

Anais do I Workshop Sobre Recuperação de Áreas Degradadas de Mata Ciliar no Semiárido

Fitossociologia da Vegetação Ciliar do Submédio São Francisco

Clóvis Eduardo de Souza Nascimento¹

Introdução

O estudo da vegetação nas margens do Rio São Francisco pressupõe a avaliação da presença das espécies e suas relações com as variações topográficas e pedológicas. Assim, realizou-se uma análise da fitossociologia da vegetação de um remanescente ciliar à margem do Rio São Francisco, em Petrolina, PE.

Na área estudada foi implantado um transecto perpendicular ao rio, onde a partir das particularidades das situações topográficas, padrões de solo, condições de drenagem e variação da vegetação ao longo do transecto, partindo da margem do Rio São Francisco até as terras altas, foram identificados cinco ambientes topográficos (Figura 1). Os quatro primeiros ocupando o terraço fluvial o Rio São Francisco, enquanto o quinto ocorrendo nas terras altas de pediplano, particularmente relacionadas com o tabuleiro sertanejo (JACOMINE et al., 1973; LIMA, 1989; BIGARELLA, 2003).

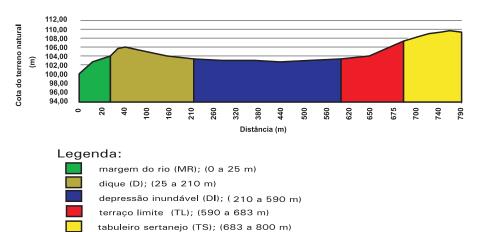


Figura 1. Perfil topográfico — remanescente Rio São Francisco, Petrolina, PE.

¹Engenheiro-florestal, D.Sc. em Biologia Vegetal, pesquisador da Embrapa Semiárido, Petrolina, PE. clovisen@cpatsa.embrapa.br.

Resultados

Os resultados, baseados no primeiro estudo florístico e fitossociológico da vegetação ciliar do Rio São Francisco (NASCIMENTO, 1998) foram os seguintes: o primeiro nível do terraço fluvial, a margem do rio (MR), tem início logo após a planície fluvial ou planície de inundação. O solo tem serrapilheira e é da classe solo Aluvial. O dique (D) ocupa o segundo nível do terraço fluvial, com solo Cambissolo. A depressão inundável (DI) ocupa o nível rebaixado, com solo Cambissolo. O terraço limite (TL) limita-se com as terras altas do tabuleiro sertanejo e com o solo Aluvial. O tabuleiro sertanejo (TS), ocupa o platô e tem solo da classe Podzólico.

Normalmente, a granulometria mais grossa ocorre nas margens. Contudo, neste caso, os valores físico-químicos, obtidos nas profundidades de 0-20 cm e 20-40 cm mostram que a granulometria é mais fina da MR até a DI, por causa do tipo de solo. A granulometria mais grosseira em direção ao TS é decorrente do material proveniente de áreas adjacentes. O cálcio, sódio e magnésio apresentaram valores altos na DI. Os maiores teores de matéria orgânica foram encontrados na MR.

No levantamento florístico da área (Tabela 1), que incluiu árvores, arbustos, trepadeiras e cipós com diâmetro do caule maior ou igual a 3 cm e altura total maior ou igual a 1 m, foram identificadas 48 espécies, distribuídas em 39 gêneros e 21 famílias.

Com relação às famílias que apresentaram maior número de espécies, destacaram-se Euphorbiaceae com oito espécies, seguida de Caesalpiniaceae e Mimosaceae (sete cada) e por Bignoniaceae, Boraginaceae e Cactaceae (três cada).

Nas 138 parcelas, foram amostrados 2.234 indivíduos num total de 39 espécies distribuídas em 18 famílias.

Considerando-se as variações florísticas ao longo dos cinco ambientes topográficos, foi realizada uma análise de agrupamento com o objetivo de separá-los do ponto de vista florístico.

No dendrograma obtido a partir dos dados de presença/ausência das 39 espécies nas 138 parcelas observou-se que a presença/ausência das espécies, bem como sua maior/menor frequência no conjunto das parcelas esteve bastante relacionada às situações topográficas.

Tabela 1. Relação das famílias e espécies amostradas nas parcelas (A) e observadas fora das parcelas (B), à margem do Rio São Francisco. MR: margem do rio; D: dique; DI: depressão inundável; TL: terraço limite; TS: tabuleiro sertanejo. Trep. - trepadeira. EMBRAPA-SPSB, Petrolina, PE.

Família/Espécie		Nome vulgar	Tipo	Α	В	Ambiente topográfico					
						MR	D	DI	TL	TS	
1)	ANACARDIACEAE										
1.	Schinopsis brasiliensis var. brasiliensis Engl.	baraúna	árvore	-						Х	
2.	Spondias tuberosa Arruda	umbuzeiro	árvore	-						Х	
2)	APOCYNACEAE										
3.	Aspidosperma pyrifolium Mart.	Pereiro	árvore	-						Х	
3)	BIGNONIACEAE										
4.	Tabebuia spongiosa Rizzini	sete-cascas	árvore	-						Х	
5.	Melloa quadrivalvis (Jacq.) A. H. Gentry	-	arbusto		-		Х				
6.	Arrabidaea sp.	-	arbusto		-		Х				
4)	BORAGINACEAE										
7.	Cordia verbenacea A. DC.	moleque duro	arbusto	-			Х		Х		
8.	Cordia globosa (Jacq.) Kunth	moleque duro	arbusto		-		Х				
9.	Tournefortia rubicunda Salzm. ex DC.	pau cachimbo	arbusto	-			х				

Continua...

						(Contir	nuaçã	io
Família/Espécie	Nome vulgar Tipo A B Ambient		te to	e topográfico					
·	· ·	•			MR	D	DI .	ΤĽ	TS
5) BURSERACEAE									
10. Commiphora leptophloeos (Mart.) J. B. Gillett.	umburana-de- cambão	árvore	-						Х
6) CACTACEAE									
11. Cereus jamacaru DC.	mandacaru	árvore		-		х			
12. Harrisia adscendens (Guerke) Britton & Rose	Bugi	arbusto	-			x			х
13. Pilosocereus gounellei (F.A.C. Weber.) Byles & G.D. Rowley subsp. gounellei7) CAESALPINIACEAE	xique-xique	arbusto	-					Х	Х
14. <i>Bauhinia pentandra</i> (Bong.) Vogel ex Steud.	unha de cabra	arbusto		-		x			
15. Caesalpinia ferrea Mart. ex. Tul.	pau-ferro	árvore	-			х			
16. Caesalpinia microphylla Mart.	catingueira- rasteira	arbusto	-						X
17. Hymenaea courbaril L.	Jatobá	árvore		-		X			
18. Poeppigia procera C. Presl	muquém	árvore	-			х		х	
19. Senna spectabilis var. excelsa (Schrad) H.S. Irwin& Barneby	canafístula	arbusto	=			Х			Х
20. Senna macranthera (Collad.) H.S. Irwin & Barneby8) CAPPARACEAE	são joão	arbusto	=						Х
21. Capparis cynophallophora L.	feijão-brabo	arbusto	-			x		х	Х

Continua...

Fitossociologia da Vegetação Ciliar do Submédio São Francisco

Continuação

Família/Espécie	Nome vulgar	rulgar Tipo A B Ambiente							e topográfico			
					MR	D	DI	TL	TS			
9) CONVOLVULACEAE												
22. Ipomoea carnea subsp. fistulosa Mart. ex Choisy	Canudo	arbusto	-				х					
10) CUCURBITACEAE												
23. Wilbrandtia sp.	batata de teiú	trep.	-			Х			Х			
11) ERYTROXYLACEAE												
24. Erythroxylum pungens O. E. Schultz	rompe-gibão	arbusto	-						Х			
12) EUPHORBIACEAE												
25. Cnidoscolus phyllacanthus (Muell. Arg.) Pax. &	faveleira	árvore	-						Х			
K. Hoffm.	\											
26. Croton campestris A. StHil.	Velame	arbusto			Х	X		Х	Х			
27. Croton conduplicatus Kunth	quebra-faca	0.1.0.0.0.0	-						X			
28. Croton sonderianus (Muell. Arg.)	marmeleiro	arbusto							Х			
29. <i>Jatropha mutabilis</i> (Pohl) Baill.	Pinhão		-					Х	Х			
30. Jatropha ribifolia (Pohl) Baill.	Pinhão		-					X	Х			
31. Phyllanthus cf. chacoensis Morong	-	árvore	-		Х	Х						
32. Sapium scleratum Ridley	burra leiteira	árvore	-						Х			
13) MALVACEAE												
33. Gaya aurea A. StHil.	-	arbusto	-		X							
14) MIMOSACEAE												
34. Acacia farnesiana (L.) Willd.	coronha	árvore	-			Х	Х	Х				
35. <i>Inga vera</i> subsp. <i>affinis</i> (DC.) T. D. Pennington	Ingá	árvore	-		X							
36. <i>Mimosa arenosa</i> (Willd.) Poir.	jurema vermelha	árvore	-			Х		Х				

Continua...

Família/Espécie	Nome vulgar	Tipo	Α	В	Ambiente topográfico				
	_				MR	D	DI	TL	TS
	alagadiço	árvore	-		Х	Х	Х	Х	
37. <i>Mimosa bimucronata</i> Kunth									
38. <i>Mimosa pigra</i> L.	calumbi	arbusto	-		Χ				
39. Mimosa tenuiflora (Willd.) Poir.	jurema preta	árvore	-			Х		Х	Х
40. Pithecellobium parvifolium (Willd.) Benth.	arapiraca	árvore	-			Х			Х
15) PALMACEAE									
41. Copernicia cerifera (Arruda) Mart.	carnaubeira	árvore		-		х			
16) PAPILIONACEAE									
42. Geoffroea spinosa Jacq.	marizeiro	árvore	-		Х	х	х	Х	
17) RHAMNACEAE									
43. Zizyphus joazeiro Mart.	Juazeiro	árvore	-		Х	х			х
18) SAPINDACEAE									
44. Cardiospermum halicacabum L.	chumbinho	trep.	-			х		х	
45. Paullinia pinnata L.	-	cipó	_		Х				
19. SOLANACEAE									
46. Lycium cf. martii Sendtn.	-	árvore		_		х			
20) STERCULIACEAE									
47. Byttneria filipes Mart. ex K. Schum.	-	arbusto		_			х		
21. ULMACEAE									
48. Celtis membranacea Miq.	Juaí	árvore	-		x	x			
Número total de espécies					10	27	5	13	23

A análise do dendrograma mostrou um grupo formado apenas pelas parcelas do tabuleiro sertanejo, com inúmeras espécies exclusivas como: Aspidosperma pyrifolium, Caesalpinia microphylla, Cnidoscolus phyllacanthus, Commiphora leptophloeos, Croton sonderianus, Erythroxylum pungens, Jatropha ribifolia, Pilosocereus gounellei, Sapium sceleratum, Schinopsis brasiliensis var. brasiliensis, Spondias tuberosa e Tabebuia spongiosa, típicas de outras áreas do TS nordestino.

Nas parcelas da MR ocorreram *Inga vera* subsp. affinis, Gaya aurea, Mimosa pigra e Paullinia pinnata, como exclusivas deste ambiente.

Nas parcelas da depressão inundável predominou *Ipomoea carnea* subsp. *Fistulosa*.

Considerando-se os aspectos de drenagem e, principalmente, a própria análise do dendrograma, em vez dos cinco ambientes topográficas, têm-se quatro fitogeoambientes: margem do rio (MR); dique + parte do terraço limite (D+TL); depressão inundável + parte do terraço limite (DI+TL) e tabuleiro sertanejo (TS).

Dos ambientes do terraço fluvial, a MR participou com os maiores valores para área basal e densidade totais, altura e diâmetro máximos e altura média. A partir dos resultados obtidos nos outros três ambientes, ficou confirmado que a fisionomia da área de estudo não é uniforme ao longo do transecto.

Comparando a distribuição dos indivíduos em classes de diâmetro e altura dos quatro fitogeoambientes, observa-se que houve uma concentração de indivíduos, em torno dos 90%, entre as classes de 3 cm a 12 cm de diâmetro e 1 cm a 6 m de altura. No terraço fluvial, merece destaque a fisionomia de DI + TL, formada por 79,8% dos indivíduos na classe de 3 cm a 6 cm de diâmetro e 51,5% entre 2 cm a 3 m de altura. Esses indivíduos são basicamente representados pelas espécies *Ipomoea carnea* subsp. *fistulosa*, que é constituída por indivíduos tipicamente de diâmetros finos no estádio adulto e *Mimosa bimucronata* que possui a maioria dos seus indivíduos finos e jovens, o que provavelmente deve estar relacionado a frequente regeneração. A maior classe de diâmetro (96 cm a 99 cm) e de altura (13 m a 14 m) foi encontrada na MR, sendo representada por um único indivíduo de *Inga vera* subsp. *affinis*.

Na MR, o *Inga vera* subsp. *Affinis*, seguida por *Celtis membranacea*, *Geoffroea spinosa* e *Croton campestris*, destacaram-se com 79,45% do índice de valor de importância de espécies (IVIe) total; a primeira respondeu por quase metade do IVIe total (47,41%). Juntas, as três primeiras representaram 77,42% e 95,02% da densidade e dominância relativa totais, respectivamente. O índice de diversidade de Shannon para espécie foi 1,57 nats/ind.

No D+TL, a *Mimosa bimucronata* e *Mimosa arenosa* detiveram 55,04%, 51,14% e 37,85% da densidade, dominância e frequência relativas, respectivamente. O índice de diversidade de Shannon (H') para a espécie foi de 2,14 nats/ind.

Na DI+TL, a *Mimosa bimucronata* foi a de maior IVIe, seguida de *Ipomoea carnea* subsp. *fistulosa*. Estas espécies responderam por 76,79% do IVIe total e somaram 88,84%, 78,62% e 62,90% de densidade, dominância e frequência relativas, respectivamente. O índice de diversidade de Shannon (H') para espécie foi de 1,10 nats/ind.

No TS, a *Mimosa tenuiflora*, *Aspidosperma pyrifolium*, *Caesalpinia microphylla*, *Croton sonderianus e Zizyphus joazeiro*, tiveram 62,80%, 78,29% e 38,95% de densidade, dominância e frequência relativas, respectivamente. O índice de diversidade de Shannon (H') para espécie foi de 2,47 nats/ind.

A partir das variações topográficas, do solo, da flora e da vegetação detectadas na área estudada, buscou-se complementar os estudos avaliando as correlações, entre as variáveis biométricas da vegetação (número de indivíduos e área basal, por parcela) e os fatores físicos e químicos (argila, matéria orgânica, magnésio, sódio e cálcio, por parcela), ao longo do transecto.

A correlação significativa e positiva, no nível de significância de 1%, ocorreu entre área basal e matéria orgânica (r = 0,56179) e a correlação significativa e negativa, a 5%, entre número de indivíduos e magnésio (r = -0,44143).

Embora não significativas, merecem destaque as seguintes correlações negativas: número de indivíduos e argila (r = -0.20889), número de indivíduos e sódio (r = -0.26658) e número de indivíduos e cálcio (r = -0.18485).

Considerações Finais

De maneira geral, as correlações apresentadas condizem com as variações fisionômicas encontradas ao longo do transecto.

Existe uma heterogeneidade ambiental na área de estudo que foi confirmada a partir dos resultados das variações topográficas, pedológicas, florísticas de cada ambiente topográfico e da análise da similaridade florística entre elas. Portanto, as futuras intervenções para reflorestamento das áreas devem ser feitas por ambientes da planície de inundação.

Referências

BIGARELLA, J. J. Estrutura e origem das paisagens tropicais e subtropicais. Florianópolis: UFSC, 2003.

JACOMINE, P. T.; CAVALCANTI, A. C.; BURGOS, N.; PESSOA, S. C. P.; SILVEIRA, C. O. Levantamento exploratório de solos do Estado de Pernambuco. Recife: SUDENE, 1973. (Boletim Técnico, 26).

LIMA, V. de P. Função hidrológica da mata ciliar. In: SIMPÓSIO SOBRE MATA CILIAR, 1., 1989, São Paulo. **Anais...** Campinas: Fundação Cargill, 1989. p. 25-42.

NASCIMENTO, C. E. S. Estudo florístico e fitossociológico de um remanescente de Caatinga à margem do Rio São Francisco, Petrolina - Pernambuco. 1998. 84 f. Dissertação (Mestrado) - Universidade Federal Rural de Pernambuco, Recife.

NASCIMENTO, C. E. S.; RODAL, M. J. N.; CAVALCANTI, A. C. Phytosociology of the remaining xerophytic woodland associated to an environmental gradient at the banks of the São Francisco river - Petrolina, Pernambuco. **Revista Brasileira de Botânica**, São Paulo, v. 26, n. 3, jul./set., 2003.