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Bem-vindos ao site oficial do VIWorkshop de Visão Computacional.

A área de Visão Computacional, fortemente consolidada em vários países. tem-se desenvolvido de maneira
intensa nos últimos anos, desenvolvimento em grande parte motivado por seu alto poder de geração de
novas tecnologias (produtos, processos). No Brasil, essa situação não é diferente, sendo possível observar
inúmeros grupos de pesquisadores das principais Universidades e Centros de Pesquisa envolvidos com
estudos nesse âmbito do conhecimento.

A área de Visão Computacional é altamente multidisciplinar e caracteriza-se primordialmente pela utilização
de imagens digitais associadas a técnicas de Reconhecimento de Padrões, Processamento de Imagens,
Fotogrametria, entre outras. Além disso, o estudo de métodos cognitivos, de processos biológicos, processos
físicos e estatísticos tem gerado soluções significativas para problemas de vital importância do mundo real.

o conjunto de técnicas oriundas desse novo campo do saber possui aplicações em diferentes áreas do
conhecimento humano e com Impactos relevantes nas vidas de cidadãos comuns. Entre elas, podemos citar:
auxílio no diagnóstico de doenças graves a partir da análise de imagens médicas, navegação autônoma de
robôs, de veículos aéreos e terrestres, biometria, sensoriamento remoto e autcrnatlzação do controle de
qualidade em processos industriais (inspeção industrial).

o propósito principal do Workshop de Visão Computadonal (WVC) é possibilitar a integração de
pesquisadores brasileiros que atuam nessa área, de modo a facilitar a apresentação, divulgação e discussão
de trabalhos desenvolvidos ou em desenvolvimento, fomentar e disseminar a nucleação de novos grupos de
pesquisas, assim como estimular alunos de graduação a iniciarem seus estudos nessa área por meio de
ações específicas de formação que são materializadas por minicursos introdutórios. Nesse sentido, o \WC
constitui-se num importante espaço de integração para a troca de experiências acadêmico-cientificas,
objetivando o desenvolvimento da ciência e da tecnologia brasileira nesse domínio do conhecimento.

A primeira edição do evento ocorreu em 2005 na cidade de Piracicaba, SP. Nos anos subsequentes, o evento
aconteceu, respectivamente, nas cidades de São Carlos, São José do Rio Preto, Bauru e São Paulo. Apesar
de ter sido, até o presente momento, realizado apenas em cidades paulistas, tem conseguido atrair
trabalhos de pesquisadores de diferentes partes do país e, desse modo, está se consolidando como um
evento de referência em âmbito nacional. Há interesses para que o evento expanda suas fronteiras,
alcançando outros estados, assim, na Assembléia Geral realizada durante o evento, grupos de pessoas
representando Universidades e Centros de Pesquisas poderão se candidatar para realizarem as próximas
edições. Um histórico dos eventos já efetuados pode ser obtido a partir do site
<http://iris.sel.eesc.usp.br/wvc>, onde é possível acessar o conjunto de informações relacionadas às
edições anteriores, bem como o nivel qualitativo dos respectivos programas.

o WVC é um evento científico que já está devidamente institucionalizado e tem contado com o suporte
financeiro da FAPESP e da CAPES, além do apoio da SBC, das Universidades e dos Departamentos onde o
evento acontece. Sua importância tem crescido no cenário nacional, sendo o único .evento a tratar
especificamente de pesquisas envolvendo Visão Computacional. No ano de 2010 irá alcançar a 6a edição e
será realizado na Faculdade de Ciências e Tecnologia da Universidade Estadual Paulista "Júlio de Hesquita
Filho" .- UNESP, localizada na cidade de Presidente Prudente. Reafirma mos os objetivos enumerados acima e
esperamos contar com sua presença entre os participantes do VI WVC. Desde já nos colocamos a sua inteira
disposição,

Prof. Dr. Marco Antônio Piteri
Coordenador Geral do VI WVC

piteri@fct.unesp.br
(018) 97847767

[Skype) marco.píteril

http://www4.fct.unesp.br/eventos/wvc/index.php 16/7/2010

mailto:piteri@fct.unesp.br
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Abstract

In this paper, we present a comparison of two
techniques for noise reduction on CT set of projections.
We use for filtering the Pointwise Wiener filter and
thresholding of the Wavelet coefficients. We use the
Anscombe transformation for noise variance stabilization.
The Pointwise Wiener filter was computed with an
adaptive windowing scheme for the calculation of local
estimates. For the thresholding tn Wavelet domain, we
compare three families of wavelet bases: Daubechies,
Symlets and Coiflets. We also compared four techniques
for obtaining thresholds: Universal threshold, Oracle
shrink, Minimax threshold and SURE threshold For the
image reconstruction stage we applied the parallel POCS
algorithm. The experiments were done with one simulated
phantom (Shepp-Logan) and real projections captured by
a CT scanner deveioped by CNPDIAIEMBRAPA. The
results were measured with the ISNR and SSIM criteria.
In most cases, the best results were obtained with the
Pointwise Wienerfilter with adaptive windowing.

1. Introduction

Computerized tomography is a technique used to
obtain an image of the inside of a body in a non-invasive
and non-destructive manner. Since its discovery, it has
been widely applied to clinical diagnosis and medical
investigations. However, there are applications of CT in
many other research areas, such as agriculture,
engineering and biology. The tomographic data
acquisition is performed by exposure of the body to the
rays of the tomograph. Projections are taken from
different angles around the body. The two-dimensional
image is reconstructed from this set of one-dimensional
projections.
Limiting the dose of radiation is a major concern in the
use ofCTs. ln the case oftomography for clinical use, a
high levei of radiation to obtain the tomographic
projections can cause cancer in patients [6]. In other
applications it is desirable to reduce the acquisition time
oftomographic data as in CT scanners used in soil
science.

Low doses of radiation generates noise in the
projections and consequently in the rcconstructed image.
To improve the image quality we can filter the
tomographic projections or the image itself. Thus, a
compromise between limiting the acquisition process and
the quality oftomographic imaging remains.

Many researchers have studied techniques for filtering
the projections or tomographic images to obtain an image
with better visual quality.

ln the study by Li et ai [12] the filtering of
tomographic projections of a clinical CT scanner was
studied. 2D filtering was performed with a Bayesian
estimator, where the prior knowledge was modeled with
Markov random fields characterized by a Gibbs
distribution.

ln [13] the filtering with the method of Penalized
Multiscale Least Squares (PWLS) was performed. The
Wavelet transform was applied to decompose the
sinogram in different levels of resolution. At each levei
the criterion PWLS was applied for noise reduction of the
wavelet coefficients.

2. Tomographic Reconstruction

The most widely used algorithm for tomographic
image reconstruction is Filtered Back Projection method
(FBP), which performs the reconstruction in the
frequency domain. The method is based on the Fourier
slice theorem. This theorem says that the Fourier
transform of a one-dirnensional projection corresponds to
a slice of the two-dimensional Fourier transform of the
unknown image [7].

The reconstruction with the FBP algorithm displays
not very satisfactory results in the presence of noise. But
there are algebraic algorithms, which seek the solution in
an iterative manner and show better results in the
presence of noise [7]. In the reconstruction made by
algebraic algorithms an image is represented by a single
point in N-dimensional space. ln this space each equation
represents a hyperplane. When there is only one solution
to these equations the intersection of ali these hyperplanes
is a single point, given by the solution. The algebraic
reconstruction technique (ART) seeks the solution by
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sequential projection on the set of linear equations, where
each equation set represents a hyperplane. The
simultaneous iterative reconstruction technique (SIRT)
seeks a solution through the parallel projection on the
hyperplanes and gives better results with noise.

In [10], ART and SIRT algorithms are considered
special cases of the POCS method (projections Onto
Convex Sets), where each hyperplane is considered a
convex set. In the sequential POCS algorithm when there
is no single solution due the noisy projections the solution
oscillates between the sets of restrictions. On the other
hand, in the parallel implementation of the POCS
algorithm, the solution converges to a least squares
distance between the sets of possible solutions.

Filtering methods rarely eliminate completely the
noise. Despite the filtering of the projections, the use of
the parallel POCS algorithm results in an image with
better quality. ln contrast, the time of reconstruction of
the parallel POCS algorithm is greater than the FBP
method, because algebraic reconstruction algorithms are
iterative.

3. Filtering Techniques

The predominant noise in tomographic projections is
the quantum noise, which follows the Poisson
distriburion. This noise is due to the statistical nature of
the process of emission and detection of photons. The
Poisson noise is signal dependent, since its variance is
equal to the mean (rate) ofthe Poisson distribution. Most
filtering methods consider the noise as additive, ie with
constant variance. There are severaI techniques to
stabilize the variance of the noise. The Anscombe
transform (equation 1) is the most widely used. 1t
transforms the Poisson noise into additive noise with zero
mean and unit variance [1]. Whereas the original signal is
estimated by some method of filtering, after the
completion of the Anscombe transform, the inverse
Anscombe transform is given by equation 2,

z, = 2~Yi +~

• 1 2 1g.=-z. --
I 4 I 8

where y represents the noisy signal and z represents the
signal in the Anscombe domain.

The filtering techniques are applied in the Anscombe
domain. These techniques will be discussed in following
sections.

3.1 Wiener Filter

The Wiener filter is optimal to minimize the mean
square error between the estimated signal and the original
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signal. There are several implementations of this filter.
We will analyze the pointwise Wiener filter defined by
equation 3 [8],

0'2
g=f.1g+ 2 g 2(y-f.1y) (3)

O'g+O'n
where y is noisy signal, /lg is the mean of. the original
signal, /ly is the mean of the noisy signal and (1; is the
variance of the original signal. We know that the noise
variance (1;' is one in the Anscombe domain.

To compute the pointwise Wiener filter it is necessary
to estimate the mean and variance at each point of the
signal. As we do not have access to the original signal, a
preliminary estimate of the signal can be made through a
mean filter. After this initial estimate is made, the sample
mean and sample variance are calculated.

The way to perform the calculation of local estimates
significantly influences the outcome of filtering. We can
use a fixed or an adaptive window for the computation of
local estimates.

In the adaptive windowing, few points are considered
in regions with edges for the calculation of local
estimates. In flat regions of the signal, more points can be
considered for the computarion of the estimates. In this
work we use a scheme for the adaptive windowing-based
method based on the work ofRabbani [9].

Rabbani's method consists of analyzing the
relationship between the variance of the original signal
and the variance of the noisy signal (equation 4) and an
approach for calculating the gradient (equarion 5).

(}"2

a=-g (4)
(}"2

Y

r)Mn-MI-IMs-MI (5)
IMn-MsI

(1)

ln equation 5, M represents the central point, Ms are its
two neighbors points of the left and Mn are its two
neighbors points on the right.

The two indicators, a and r, are compared with
thresholds to determine if the projection point features an
edge or a flat region. We will use t as a threshold for a
and T as a threshold r. When o. < t,we can say that it is an
area of moderate activity signal and the calculation of
local estimates is done with a window of 5 elements.
When o. > t,we also analyze the value of r.

When r > T, there is an indication of local roughness,
but no edge. In this case we still use the window with 5
elements to calculate the estimates. But when we find a >
T, there is evidence of an edge. In this case, the local
estimates are computed with 3 window elements.
Experimentally we choose t = 0.3 and T = 0.2.

(2)

3.2 Noise Reduction using Wavelets
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The wavelet transform performs the analysis of the
data variables in the time and frequency domains. The
discrete wavelet transform represents a signal in terms of
displacements functions rp and scale functions V'.

A characteristic of data representation in the wavelet
domain is the multi-scale analysis. The signal can be
decomposed into several levels that can be analyzed
independently. Using the orthogonal wavelet transform a
signal can be decomposed according to equation 6 [2].

where

\lfj.k (x)=rj \If(2j x-I)
~j.k(X)= z:' ~(rj x -I)

The noise reduction in wavelet domain is done by
applying a threshold on the coefficients.
There are two ways of applying the threshold: hard
thresholding and soft thresholding. The hard thresholding
is given by equation 9 and the soft thresholding is given
byequation tO, where Â is the threshold value. .

P (x) - {x, [x] < Â
narâ - .

O, otherstwe

{

x- Â, x ;;:::Â
Psoft(x) = x + Â, x::;; - Â

O, otherwise

(10)

We analyzed four techniques to obtain the threshold
value. The first technique is the Universal threshold,
which is defined by equation 11, where N is the sample
size and (J is the standard deviation ofnoise [4,5).

À = J2 log NO" (11)

The second threshold (Oracle shrink or Oracle
threshold) is optimal under the criterion of mean square
error. It is assumed that the original signal is known. The
threshold value is obtained by minimizing equation 12
[4].

(12)

Donoho and Johnstone proposed the Minimax
threshold [3]. This threshold differs from Universal
threshold because it does not implies into an excessive
smoothing. The Minimax threshold keeps the abrupt
changes ofthe signal. The value ofthe threshold t is given
when it reaches the value given byequation 14,

À = inf sup { RI (Y)} (13)
I Y n-1 + Roracle(Y)
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where y are the Wavelet coefficients, Rt(d) = E[yt -
yf, and Roracl.(d) can be defined by equation 14 or 15.

(14)

DLS y2
RoracteY = y2 + 1

(15)

The SURE threshold was proposed by [5]. The choice
of the threshold follows the principIe of Stein's Unbiased
Risk Estimate (SURE). The choice of the threshold
consists of finding a value that minimizes the risk
function described by equation (17),

(7)

(8)
ÀSURE= argmin{SURE(À)} (16)

where,

SURE(À.) = [(~ 11 Yl - Y 112 )_CT2 ]+[2,,1,2 N ~No ]<17)

Y..t are the coefficients after the application of Wavelet

threshold, N is the number of coefficients, No is the
number of zero coefficients after applying the threshold,
and (J2 is the variance of the noise.

(9)
4. Experiments

For the experiments we used several sets of
projections. We used the simulated Shepp-Logan
phantom and projections obtained by a mini CT scanner
developed by the National Center for Research and
Development of Agricultural Instrumentation of the
Brazilian Agricultural Research Company (CNPDIA-
EMBRAPA). For each phantom, two sets of projections
were captured. For the first, each point was obtained with
3 seconds of exposure to the rays ofthe CT scanner; for
the second, the exposure was 20 seconds. The projections
of 3 seconds of exposure are noisy. This is due to low
photon counting and we wiU filter these projections. The
projections with 20 seconds of exposure have a higher
photon count and the noise levei was very low. The
reconstructed image from these projections wiU be used
for the comparison of filtering methods.

The filtering evaluation was performed after the image
reconstruction, considering the following criterion: ISNR
(Improvement in Signal-to-Noise Ratio) and SSIM
(Structural Similarity Index). Equation 17 shows the
formulation of the ISNR criterion, where y is the noisy
image, 9 is the original image and !J is the estimated
image. The test results in O when the estimated image is
equal to the noisy image and results in infinity when the
estimated image is equal to the original image.
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L(yj-g)
ISNR = 1010g±(gj _gj r

j

The SSIM criterion is given byequation 18. It is the
combination of three indicators: the luminance, contrast
and structural similarities. J.Lg and J.Lg are the means of the
original image and estimated image. (Ti and (Ti are the
variances of the original image and estimated image.
(TJg is the correlation between 9 and fi. Cl C2 and C3 are
constants that stabilize each termo Usually the criterion
works well when these constants are o. The value of
SSIM is given between -1 and I, the value I is achieved
only when the estimated image is equal to the original
image [11].

SSIM = ( 2;gJ.lg2 +C. J( 2~gO\ +C2 J( 20"gg +C3 )

J.li + J.lg +C. O"g+ O"g+C2 O"gO"g+C3

(18)
In the experiments we use three families of basis:

Daubechies, and symlets coiflets. For the filtering using
the Wavelet thresholding we selected one basis from each
family through experimental tests. We also chose two
levels of decomposition and the use of soft thresholding.

The projections of the Shepp-Logan phantom were
obtained by applying the Radon transform on the image
of the phantom. On the proiections set (sinogram) we
inserted Poisson noise. The Radon transform was
performed to obtain a sinogram with size 128x128.

Table 1 shows the results of the measurement error of
the reconstructed image with the filtered sinogram. The
pointwise Wiener filter achieved better results with
adaptive windowing. In projections of the Shepp-Logan
phantom the Universal threshold showed the best
performance for the thresholding ofwave1ets coefficients.
The SymlO basis displayed the best results.

(17)

Table 1 - Errormeasuresof reconstructedimagesfromthe
filteredprojectionsof Shepp-Loganphantom.

Filter Window/ ISNR SSIM
Threshold
3 1.9101 0.35870

Pointwise 5 1.7351 0.39237
Wiener Filter· 3e5 3.5987 0.40970

Oracle 2.6730 0.34947
Universal 2.7487 0.35258

Wavelet - Db12 Minimax 2.7176 0.35013
SURE 1.8949 0.34347
Oracle 1.4258 0.34348

Wavelet - Coif3 Universal 2.1487 0.34895
Minimax 1.4115 0.34602
SURE 0.5656 0.33709
Oracle 3.1698 0.35233
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Wavelet - Syml0 Universal 3.1229
Minimax 2.6255

0.35374
0.35085

SURE 1.1135 0.34224

Figure 2 shows some reconstructed images with
filtering the projections with the techniques that have
shown better results.

(d) (e) (f)
Figure 2 - (a) noisy sinogramof Shepp-Loganphantom,(b)
reconstructedimagefromthis sinogram,(c) reconstructedimage
from the filtered sinogram with pointwise Wiener tilter and
adaptive windowing, (d) sinogram tiltered with wavelet
thresholding- SymlO basis and universal threshold, (e) db12
basis and universal threshold, (f) coif3 basis and universal
threshold.

Three phantoms were used to obtain the projections of
the CT scanner developed by CNPDIA-EMBRAPA. The
phantoms have homogeneous, symmetrical and
asymmetrical composition.

The first phantom was built with a plexiglass
cylindrical structure with water (H20) inside. The set of
projections of this phantom has dimensions of 79x79.
Each projection has 79 points and 79 projections were
obtained.

Table 2 shows the results ofthe measurement error of
the reconstructed image from the filtered projections. In
this phantom the wavelet thresholding with Dbl2 and
SymlO basis surpassed the results of the Wiener filter.
Under the criterion ISNR the best threshold was the .
Minimax threshold; however the criterion SSIM indicates
the Universal threshold as the best. Figure 3 shows the
reconstructed images after filtering the projections.

Table 2 - Errormeasuresofreconstructedimagesfromthe
filteredprojections- homogeneousphantom.

FiLter

3 2.0726 0.24357
5 2.2442 0.25668

Window/ ISNR SSIM
Threshold

Pointwise
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Wiener Filter 3e5 2.1659 0.26297
Orac1e 2.3076 0.29158

Wavelet - Db12 Universal 2.4391 0.29666
Minimax 2.6277 0.28871
SURE 2.5047 0.27009
Orac1e 1.6875 0.25946

Wavelet - CoiO Universal 1.6959 0.26162
Minimax 1.6889 0.24717
SURE 1.6833 0.22756
Orac1e 2.1225 0.29466

Wavelet - Sym10 Universal 2.1639 0.29828
Miriimax 2.5204 0.28226
SURE 2.1912 0.25100

(d) (e)
Figure 3 - (a) noisy sinogram of homogeneous phantom, (b)
reconstructed image from this sinogram, (c) reconstructed image
from the filtered sinogram with pointwise Wiener filter and
adaptive windowing, (d) filtered sinogram with .wavel~t
thresholding - Dbl2 basis and minimax threshold, (e) COlf3basis
and universal threshold, (t) symlO basis and universal threshold

The symmetrical phantom is composed of a cylindrical
plexiglass with four holes inside symmetrically arranged.
Two parallel holes were filled with aluminum (AI) and
the other two were not completely, leaving air inside. The
set of projections of this phantom also has a 79x79
dimension.

Table 2 shows the results of the measurement error of
the reconstructed image with the filtering of the phantom
symmetrical sinogram. The pointwise Wiener filter
presents the best results. Filtering with the thresholding of
Wavelet coefficients resulted in very similar results, and
the best results were obtained with the Db12 basis and use
of the Universal threshold.

Table 3 - Error measures ofreconstructed images from the
filtered projections - symmetrical phantom.

Filter Window/ ISNR SSIM
Threshold
3 3.3845 0.84747
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Pointwise 5 2.1820 0.82658
Wiener Filter 3e5 5.3709 0.88644

Orac1e 2.5060 0.81538
Wavelet - Db12 Universal 2.5814 0.81654

Minimax 3.2064 0.82621
SURE 3.9305 0.83610
Oracle 3.7757 0.83437

Wavelet - CoiO Universal 3.8073 0.83590
Minimax 1.8868 0.81013
SURE 0.2305 0.78566
Orac1e 2.8338 0.82172

Wavelet - Syml0 Universal 2.8960 0.82431
Minimax 3.4186 0.83461
SURE 1.7627 0.80670

(d) (e)
Figure 4 - (a) Noisy sinogram of symmetric phantom, (b)
noisy image, (c) reconstructed image from the filtered sinogram
with pointwise Wiener filter and adaptive windowing, (d)
sinogram filtered with wavelet thresholding - dbl2 basis and
SURE threshold, (e) coif3 basis and universal threshold, (t)
sym IObasis and minimax threshold.

The third phantom (asymmetric) was constructed from
a plexiglass cylindrical structure with ten holes in it. The
holes have different diameters. The asymmetric phantom
sinogram has size 100xloo.

Table 4 show the results of the measurement error of
filtering ofthe asymmetrical phantom sinogram. The
pointwise Wiener filter showed the best results. Figure 5
shows the reconstructed images after the filtering ofthe
projections.

Table 4 - Error measures ofreconstructed images from the
filtered projections - asymmetrical phantom.

Filter Window/ ISNR SSIM
Threshold
3 6.2718 0.70479

Pointwise 5 5.0834 0.70890
Wiener Filter 3e5 6.0210 0.72149
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Oracle 4.2005 0.70009
Wavelet - Db12 Universal 4.7233 0.70765

Minimax 5.3530 0.70607
SURE 5.2798 0.69614
Oracle 3.5545 0.68531

Wavelet - Coif3 Universal 3.9739 0.68434
Minimax 4.3308 0.68857
SURE 4.7923 0.68482
Oracle 4.1445 0.70280

Wavelet - Syml0 Universal 4.1556 0.70408
Minimax 4.6148 . 0.69835
SURE 4.6180 0.68676

Figure 5 - (a) Noisy sinogram of asymmetrical phantom, (b)
noisy image, (c) reconstructed image from the filtered sinogram
with pointwise Wiener filter and adaptive windowing, (d)
sinogram filtered with wavelet thresholding - db12 basis and
universal threshold, (e) Coit3 basis and Minimax threshold, (f)
Sym 1O basis and Universal threshold

5. Conclusions

The pointwise Wiener filter in most cases showed the
best results. The only exception was with the
homogeneous phantom in which the Wavelets were
better. This is because of the composition of the phantom
that has no structure inside. The adaptive windowing in
ali cases improved the performance of the pointwise
Wiener filter considering the SSIM criteria. The Wiener
filter is characterized by computation of local estimates at
each point to be filtered in the projection, while the
Wavelet thresholding has a global dynamics in
conducting Wavelet transform and obtaining the
threshold.
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