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Abstract 

This work aims to evaluate the hydrodynamic properties of the sludge bed of Upflow Anaerobic 

Sludge Blanket (UASB) reactors based on its settleability and expansion characteristics. The 

methodologies used for the evaluation of the settleability of aerobic activated sludge, and for the 

expansibility of a sludge bed of Expanded Granular Sludge Bed reactors and Fluidised Bed 

Reactors were adapted and applied to the particular characteristics of the sludge of UASB reactors. 

An easy-to-build experimental set-up was developed to assess the parameters necessary for the 

equations of settleability and of expansibility. The results obtained from the sludges of seven 

differently operated reactors show that settleability increased and expansibility decreased at 

decreased hydraulic retention time and/or increased influent concentrations. The results also show 

that it is to no avail to design an UASB reactor with a longer HRT to cope with hydraulic shock 

loads. 
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INTRODUCTION 

One of the main advantages of the Anaerobic Upflow Sludge Blanket (UASB) reactor is its capacity 

to retain a high quantity of viable biomass under operational conditions, resulting in a sludge age 

that is much longer than the hydraulic retention time (HRT). This is a result of the highly settleable 

type of biomass that develops in the system. 

One of the parameters frequently used to evaluate the settleability of an anaerobic sludge is the 

Sludge Volume Index (SVI). However, the use of SVI is controversial. According to several authors 

(Van Haandel and Van der Lubbe, 2007, Giokas et al., 2003; Jin et al., 2003; Dick and Vesilind, 

1969), SVI has a bad correlation with the settleability characteristics of aerobic sludge. The latter 

authors also agreed that a more accurate procedure for the evaluation of the settleability seems to be 

the one developed by Vesilind (1968), which is based on the relationship between the solids zone 

settling velocity (ZSV) and the sludge concentration. This method generates two empirical 

parameters, namely “k” and “US,0”, which provide insight into the hydrodynamics of the aerobic 

sludge flocks. However, the use of this kind of test for anaerobic sludge is so far not reported. In 

this case, other methods were used to assess the settleability by using SVI (Martínez et al., 2001; 

Ince et al., 2001; Wang and Shen, 2000); Yun et al., 2000), Paques (Liu et al., 2006) and 

settleometer (Poinapen et al., 2009). 

An important characteristic of anaerobic reactors, operated in an upward-stream mode, is the 

expansibility of the sludge bed. Several papers deal with sludge bed expansion, but only for 

Expanded Granular Sludge Bed (EGSB) and Fluidised Bed Reactors (FBR), for instance, Liu et al. 

(2006), Saravanan and Sreekrishnan (2005), Nicolella et al. (1999), and Marín et al. (1999) used 

methods based on Richardson and Zaki (1954). Particularly for UASB reactors, sludge bed 

characteristics may be related to the capacity of the reactor to retain the sludge. In fact, the 

hydrodynamic behaviour of the sludge bed in UASB reactors is still not clear, and the appropriate 

sludge bed height or the space between the sludge bed and the phase separator has been designed by 

trial and error. 

This work aims to evaluate the hydrodynamic properties of the UASB sludge bed based on its 

settleability and expansibility. To achieve this goal, the methodologies used for the evaluation of the 
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settleability of aerobic activated sludge, and for the expansibility of the sludge bed of EGSB and 

FBR reactors were adapted and applied to the particular characteristics of the sludge of UASB 

reactors. Sludge samples obtained from pilot-scale UASB reactors were used to test and evaluate 

the effects of different operational conditions on the hydrodynamic properties of anaerobic sludge. 

 

 

MATERIALS AND METHODS 

 

Anaerobic Sludge 

The experimental investigation was carried out, using sludge obtained from seven pilot-scale UASB 

reactors (volume of 120 L and height of 4 m), which were fed with domestic sewage at a 

temperature of around 27
o
C. They were denominated by R

HRT
COD, where the superscript index 

stands for the hydraulic retention time, and the subscript index stands for the total influent Chemical 

Oxygen Demand (COD), both are the average during the “steady state” conditions. The main 

operational parameters are presented in Table 1. 

When “steady state” was established, the sludge was withdrawn from taps located at 4 heights of 

the reactors (0.25, 1.00, 1.75 and 2.50 meters from the bottom) to assemble composite samples, 

which were used in the lab-scale reactors.  

 
Table 1. Operational parameters of the pilot-scale UASB reactors from where the tested sludges were withdrawn. ± 

values are Confidence Intervals (α=0.05). 

Reactor R
6

816 R
4
770 R

2
787 R

1
716 R

4
558 R

2
352 R

1
136 

HRT (h) 6 4 2 1 4 2 1 

U (m/h) 0.64 0.95 1.90 3.80 0.95 1.90 3.80 

CODInf (mg/L) 816±45 770±38 787±31 716±42 558±31 352±18 136±18 

CODSS (mg/L) 566±28 459±22 513±20 486±28 383±19 235±13 - 

CODDis (mg/L) 250±73 311±60 274±51 230±70 175±50 117±31 - 

CODInf = Total Influent COD; CODSS = Influent suspended solids in term of COD; CODDis = Dissolved 

influent COD. Obs.: Suspended and Dissolved COD of Reator R
1
136 were not measured. 

 

Lab-Scale Reactors 

The experimental set-up comprised of two lab-scale UASB reactors constructed from plexiglass 

tubes, with a volume of 7.8 L, a height of 1.2 m and internal diameter of 0.08 m. The reactors were 

provided with a modified gas-solid-liquid separator as described by Leitão (2004), and equipped 

with a recirculation pump. A slowly rotating stirrer (1 rpm) was installed in the lab-scale reactors to 

avoid channelling and “piston” formation in the sludge bed.  

 

Experimental Procedure 

Composite samples of the sludges generated in the 120 L plants were analysed for total solids (TS), 

volatile solids (VS), and SVI prior to the test in the lab-scale reactors. 2.5 L of this composite 

sample were used in each of the two lab-scale reactors (the experiments were done in duplicate). 

Next, the reactors were filled up with anaerobically treated effluent and recirculation was started. 

By adjusting the recirculation rate, the applied upflow velocity (U) was the same as in the pilot-

scale reactor from which the sludge was withdrawn. This operational condition was maintained 

until almost no gas was released. Subsequently, U was increased or decreased, by re-adjusting the 

recirculation pumps. Data of sludge bed heights and times were collected until there was almost no 

variation in the bed height. U was increased until the sludge bed reached the gas-liquid-solid 

separator, and decreased by factors of 0.5, 0.75 and finally recirculation was stopped (U = 0 m/h), 

and the minimum height was observed. 



All physical-chemical analyses were performed as recommended by APHA (1995). The SVI 

assessed in this work refers to the diluted SVI developed by Stobbe (1964). 

 

 

RESULTS AND DISCUSSION 

 

An example of results that can be obtained using the aforementioned methodology is depicted in 

Figure 1A, where the sludge samples withdrawn from the pilot-scale reactor R
1

716 (operated with 

upflow velocity of 3.80m/h) was tested for different upflow velocities in the lab-scale reactors. 

During tests, the upflow velocity (U) in the lab-scale reactor was first adjusted to 3.80m/h (the same 

upflow velocity imposed to the pilot-scale reactor R
1

716). After a certain time, the gas production 

stopped and the height of the sludge bed stabilised at a level of 46.5cm (see dashed line in Figure 

1A). The upflow velocity was then set at 5.70m/h until the sludge bed stabilised at another level 

(51.5cm), and subsequently the pump was again set at 3.8m/h until the level of the bed achieved its 

former position. This procedure was repeated for upflow velocities of 1.90 and 0.95m/h. The case 

of U=0m/h was also tested, which represents the maximum contraction of the sludge. In Figure 1B 

the results of the sludge bed height after stabilisation for each upflow velocity is depicted. Sludges 

taken from all reactors mentioned in Table 1 were tested following this procedure. 

 

 
Figure 1. Variation of the sludge bed height (sludge taken from reactor R

1
716) due to changes in upflow velocity (U). 

(A) Variation with time; dashed line represents the normal upflow velocity in the pilot-scale reactor R1716. (B) Sludge 

height for different upflow velocities applied to the lab-scale reactors after stabilisation of the expansion or contraction. 

 

Sludge Settleability 

As mentioned before, sludge concentration of the composite sample was determined prior to 

conducting any tests, and consequently the sludge mass was known. Since the volume of the sludge 

bed is proportional to the bed height, there was a different volume for each U, and accordingly a 

different sludge bed concentration (X). 

With the calculated results of X and the method developed by Vesilind (1968), viz. plotting Ln(U) 

versus X, a straight line results using the least squares method. Based on this line, a direct 

relationship is obtained, as presented in Equations 1 to 4. Results are presented in Table 2. 
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where X is the sludge concentration for a given sludge bed height (g/L); X0 is the sludge 

concentration of the composite sample (g/L); V0 is the volume of sludge used for the experiment; 



“A” is the cross-section area of the lab-scale reactor (0.5dm
2
); and h (dm) is the height of the sludge 

for a given upflow velocity;US,0 (m/h) and k (L/g) are the Vesilind empirical constants; U is the 

upflow velocity (m/h); and “a” is an empirical constant. 

 
Table 2. Operational parameters of the pilot-scale UASB reactors from where the tested sludges were withdrawn, and 

calculated constants for sludge settleability. 

Reactor R
6

816 R
4
770 R

2
787 R

1
716 R

4
558 R

2
352 R

1
136 

SVI 18 21 22 16 18 18 23 

a 2.785 2.386 2.907 4.905 2.417 2.144 3.839 

X0 (g/L) 37.37 35.16 35.15 35.01 33.82 29.15 15.14 

V0 (L) 2.5 2.5 2.5 2.5 2.5 2.0 2.5 

k (L/g) 0.131 0.097 0.105 0.128 0.081 0.134 0.204 

US,0 (m/h) 16 11 18 135 11 9 47 

 

Figure 2A depicts the results of the calculated sludge bed concentration (X) and Ln(U) for all 

sludge samples taken from the seven UASB reactors. In this figure, the straight line for the sludge 

of the pilot-scale reactor R
1
716 was plotted as an example. Figure 2B shows the experimental results 

of the reactors operated at different HRT (R
6

816, R
4
770, R

2
787, and R

1
716) and with an influent COD 

concentration (CODInf) of around 800 mg/L, together with the calculated relation between U and X 

using Equation 3. The experimental data indicate that as HRT decreases, and hence upflow velocity 

increases, the settleability of the sludge improves, so that a higher sludge concentration can be kept 

in the reactor. This is because at equilibrium conditions, viz. a constant sludge bed height, the 

applied U can be assumed to be equal to the apparent settling velocity of the sludge bed; 

consequently for a given U the sludge bed concentration (X) will increase with the settleability of 

the sludge.  

 

 
Figure 2. (A) Results of the calculated sludge bed concentration “X” and Ln(U). (B) Experimental and calculated 

results of upflow velocity (U) and sludge concentration (X). 

 

The sludge retention in UASB systems is assured by the development of a well-settleable sludge, 

which counterbalances the drag force by the imposed upflow velocity. Consequently, reactors 

operated with high upflow velocities are intrinsically capable to cope with such operation and will, 

by principle, contain sludge with a relatively high settleability. The sludge settleability apparently 

increased as the HRT decreased (and upflow velocity increased), which is possibly due to the 

occurrence of a selection process in the sludge bed, i.e. the washout of the voluminous light flocks, 

leaving the well-settling aggregates in the reactor (O'Flaherty et al., 1997). 

When the method for evaluation of settleability was applied to sludge obtained from reactors 



operated at different CODInf (results not shown) the settleability of the sludge increased as the 

CODInf increased. However these results seem to be true for the operational conditions applied 

during this research, i.e. “U” in the range of 0.64 - 3.80 m/h, CODinf between 136 and 816 mg/L, 

and CODSS below 566 mg/L. Higher upflow velocities can deteriorate the sludge due to shear forces 

(Bhunia and Ghangrekar, 2008), and influent with high concentration of SS can negatively affect 

the reactor due to the limiting hydrolysis rate (Halalsheh et al., 2005). 

 

This phenomenon can be due to one of the following factors: 

 A low substrate concentration may cause a depletion of the extracellular polymer (ECP) 

production, known to be one of the responsible factors for sludge granulation or flocculation (Yun 

et al., 2000). This may lead to a more flocculent and less settleable type of sludge (Mulder, 2003). 

 The formation of a more flocculent type of sludge with the application of low concentration 

influent, and relatively low upflow velocities, may be a result of natural selection, as flocculent 

sludge is characterized by a lower mass transfer resistance as compared to granular sludge 

(Nicolella et al., 2000). Therefore, the substrate is more accessible to the biomass in the flocculent 

sludge. 

There was no simple and evident correlation observed either between SVI and the settleability 

constants (“k” and “US,0”), or between SVI and the operational parameters (HRT and CODInf), as 

shown in Table 2. The SVI is considered as an inferior parameter for characterising the settleability 

of anaerobic sludge: (i) it is not independent of the sludge concentration, (ii) it is highly affected by 

the experimental set-up and procedure during the test, (iii) it defines only one point of the settling 

curve, and (iv) it is intuitively doubtful that two parameters of a model (Equation 3) can be 

estimated based on only one SVI value from a test performed at a single sludge concentration value 

(Jin et al., 2003; Giokas et al., 2003; Ekama and Marais, 1986; Dick and Vesilind, 1969). In contrast 

to activated sludge systems, UASB reactors use sedimentation as the driving force, and as a 

consequence the values of SVI are very low in comparison to activated sludge. The values of SVI 

found for the tested anaerobic sludges vary between 16 and 23 mL/g which are far below the range 

usually found for aerobic sludge. In fact, Mohlman (1934) developed the SVI method for evaluation 

of the settleability of aerobic activated sludge, which SVI ranges from ca. 40 to 400 mL/g (Giokas 

et al., 2003). 

The methodology developed by Vesilind (1968), adapted in the present investigation, can be used 

for the optimisation of systems that use UASB reactors as pre-treatment. When UASB reactors are 

operated without intentional sludge discharge, as applied in the present research, the produced 

excess sludge can be removed from a secondary treatment unit, e.g. a secondary settler. The 

parameters US,0 and k (Table 2) can be used for the design of this secondary settler. Such an 

operational procedure of the UASB reactor may improve the filtration capacity of the system, as 

well as the organic load potential, because the system is operated with its maximum sludge 

accumulation capacity. Moreover, by removing the sludge from a secondary treatment unit, the risk 

of undue discharge is avoided and spontaneous discharges from the UASB reactor do not appear in 

the effluent. Moreover it has been shown that a large part (1/3) of the sludge production is washed 

out, even if the reactor is no full of sludge (Cavalcanti et al, 1999) 

 

Sludge Bed Expansion 

The expansion of the sludge bed () was calculated using Equation 6. Using the methodology 

developed by Richardson and Zaki (1954), Log(U) is plotted versus the calculated values of  

(Figure 3A). The parameters of the linear equation (Equations 6 to 8) can be calculated from the 

straight lines obtained, using the least squares method. Results are presented in Table 3. 
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where:  (%) is the sludge bed expansion; h (dm) is the established height of the sludge bed for a 

given upflow velocity; h0 (dm) is the height of the sludge when upflow velocity is zero; UE,0 (m/h) 

and “m” (L/g) are the expansibility constants; U (m/h) is the upflow velocity; and “b” is an 

empirical constant. 

Figure 3B shows the experimental results of the reactors operated at different HRTs (R
6

816, R
4
770, 

R
2
787, and R

1
716) and at a CODInf of around 800 mg/L, together with the calculated results using 

Equation 7 (represented in the graph by the continuous line). In this figure, the straight line for the 

sludge of the pilot-scale reactor R
1

716 was plotted as an example. When comparing the results of 

these reactors it is clear that the sludge expansibility declined at a decreasing HRT. 

 
Table 3. Operational parameters of the pilot-scale UASB reactors from where the tested sludges were withdrawn, and 

calculated constants for sludge expansibility. 

Reactor R
6

816 R
4
770 R

2
787 R

1
716 R

4
558 R

2
352 R

1
136 

h0 (m) 30.5 27.8 23.8 21.5 26.4 21.0 16.4 

m (L/g) 1.957 1.588 1.518 1.595 1.271 1.610 1.843 

b 0.523 0.283 0.075 0.508 0.099 0.542 0.214 

UE,0 (m/h) 0.3 0.5 0.8 3.2 0.8 0.3 0.6 

 

Sludge expansion is highly related to settleability, and both parameters describe the same 

hydrodynamic characteristics of the sludge bed. The discussion presented for sludge settleability 

therefore is also valid for sludge expansion. 

 

 
Figure 3. (A) Results of the calculated sludge expansion () and Log(U). (B) The effect of upflow velocity (U) on the 

sludge bed expansion (). 

 

The model used for the prediction of the sludge bed expansion, adapted from the equation of 

Richardson and Zaki (1954), can be applied for the optimisation of the sludge bed height in an 

UASB reactor in case the reactor is operated with intentional sludge discharge. If the flow rate 

fluctuation regime is known, it is possible to predict the variation of the sludge bed height. 

Therefore, it is possible to avoid any substantial sludge washout during a hydraulic overload, which 

can deteriorate the post treatment step. As an example: assuming that the UASB reactor has to cope 

with a variation of a factor of 1.5 the average flow rate (usually found in separate sewer systems), 



and using the data of the reactors operated at HRT of 6 and 4 hours (upflow velocity of 0.64 and 

0.95 m/h respectively) and influent concentration ranging from 500 and 800 mgCOD/L, the optimal 

sludge bed height (under “steady state” conditions) should be maintained between 70 to 80% of the 

distance between the bottom of the reactor and the 3 phase separator.  

If the UASB reactors are operated in a mode without intentional sludge discharge, it is possible to 

quantify the amount of sludge that will be expelled during an imposed hydraulic overload. Thus, 

either some protective measures can be applied in the post treatment, or the post treatment can be 

designed in such a way that it can cope with the temporary sludge overload. 

The results in this work show that it is of no avails to design a reactor with a longer HRT in order to 

cope with a hydraulic shock, as a more expansible sludge will develop, which is less able to 

withstand flow variations. 

 

 

CONCLUSIONS 

(i) The experimental set-up and the procedure presented in this work are suitable for assessing 

the settleability of anaerobic sludge in terms of the Vesilind (1968) equation, as well as to 

estimate the expansion of a sludge bed by using the equation of Richardson and Zaki (1954). 

(ii) Decreasing HRTs or increasing upflow velocities lead to increased settleability and decreased 

expansion of the anaerobic sludge in reactors operated with upflow velocities in the range of 

0.64 - 3.80 m/h, CODinf between 136 and 816 mg/L, and CODSS below 566 mg/L. 

(iii) Decreasing the influent COD concentration leads to decreased settleability and increased 

expansion of the anaerobic sludge. 

(iv) The settleability test developed in this work can help to design a secondary settler, which can 

improve the performance of the system. 

(v) The expansibility test developed in this work can be used to optimise the sludge bed level, 

when the UASB reactor has to cope with fluctuating flow rates. 

(vi) The SVI parameter cannot be used to compare settleability of different UASB sludges, since 

this kind of sludge is highly settleable and seems to be out of range for this method. 

(vii) It is to no avail to design an UASB reactor with a longer HRT to cope with hydraulic shock 

loads. 
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Table 1. Operational parameters of the pilot-scale UASB reactors from where the tested sludges were withdrawn. ± 

values are Confidence Intervals (α=0.05). 

Reactor R
6

816 R
4

770 R
2
787 R

1
716 R

4
558 R

2
352 R

1
136 

HRT (h) 6 4 2 1 4 2 1 

U (m/h) 0.64 0.95 1.90 3.80 0.95 1.90 3.80 

CODInf (mg/L) 816±45 770±38 787±31 716±42 558±31 352±18 136±18 

CODSS (mg/L) 566±28 459±22 513±20 486±28 383±19 235±13 - 

CODDis (mg/L) 250±73 311±60 274±51 230±70 175±50 117±31 - 

CODInf = Total Influent COD; CODSS = Influent suspended solids in term of COD; CODDis = Dissolved 

influent COD. Obs.: Suspended and Dissolved COD of Reator R
1
136 were not measured. 
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Table 2. Operational parameters of the pilot-scale UASB reactors from where the tested sludges were withdrawn, and 

calculated constants for sludge settleability. 

Reactor R
6
816 R

4
770 R

2
787 R

1
716 R

4
558 R

2
352 R

1
136 

SVI 18 21 22 16 18 18 23 

a 2.785 2.386 2.907 4.905 2.417 2.144 3.839 

X0 (g/L) 37.37 35.16 35.15 35.01 33.82 29.15 15.14 

V0 (L) 2.5 2.5 2.5 2.5 2.5 2.0 2.5 

k (L/g) 0.131 0.097 0.105 0.128 0.081 0.134 0.204 

US,0 (m/h) 16 11 18 135 11 9 47 
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Table 3. Operational parameters of the pilot-scale UASB reactors from where the tested sludges were withdrawn, and 

calculated constants for sludge expansibility. 

Reactor R
6

816 R
4

770 R
2
787 R

1
716 R

4
558 R

2
352 R

1
136 

h0 (m) 30.5 27.8 23.8 21.5 26.4 21.0 16.4 

m (L/g) 1.957 1.588 1.518 1.595 1.271 1.610 1.843 

b 0.523 0.283 0.075 0.508 0.099 0.542 0.214 

UE,0 (m/h) 0.3 0.5 0.8 3.2 0.8 0.3 0.6 
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