Wittwer 1981; FAOSTAT 2006). Worldwide, the
major constraints to peanut production are foliar fungi,
nematodes and drought (Starr et al. 2002; Luo et al. 2005a).

The peanut root-knot nematode, Meloidogyne arenaria,
causes substantial yield losses, reduction in pod and seed
quality, stunted plant growth and premature plant death
(Starr et al. 2002). Management of root-knot disease is
costly, and difficult, with the use of nematicides hindered
by human toxicological effects and environmental issues
(Dickson and Waele 2005).

Resistance to the peanut root-knot nematode was not
available until 1999, when the cultivars COAN and
NemaTAM with resistance to M. arenaria and M. javanica
were released (Simpson 2001; Simpson et al. 2003). The
resistance of both cultivars is based on the same alien
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interstitial chromosomal segment from A. cardenasii. The
chromosomal segment suffers almost complete suppression
of recombination and spans one-third to one-half of a
linkage group (Nagy et al. 2010). The identification of
alternative sources of resistance would be desirable since
the continued planting of cultivars with the same genes of
resistance may lead to the development of virulent
nematode populations, as has occurred with M. incognita
where populations virulent to tomato varieties harboring the
Mi resistance gene have arisen (Kaloshian et al. 1996). In
addition, it seems likely that wild alleles in the A.
cardenasii chromosomal segment are detrimental to yield
since both resistant cultivars yield lower than similar
susceptible ones in the absence of disease pressure (Church
et al. 2000; Starr et al. 2002). This provides an additional
incentive for the characterization of new resistance sources,
since they may have lower linkage drag with agronomically
unfavorable alleles.

The wild relatives of peanut are a rich source of disease
resistance genes, because they have high genetic diversity and
have been selected during evolution in a range of environ-
ments and biotic stresses (Stalker 1997; Leal-Bertioli et al.
2007). In this study, the AA genome A. stenosperma
(accession V10309) was used because: it is resistant to M.
arenaria (Proite et al. 2007, 2008); is closely related to A.
duranensis, the most probable A genome donor to cultivated
peanut (Seijo et al. 2004); forms fertile hybrids with
apparently normal genetic behavior; and is a parent of a
well characterized diploid mapping population for the A
genome of Arachis (Moretzsohn et al. 2005; Guimarães et al.
2008; Bertioli et al. 2009; Leal-Bertioli et al. 2009).

Several studies have identified genes and promoters that
respond during both the susceptible and resistant plant-
nematode interaction in a number of plant species (Barthels
et al. 1997; Goellner et al. 2001; Koltai et al. 2001).
Recently, laser capture microdissection (LCM) has been
applied for gene expression analysis of the interaction
between plant root and parasitic nematodes (root-knot and
cyst nematode) (Klink et al. 2009b; Portillo et al. 2009;
Barcala et al. 2010). This approach has shown that, within
specific pathosystems, different transcripts related to the
plant resistance response against particular nematodes can
be identified. Transcripts vary according to plant genotype
(Klink et al. 2009b, 2010a, b) pathogen isolate (Klink et al.
2009a), host cell type or different points during an
interaction time course (Barcala et al. 2010) (Portillo et al.
2009).

In peanut, whilst a relatively large number of ESTs are
available both from Meloidogyne species (McCarter et al.
2003; Abad et al. 2008; Roze et al. 2008) and from healthy
Arachis plants (Luo et al. 2005b), few studies of the genes
expressed during the peanut-nematode interaction has, to
our knowledge, been published (Proite et al. 2007).

In a previously published study, a comparative histo-
pathological analysis of susceptible A. hypogaea and
resistant A. stenosperma challenged by M. arenaria,
showed that the mechanism of resistance in this wild
species acted in at least two stages: many less nematodes
penetrated the resistant root, and those that did were killed
by a hypersensitive reaction (HR) in the plant cells
surrounding them (Proite et al. 2008). In addition, ESTs
were produced from A. stenosperma roots, both un-
challenged roots and roots challenged with M. arenaria
(Proite et al. 2007).

In this paper, we identified genes differentially expressed
between inoculated and non-inoculated roots of the resistant
wild peanut species A. stenosperma. We selected the three
most differentially expressed of these genes for closer
analysis in both A. stenosperma and in the compatible
cultivated peanut A. hypogaea.

Results

Plant Materials and Bioassay

The reproductive factor (RF) (Oostenbrink 1966) of M.
arenaria race 1 at 120 DAI in A. hypogaea (cv. IAC-Tatu-
ST) was 16.4, whilst A. stenosperma (accession V10309)
did not support any nematode multiplication. These results
were in accordance with our previous works (Leal-Bertioli
et al. 2007; Proite et al. 2008) which characterized the
contrasting response of wild and cultivated species chal-
lenged with this nematode species. Plant roots were
collected at 2, 4, 9 and 16 days after inoculation (DAI)
for total RNA extractions based on previous hystopatho-
logical assays (Proite et al. 2008) which showed that the
responses of A. stenosperma and A. hypogaea inoculated
with M. arenaria race 1 showed marked differences at these
time points.

In Silico Analysis

In silico analysis of the ESTs [GenBank: EH041934 to
EH048197] showed that eight genes were differentially
expressed in the inoculated (RM) and non-inoculated (RN)
A. stenosperma libraries, according to Fisher test (P≤0.05)
(Fig. 1 and Table S-1). Four of these genes were up-
regulated under nematode challenge and had homologies
(BLASTx value E<1.0 e−10) to: Auxin-repressed protein
ARP1 from A. hypogaea (AsARP), Metallothionein type 3b
from A. hypogaea (AsMET3) and two hypothetical proteins
from Nicotiana tabacum (AsHPNt) and from Ricinus
communis (AsHPRc). Four genes were down-regulated
under nematode challenge and showed homology to:
Metallothionein type 2 (AsMET2) from A. hypogaea,
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Cytokinin-oxidase from Medicago truncatula (AsCKX),
Alcohol dehydrogenase 1 from Pisum sativum (AsADH)
and Resveratrol synthase (AsRS) from A. hypogaea
(Fig. 1). In addition, 92 clones were exclusively found in
the inoculated libraries (RM), 20 of which were related to
defense mechanisms, according to the BLASTx analysis
(E<1.0 e−10) (Table S-1).

Overall Expression Profiling

The in silico data allowed the selection of seventy-one
ESTs for expression profiling analysis using the following
criteria: clones representing the eight genes that were
differentially expressed between the two EST libraries;
clones that were exclusive to the RM library; or with
homology to genes encoding proteins related to plant
response to biotic and abiotic stress e.g. heat shock and
ROS-responsive proteins, transcription factors (AP2/
EREBP, TAF and GRAS), disease-resistance or PR proteins
(Table S-1). For each of the eight genes considered as
differentially expressed by in silico analysis, at least three
clones representative of the respective contig were included
on the membrane. Additionally, four clones were also
selected as constitutively expressed genes for internal
control. To monitor the expression patterns of this set of
75 selected genes during the first stages of M. arenaria
challenge to A. stenosperma, a time-course experiment was
performed by hybridizing macroarrays to cDNA probes
corresponding to mRNA from inoculated roots at 2, 4 and 9
DAI and to a control pool (mRNA from a pool of non-
inoculated roots collected at the same time points).

Among the four putative housekeeping genes selected,
β-tubulin was chosen as internal standardization membrane
control because no significant variation of its expression
was observed among all the membranes tested (data not
shown). Degrees of induction/repression of each gene at

specific time-points were calculated based on the ratio of
the average relative signal intensities of inoculated samples
to those of control samples, using β-tubulin gene as
reference sample. Clones with a ratio above 1.5 fold, or
below 0.66 were considered as having significant changes.
Scattered plots of the 75 genes (Fig. 2) indicate that mRNA
expression profile of A. stenosperma changes during the
course of the 9 days after inoculation with M. arenaria. At
2 DAI, 19 genes (25%) were significantly up-regulated
upon nematode inoculation (Fig. 2), such as uricase (4.5-
fold) and an ethylene-responsive transcription factor (4.1-
fold) homologs. Repression of gene expression by nema-
tode inoculation was observed for only 6 genes (8%) with
four of them showing a strong down regulation: lipocalin
(0.41-fold), a plasma membrane protein (0.45-fold), a
metallothionein type 2 protein (0.46-fold) and a mannose/
glucose-binding lectin precursor (0.49-fold). The down-
regulation of Metallothionein type 2 (AsMET2) after
nematode inoculation of A. stenosperma was also observed
in silico (see above). At 4 DAI, there was no remarkable
differences in the overall gene expression profile compared
to 2 DAI (Fig. 2) except for the following genes: mannose/
glucose-binding lectin precursor (from 0.49 to 6.97-fold)
and lipocalin (from 0.41 to 4.5-fold). At 9 DAI, the overall
gene expression profile showed a remarkable change, as the
number of up-regulated genes increased drastically,
corresponding to 53% (40 genes) of all the selected genes
(Fig. 2). Among these positively regulated genes at 9 DAI,
20 showed an increase of the mRNA level between 1.8-and
2.5-fold (two clones corresponding to AsARP, two
AsMET3, two AsHPNt, one AsHPRc and nuclear factor
Y, copper-binding protein CUTA, glutathione-S-transferase,
ethylene-responsive element-binding protein, lipocalin and
others) and six more than 2.5-fold (two clones corresponding
to AsARP, two AsHPRc, helix-loop-helix and U-box pro-
teins). Otherwise, repression of gene expression by nematode

Fig. 1 Number of reads of the
eight genes (AsARP; AsMET3;
AsHPNt; AsHPRc; AsMET2,
AsCKX, AsADH and AsRS)
differentially expressed at 2, 6
and 10 DAI in roots of A.
stenosperma inoculated (RM
library) and non-inoculated (RN
library) with M. arenaria,
according to in silico analysis (P
<0.05). Percentages correspond
to the number of reads for each
contig in each library
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inoculation at 9 DAI was observed for only 2 genes (3%),
corresponding to AsCKX and AsRS. Therefore, six signifi-
cantly regulated genes at 9 DAI (AsARP, AsHPRc, AsHPNt,
AsMET3, AsCKX and AsRS) were also identified as
differentially expressed by our in silico analysis.

Comparison of Differentially Expressed Genes in Resistant
and Susceptible Arachis spp.

Comparison of the in silico and macroarray data indicated
that the two profiles were consistent for most of the 75 clones
tested. The three mostly differentially expressed genes in
silico that also showed significant changes in expression on
macroarrays were selected for further analysis using northern-
blot in both A. stenosperma and A. hypogaea: AsARP (up-
regulated with nematode inoculation), and AsMET2 and
AsCKX, (down-regulated) (Fig. 3).

Auxin-repressed Protein (ARP)—AsARP

According to in silico and macroarray analysis, the most
differentially expressed gene during the early stages of M.
arenaria challenge on A. stenosperma roots encoded an
Auxin Repressed Protein (ARP) (AsARP) with a strong up-
regulation in challenged roots (107 reads) compared to non-
challenged (9 reads) (Fig. 1). The up-regulation of AsARP
in A. stenosperma inoculated roots was also observed in
macroarray hybridizations with a steady increase in expres-
sion in all time points and a two-fold increase in hybridiza-
tion signal between 2 and 9 DAI (Fig. 3). While many genes
up-regulated by auxin have been characterized, less is known
about those that are down-regulated by auxin, with some of
them related to dormancy and some induced by cold, insects,
and bacteria (Stafstrom et al. 1998; Hwang et al. 2005; Song
et al. 2007; Salvianti et al. 2008). Likewise, northern-blot
analysis of total RNA, showed that AsARP was up-regulated

at 4, 9 and 16 DAI in inoculated roots of the resistant A.
stenosperma, when compared to non-inoculated (Fig. 4a). In
the susceptible A. hypogaea, however, AsARP was down-
regulated at 16 DAI in inoculated roots when compared to
non-inoculated (Fig. 4a).

Metallothionein Type 2 (MET2)—AsMET2

The second most differentially expressed sequence in this
study encoded Metallothionein–like protein type 2
(AsMET2), and was much more frequent in the library
from non-inoculated roots of A. stenosperma RN (50 reads)
than in M. arenaria inoculated roots RM (10 reads) libraries
(Fig. 1). The macroarray analysis also showed down
regulation of AsMET2 in the inoculated roots of A.
stenosperma when compared to the control. However, a
much earlier response (0.46- and 0.77-fold at 2 and 4 DAI,

Fig. 2 Scattered plot of cDNA hybridization in macroarray mem-
branes. The plot displays the average relative signal intensity of all
spots probed with cDNA from a pool of control samples (x-axis) and

inoculated samples collected at 2 (a); 4 (b) and 9 (c) DAI (y-axis). The
upper and lower perpendicular lines indicate the position of 1.5-fold
differences in intensity

Fig. 3 Macroarray analysis of representative AsARP, AsMET2 and
AsCKX clones. Expression ratio (y-axis) was determined as the
average relative signal intensity of inoculated to control samples at
each indicated time (2, 4 and 9 DAI). Bars show the standard error of
signal intensity of at least three clones representing the same gene
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respectively) was observed followed by an increase of its
expression at 9 DAI (1.8-fold; Fig. 3). Nevertheless, the
variation in its induction at 9 DAI (Fig. 3) prohibits a strong
conclusion regarding its up regulation. Northern-blot
analysis showed a striking difference in expression levels
of AsMET2 in all times analyzed between the wild resistant
species and the susceptible cultivated peanut (Fig. 4b). A
noticeable down-regulation of AsMET2 in A. stenosperma
roots challenged with M. arenaria at 9 and 16 DAI was also
observed (Fig. 4b). The occurrence of the hypersensitive
response at 9 and 16 DAI in A. stenosperma but not in A.
hypogaea (Proite et al. 2008) suggests that AsMET2 may
have a role in this resistant response.

Cytokinin-oxidase/Desidrogenase (CKX)—AsCKX

The catabolic enzyme cytokinin oxidase (CKX) plays an
important role in controlling cytokinin levels in plant
tissues as it catalyzes the irreversible degradation of
cytokinins (Brugiere et al. 2003; Ashikari et al. 2005). In
A. stenosperma, Cytokinin-oxidase/dehydrogenase (AsCKX)
was one of the eight in-silico detected differentially
expressed genes between non-inoculated RN (40 reads) and
inoculated roots RM (3 reads) (Fig. 1), showing a slight
down-regulation especially at 4 DAI in A. stenosperma

inoculated roots (Fig. 4c). A higher expression of AsCKX is
observed in inoculated A. hypogaea roots than in non-
inoculated at 16 DAI, possibly suggesting that cytokinin is
being accumulated in the compatible system for the
formation of the feeding site.

Likewise, in the macroarray analysis a strong (2,5 fold)
down regulation was detected between 2 and 4 DAI and
maintained at 9 DAI in inoculated A. stenosperma (Fig. 3).

Discussion

In agriculture, nematodes can be controlled by crop
rotation, nematicides and resistant cultivars. So far, only
a single source of resistance against root-knot nematodes
is available in commercial cultivars of peanut (Simpson
et al. 2003), since pathogens can overcome plant resis-
tance, the investigation of new sources of resistance is
desirable.

The most common defense mechanism against root-knot
nematodes (Meloidogyne spp.) is the hypersensitive re-
sponse (HR) where the invading juvenile is not able to
induce a feeding site and becomes surrounded and
embedded among necrotized cells (Sobczak et al. 2005).
This mechanism (HR) has been recently described by our

Fig. 4 Northern-blots of total RNA from non-inoculated and
inoculated samples of A. hypogaea (left) and A. stenosperma (right)
at 4, 9 and 16 DAI, hybridized to a representative clone of (a) AsARP;

(b) AsMET2; (c) AsCKX. Total RNA of each sample was electro-
phoresed on ethidium bromide stained gels for northern blotting
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group in wild Arachis (A. stenosperma) responding to
challenge with M. arenaria (Proite et al. 2007, 2008). In
this previous study, A. stenosperma accession V10309 and
A. hypogaea inoculated with M. arenaria race 1 showed
marked differences in the nematode developmental cycle
before 16 DAI. Many fewer nematodes were able to
penetrate A. stenosperma roots, and a hypersensitive
response was already visible around those that did in by
8 DAI. In contrast, in A. hypogaea, feeding sites were
already present at 16 DAI. Therefore, to cover key stages of
the plant–nematode interaction in both species, in the
present study, roots were collected at 2, 4, 9 and 16 DAI
for the analysis of gene differential expression by various
methods.

The hypersensitive response often forms part of the
resistance response of a plant against a challenging
pathogen. It is associated with rapid ion fluxes, protein
phosphorylation, accumulation of reactive oxygen species
(ROS), nitric oxide, salicylic acid, sphingolipids and
induction of defense-related genes (Heath 2000) (Mur et
al. 2008). A number of studies have shown that the
transformation of normal root cells in nematode feeding
structures requires complex morphological and physiolog-
ical changes (Gheysen and Fenoll 2002; Fosu-Nyarko et al.
2009; Portillo et al. 2009) as well as changes in expression
patterns of genes including extensins (van der Eycken et al.
1995), glucanases (Niebel et al. 1996; Goellner et al. 2001),
cyclins (Niebel et al. 1996; Engler et al. 1999), phytohor-
mones (Goverse et al. 2000) and transcription factors
(Barcala et al. 2010; Klink et al. 2010a).

Likewise, some genes were differentially expressed in
the response of A. stenosperma to M. arenaria, and were
also related to hormonal balance (AsARP and AsCKX) and
pathogenesis (AsMET2, AsMET3, AsADH, AsRS) as well
as proteins of unknown function (AsHPRc and AsHPNt)
(Fig. 1).

Several studies have shown that auxin plays an important
role in feeding cell induction by root-knot nematodes, being
essential in giant-cell formation (Doyle and Lambert 2003;
Mazarei et al. 2007; Barcala et al. 2010). It regulates various
growth and developmental processes in plants by controlling
the expression of auxin-responsive genes. A number of these
genes have been classified as early auxin-response genes
(Guilfoyle et al. 1998) with their expression levels increasing
within minutes of auxin application, independent of de novo
protein synthesis (Walker and Estelle 1998).

However, to date, auxin-repressed protein (ARP) genes
and their role in plant growth and development are
relatively understudied, with a few homologs found in
strawberry (Reddy and Poovaiah 1990), pea (Stafstrom et
al. 1998), the tree legume Robinia pseudoacacia (Park and
Han 2003), tobacco (Steiner et al. 2003), pepper (Jung and
Hwang 2000; Hwang et al. 2005) and pear (Salvianti et al.

2008). So far, these genes have been related to dormancy
(Stafstrom et al. 1998) and induction by cold (Hwang et al.
2005), insects (Salvianti et al. 2008) and bacteria (Jung and
Hwang 2000).

In this study, the most highly nematode-induced gene in
A. stenosperma roots (AsARP; Figs. 1 and 4a) presented
98% identity, according to BLASTN, to the gene encoding
auxin repressed protein in A. hypogaea (EH047263.1).
Northern-blot revealed single bands of the same mobility in
both A. stenosperma and A. hypogaea. This and the
observation that homologs of this gene are present in single
copies in the model plants Medicago truncatula, Lotus
japonicus, and Arabidopsis thaliana, suggest that AsARP
and EH047263.1 most probably represent the same gene in
the two different species.

The gene has markedly different behaviors in A.
stenosperma and A. hypogaea when challenged with
nematodes, being strongly induced and repressed respec-
tively (Fig. 4a). In addition, the gene has different levels of
expression in non-inoculated roots, being expressed at a
higher level in A. stenosperma.

This suggests that in infected A. stenosperma, the AsARP
was highly expressed due to a failure in gall formation and
lack of auxin accumulation. Another legume auxin-repressed
ortholog RpARP (Park and Han 2003) has been reported as
negatively related to hypocotyls elongation and plays an
important role in biological processes that are characteristic
under non-growing or stress conditions.

Other ARP encoding genes have also been reported as
being up regulated in plant disease resistance responses. For
example, in pepper leaves infected with Xanthomonas
campestris (Jung and Hwang 2000), in SAR induced coffee
leaves (De Nardi et al. 2006), in fungi infected peanut (Luo
et al. 2005a) and grapevine leaves (Camps et al. 2010).
However, it remains unknown if the expression of ARP
forms an integral part of the resistance response of A.
stenosperma, or is just correlated with it.

Together with auxin, cytokinin plays an essential role in
plant morphogenesis, having a profound influence on the
formation of roots and shoots and their relative growth, and
branching (Brugiere et al. 2003). The catabolic enzyme
cytokinin oxidase/dehydrogenase (CKX) plays a major
role in controlling cytokinin levels in plant tissues and
has been carefully characterized in a number of plants
(Brugiere et al. 2003; Aval’baev et al. 2006; Hirose et al.
2007). In most systems, CKX expression is induced by
cytokinins (Brugiere et al. 2003) representing a negative
feedback system in which the accumulation of cytokinin
induces its own catabolism, controlling the levels of the
hormone in the cell (Lee et al. 2007). Not surprisingly,
cytokinin appears to play a role in the formation of
nematode feeding sites, being accumulated during site
formation (De Meutter et al. 2001; Bird 2004; Barcala et
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al. 2010). Accordingly, the over-expression of CKX in L.
japonicus has been shown to reduce the number of galls
formed after nematode challenge (Lohar et al. 2004).

As was the case for ARP, expression of CKX contrasts
between the resistant A. stenosperma and the susceptible A.
hypogaea. Whilst CKX was down-regulated in A. sten-
osperma 9 and 16 DAI, in A. hypogaea the expression
increased (Fig. 4c). This period coincides with the
formation of the nematode feeding sites, and suggests a
role of this enzyme in the establishment of the plant-
nematode interaction.

During the incompatible hypersensitive response (HR)
there is a significative accumulation of reactive oxygen
ROS (Heath 2000), which may directly repel invading
pathogens or serve as signaling molecules that activate
defense response (Hammond-Kosack and Jones 1996). On
the other hand, ROS resulting from biotic and abiotic
stresses can cause cellular damage and need to be
detoxified (Mittler 2002). Metallothioneins are low molec-
ular (6–7 kD), Cys-rich, metal-binding proteins that have a
role in protection against the effects of ROS by acting as
antioxidants as they are potent scavengers of hydroxyl
radicals (Potenza et al. 2001). In rice, the expression of
metallothionein type 2 was down-regulated when cells were
treated with oxidative burst (ROS) inducers, indicating that
this protein is associated with the hypersensitive response
(Wong et al. 2004). Additionally, when metallothionein
type 2 levels were increased, the oxidative response
diminished and consequently the resistance of these plants
to diseases such as bacterial blight and rice blast (Wong et
al. 2004). This gene was also found to be down-regulated in
alfalfa roots inoculated with M. incognita (Potenza et al.
2001).

A gene encoding a metallothionein-like type 2 protein
(AsMET2) was the second most differentially expressed
gene in the present study, being much more frequent in
non-inoculated than in inoculated roots of A. stenosperma.
This down regulation in inoculated roots is compatible with
the resistant hypersensitive response an accumulation of
ROS in A. stenosperma during its response to nematodes
(Proite et al. 2007), Furthermore, macroarray analysis
showed a very early response of AsMET2, again consistent
with the very early appearance of HR. Searches of EST
databases showed that A. hypogaea does have this gene,
ESTs from peanut cotyledon with 98% identity being
identified. Interestingly however, in A. hypogaea, AsMET2
expression was not detected either in the inoculated or non-
inoculated plants, this highlights a very marked difference
in the behavior of this gene between the two species
inoculated and not inoculated with nematodes.

The study of the expression profile of the above host genes
during the plant-nematode interaction and their further
characterization are important steps to understanding the

molecular mechanisms involved in the resistant and suscep-
tible responses of peanut and other legumes to nematode
challenge.

Methods

Plant Materials and Bioassays

Arachis stenosperma (accession V10309) and A. hypogaea
(cultivar IAC- Tatu -ST) seeds were obtained from the
Arachis Germplasm Bank, and maintained at Embrapa
Genetic Resources and Biotechnology-Cenargen (Brasília–
DF, Brazil). Ten week old plants of A. stenosperma V10309
and the susceptible cultivated A. hypogaea were inoculated
with 10,000M. arenaria race 1 juveniles (J2) (Proite et al.
2008). For gene expression analysis, roots were collected at
2, 4, 9 and 16 days after inoculation (DAI) which
correspond to the early stages of the hypersensitive reaction
in A. stenosperma, according to Proite and co-workers
(Proite et al. 2008). Roots were also collected after the
completion of the nematode cycle (120 DAI) and the
reproductive factor (RF) analyzed (Oostenbrink 1966). For
macroarray and northern-blot analyses, plant material was
immediately frozen on liquid nitrogen and total RNA
extracted using Trizol reagent (Invitrogen), according to
manufacturer’s protocol.

In Silico Analysis and FISHER Test

The EST data previously developed from two cDNA
libraries from A. stenosperma inoculated (RM) and non-
inoculated (RN) roots with M. arenaria (Proite et al.
2007) was used for the identification of differentially
expressed genes in silico. Fisher’s exact test was used to
examine the significance of the association between the
two variables (inoculated and non-inoculated plants) with
a P≤0.05.

Macroarray Hybridizations

Seventy-five clones were selected from the A. stenosperma
cDNA libraries [GenBank:EH041934 to EH048197] (Proite
et al. 2007) (Table S-1). Four clones were included as
housekeeping candidate genes for internal control: (i) actin;
(ii) glyceraldehyde-3-phosphate dehydrogenase; (iii) 60S
ribosomal protein and (iv) β-tubulin (Table S-1). Plasmid
DNAwas extracted by alkaline-lysis and used as a template for
PCR amplification using PT2F2 (GCGCCATTGTGTTGG
TACCC) and PT2R2 (CCGCATGCATAAGCTTGCTC) pri-
mers. DNA samples (800 ng) were spotted twice onto nylon
Hybond N+ membranes (GE Healthcare), according to
manufacturer’s protocol.
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Total RNA from challenge and non-challenged roots of
A. stenosperma at 2, 4, and 9 DAI was purified using the
Invisorb Spin Plant RNA Mini Kit (Invitek) and reverse-
transcribed to be used as probes. Reverse transcription
reactions were performed with SuperScriptIIRT (Invitro-
gen), according to the manufacture’s protocol, using 10 μg
of total RNA, and 50 μCi α[33P] dCTP. Denatured probe
was added to Church and Gilbert buffer (Church and
Gilbert 1984) and hybridization was performed overnight at
65°C. Membranes were washed in 2XSSC/0.1% SDS at
65°C and 42°C for 15 min, exposed to ImagingPlate screen
for 24 h, and scanned on FLA-3000A image analyzer
(FujiFilm). Array Gauge software (FujiFilm) was used to
quantify and normalize spot intensities. Standard normali-
zation (based on the intensity signal of a putative
housekeeping gene) was adopted for normalizing the
difference of hybridization signal intensity intra and
between membranes. The radioactive signal intensity of
the duplicated spots was averaged prior further analysis.

Northern-blots

Northern-blots were conducted using 10 μg of total RNA
per sample, according to the membrane manufacturer’s
instructions (Hybond-N; GE Healthcare). Representative
clones of the differentially expressed genes previously
identified by Fisher test and macroarrays were used as
probes (AsARP, AsCKX and AsMET2). Probes were
labeled with α[32P] dCTP using random priming, according
to the manufacturer’s instructions (Ready-to-Go; GE
Healthcare) and washes performed in 2XSSC/0.1% SDS
at 65°C for 15 min. Membranes were exposed to X-ray film
(Kodak).
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