

Edição revista e atualizada

© Centro de Gestão e Estudos Estratégicos (CGEE)

Organização Social supervisionada pelo Ministério da Ciência e Tecnologia

Presidenta

Lucia Carvalho Pinto de Melo

Diretor Executivo

Marcio de Miranda Santos

Diretores

Antonio Carlos Filgueira Galvão Fernando Cosme Rizzo Assunção

Edição / Tatiana de Carvalho Pires Design Gráfico / Eduardo Oliveira Gráficos / Camila Maya Diagramação / Hudson Pereira Capa / Diogo Rodrigues

C389q

Química verde no Brasil: 2010-2030 - Ed. rev. e atual. - Brasília, DF: Centro de Gestão e Estudos Estratégicos, 2010.

438 p.; il, 24 cm

ISBN - 978-85-60755-31-8

1. Química verde - Brasil. 2. Desenvolvimento auto-sustentável. I.

CGEE. II. Título.

CDU 66(81)

Centro de Gestão e Estudos Estratégicos SCN Qd 2, Bl. A, Ed. Corporate Financial Center sala 1102 70712-900, Brasília, DF Telefone: (61) 3424.9600 http://www.cqee.org.br

Esta publicação é parte integrante das atividades desenvolvidas no âmbito do Contrato de Gestão -15º Termo Aditivo/ Ação/Subação:51.41.1 - Produção Limpa (Química Sustentável, Tendências, Novos Negócios e Reciclagem)/MCT/2009.

Todos os direitos reservados pelo Centro de Gestão e Estudos Estratégicos (CGEE). Os textos contidos nesta publicação poderão ser reproduzidos, armazenados ou transmitidos, desde que citada a fonte. Impresso em 2010

7. Fitoquímica¹

O Brasil detém um dos maiores estoques da biodiversidade do planeta. Os recursos naturais existentes em suas regiões tornam-se gradativamente conhecidos, à medida que as pesquisas científicas se intensificam e os resultados apresentam-se disponíveis para a sociedade.

Embora, o Brasil detenha um dos maiores bancos de germoplasma *in-situ*, constata-se por parte daqueles que habitam os diferentes biomas uma elevada demanda de conhecimentos sobre o aproveitamento sustentável da biodiversidade. Nesses biomas, a falta de domesticação dos recursos naturais (plantas medicinais, aromáticas e detentoras de metabólitos secundários com propriedades biodefensivas) tem levado à subutilização e extinção de inúmeras espécies vegetais, impondo limitações socioeconômicas e ambientais. Além disso, a produção agrícola de alimentos saudáveis tem-se confrontado com sérios problemas de contaminações por toxinas e pela dependência do uso de agrotóxicos^{2,3}.

Entre os principais fatores que contribuem para esses problemas está a falta de investimentos em P,D&I voltados para a fitoquímica. Hoje predominam pesquisas relacionadas à fase de caracterização química e botânica. Com base nessa constatação, faz-se necessário a realização de estudos ligando instituições de pesquisas, setor produtivo e o mercado consumidor⁴.

As pesquisas fitoquímicas devem ser realizadas em conjunto com as indústrias consumidoras de substâncias bioativas, que avaliarão as matérias-primas e produtos com potencial de mercado. Com base nas informações geradas, desenvolvem-se novas formas de obtenção ecologicamente correta dos metabólitos secundários de interesse, que serão repassadas ao setor produtivo. Essa interatividade promoverá a valorização da biodiversidade e a conservação de espécies em fase de extinção, fomentadas pelo desenvolvimento de novos sistemas de produção.

¹ Este capítulo foi elaborado por Flávio Araújo Pimentel Maria Fatima Ludovico de Almeida e traz contribuições de especialistas participantes das oficinas do Estudo.

² Guimarães, J.A. et al. Recomendações para o manejo das principais pragas do meloeiro na Região do Semi-Àrido nordestino. Embrapa Agroindústria Tropical, 9p. (Embrapa Agroindústria Tropical. Circular Técnica, 24), 2005.

³ Gonçalves, M. E. C.; Bleicher, E. Uso de extratos aquosos de nim e azadiractina via sistema radicular para o controle de moscabranca em meloeiro. Revista Ciência Agronômica, v.37, n.2, p.182-187. 2006.

⁴ Pinto, A.C. et al. Produtos naturais: Atualidade, desafios e perspectivas. Química Nova, v.25, p.45-61, 2002.

A fitoquímica possui uma estreita relação com diversas áreas do conhecimento, visando à produção de alimentos funcionais, plantas medicinais, fitoterápicos, pesticidas, fragrâncias, aromas, entre outros produtos de alto valor agregado.

Os estudos realizados sobre este tema contemplam principalmente as seguintes linhas de pesquisas:

- estudo sistemático da composição química de espécies vegetais;
- extração, isolamento e caracterização de substâncias naturais, com propriedades medicinais, funcionais, aromáticas, condimentares, biodefensivas, entre outras;
- elucidação estrutural de novas moléculas, com uso intenso de técnicas espectrométricas;
- síntese e transformações químicas de moléculas com ação biológica;
- desenvolvimento de novos produtos bioativos (fitoterápicos, biopesticidas de origem vegetal, aromas e fragrâncias);
- desenvolvimento de sistema de produção de matérias-primas vegetais com diferentes potenciais biológicos (espécies medicinais, aromáticas, com propriedades biodefensivas, etc).

Neste Capítulo, descrevem-se os resultados das análises realizadas para o tema "fitoquímica", apresentando-se inicialmente o panorama mundial em termos da produção científica e propriedade intelectual em fitoquímica e em três segmentos selecionados: fitoterápicos, biopesticidas de origem vegetal e aromas e fragrâncias. Complementa-se o panorama com informações sobre aspectos de mercado desses três segmentos.

Na sequência, relatam-se os resultados do levantamento da produção científica de autores brasileiros indexada na base Web of Science, referente ao período 1998- 2009, bem como os grupos brasileiros de pesquisa que hoje atuam em P,D&I nesta área, conforme o Diretório Nacional dos Grupos de Pesquisa mantido pelo CNPq. Apresentam-se ainda informações sobre aspectos de mercado desses três segmentos, visando complementar o panorama nacional. Nas seções finais, estabelecem-se orientações e recomendações para a construção da visão de futuro do tema "fitoquímica", a exemplo dos demais temas contemplados neste estudo prospectivo. Pela complexidade e abrangência do tema, recomenda-se que a atividade prospectiva para o tema fitoquímica focalize os segmentos de fitoterápicos; de biopesticidas de origem vegetal e de aromas e fragrâncias, construindo-se mapas e portfolios para cada segmento.

Os fitoterápicos são medicamentos elaborados a partir de plantas medicinais ou derivados destas e têm emprego com fins terapêuticos, alicerçados no conhecimento popular ou no conhecimento cien-

tífico⁵. As plantas medicinais são utilizadas na medicina popular e na produção de medicamentos sob as seguintes formas: (i) como fornecedora de substâncias ativas isoladas; (ii) como extratos purificados ou selecionados centrados em específicos grupos de substâncias; (iii) como extratos totais padronizados em relação a uma substância, um grupo de substâncias ou uma especificação determinada; d) como droga, íntegra, triturada ou moída, destinada à preparação extemporânea de infusos ou chás⁶.

Segundo a Organização Mundial de Saúde (OMS), 80% da população mundial utiliza plantas medicinais como medicação básica e a taxa de crescimento é de 7% ao ano. Outro dado importante é que 25% das drogas prescritas são derivadas de plantas^{7,8}.

Enfoques diversos compõem um quadro atual das tendências da utilização de fitoterápicos no mundo. Na Europa, por meio de um movimento liderado pela Alemanha, esta nova categoria de medicamento foi incorporada pelo sistema nacional de saúde daquele país. Os medicamentos são respaldados pelas evidências de qualidade, eficácia e segurança. Apesar da documentação da eficácia dos produtos através de investigações farmacológicas apropriadas, identificadas em monografias próprias, existem ainda inúmeros produtos cuja eficácia ainda não foi testada da mesma forma, sendo seu uso classificado como fitoterapia tradicional⁹.

Nos Estados Unidos, o reconhecimento do Congresso sobre a eficácia, liberou o uso sem registro na US Food and Drug Administration (FDA). As bases para esse tipo de mercado só vieram a ser estabelecidas como resultado de enorme pressão da própria sociedade civil, que os considerava fundamentais para a saúde, por meio de um Ato do Congresso americano, o Dietary Supplement Health and Education Act of 1994, comumente denominado DSHEA¹º. Desde 1994, portanto, os fabricantes de produtos naturais e suplementos contendo vitaminas e minerais se desobrigam dos testes rigorosos impostos aos fármacos e medicamentos. O governo americano entendeu que a prevenção e a promoção da saúde são beneficiadas pela nutrição e o uso de plantas medicinais e de suplementos nutricionais com respaldo científico. O Congresso concluiu que existe de fato uma correlação

- 5 Schenkel, L.C. et al. Produtos de origem e o desenvolvimento de medicamentos. UFRGS, p.301-330. 2001.
- 6 Freitas, A. Estrutura de mercado do segmento de fitoterápicos no contexto atual da indústria farmacêutica brasileira. Ministério da Saúde, p.1-15. 2007.
- 7 Associação Brasileira de Empresas do Setor Fitoterápico. Abifisa. Suplemento Alimentar e de Promoção da Saúde. 2007. Disponível em http://www.abifisa.org.br. Acesso em dez 2009. 10 mai. 2007.
- 8 Kasim, Z.A.A. Herbal biotechnology development: the way forward & market access opportunities. 2007. Disponível em http://www.eumbio.org/papers/Business%20Partnering%20Seminar/ZainalAzman.pdf Acesso em 12 dez. 2009.
- 9 Villas Bôas, G. K.; Gadelha, C. A. G. Oportunidades na indústria de medicamentos e a lógica do desenvolvimento local baseado nos biomas brasileiros: bases para a discussão de uma política nacional. Cad. Saúde Pública, v. 23, n. 6, p. 2007.
- 10 US Food and Drug Administration. Dietary Supplements Health and Education Act of 1994. DSHEA. Disponível em:http://www.fda.gov/food/dietary.supplements/default.htm. Acesso em dez 2009.

entre o consumo desses produtos e a prevenção de diversas doenças crônicas como câncer, osteoporose, doenças do coração, deixando claro que o uso de fitoterápicos nos Estados Unidos constitui uma experiência que impacta a saúde pública, apesar do fato de que a própria medicina acadêmica tenha se recusado a perceber seus benefícios até recentemente¹¹.

Diante da grande importância dos fitoterápicos, vários países da Europa estão intensificando esforços para unificar a legislação referente aos medicamentos fitoterápicos, amplamente comercializados nestes países (em especial na Alemanha e França). Por outro lado, nos Estados Unidos, as preparações à base de plantas são classificadas como suplementos nutricionais, não sendo necessário submeter dados de segurança e eficácia ao US Food and Drug Administration (FDA) para comercialização de seus produtos¹².

O segundo segmento da fitoquímica abordado neste Capítulo refere-se aos biopesticidas de origem vegetal, também chamados de pesticidas naturais.

Pesticidas são substâncias químicas, naturais (biopesticidas) ou sintéticas, utilizadas com finalidade de prevenir a ação, controlar ou eliminar pragas que podem ser constituídas por insetos, fungos, ervas daninhas, ácaros, bactérias, nematóides, roedores entre outras formas de vida animal ou vegetal, indesejáveis ou prejudiciais à agricultura e à pecuária. Esta definição para o termo genérico pesticida, proposta pelo US Food and Environomental Protection Act (FEDA), abrange um largo espectro de substâncias biologicamente ativas e vem sendo usada em diferentes áreas de pesquisa, inclusive a ambiental. O principal uso dos pesticidas está associado às atividades agrícolas. Entretanto, estes produtos também são empregados em residências e jardins públicos, no controle de plantas daninhas em áreas industriais, rodovias e ferrovias, no tratamento da madeira e no combate a vetores transmissores de doenças, em outros¹³.

Nos Estados Unidos, as preocupações sobre o impacto potencial de pesticidas sobre o meio ambiente tornou-se mais premente com a introdução da Lei de Qualidade Alimentar, criada em 1996¹⁴. Com os procedimentos de registros mais rigorosos, o número de pesticidas sintéticos disponíveis para agricultura têm reduzido.

Visando atender os requisitos estabelecidos para registros de novos pesticidas, incluindo os

¹¹ Villas Bôas, G. K.; Gadelha, C. A. G. Ibid. 2007.

¹² Turolla, M. S. R. Nascimento, E. S. Informações toxicológicas de alguns fitoterápicos utilizados no Brasil. Revista Brasileira de Ciências Farmacêuticas, v. 2, n.2, p. 2006.

¹³ Ribeiro, M.L. et al. Pesticidas: usos e riscos para o meio ambiente. Holos Environment, v.8, n.1, p.53-71. 2008.

¹⁴ House Resolution-1627 Food Quality Protection Act.

obtidos à base de produtos naturais, novas moléculas e produtos estão sendo descobertos e desenvolvidos para substituir os compostos proibidos. Além desse aspecto regulatório, pesquisas também estão sendo necessárias para combater a evolução das resistências aos pesticidas atualmente comercializados¹⁵

Na Europa, o Parlamento aprovou em janeiro de 2009 um regulamento que proíbe a utilização de certas substâncias químicas altamente tóxicas na produção de pesticidas e obriga que outras substâncias de risco sejam substituídas por alternativas mais seguras. O Parlamento Europeu aditou, em paralelo, uma Diretiva que proíbe as pulverizações aéreas (com possibilidade de derrogações) e prevê medidas específicas de proteção ao ambiente aquático, além de definir zonas onde o uso de pesticidas será reduzido ao mínimo ou mesmo proibido. A Diretiva que estabelece um quadro de ação em nível comunitário para uma utilização sustentável dos pesticidas contém, entre outras, disposições sobre a adoção de planos de ação nacionais que fixem objetivos, medidas e calendários destinados a reduzir os riscos e os efeitos da utilização dos pesticidas na saúde humana e no ambiente e incentivem o desenvolvimento e a introdução de abordagens ou técnicas alternativas a fim de reduzir a dependência da utilização dos pesticidas de origem sintética¹⁶

São inúmeros os benefícios associados ao uso de biopesticidas, a saber:

- ajudam as plantas a desenvolver o seu total potencial;
- evitam perdas das colheitas, no campo, através do controlo direto das doenças, pragas e ervas infestantes, de uma forma eficiente e pouco onerosa. Tais perdas podem atingir valores superiores a 50%;
- evitam perdas durante o armazenamento;
- melhoram a qualidade dos gêneros agrícolas;
- permitem manter a regularidade das produções e fazer previsões rigorosas sobre as colheitas:
- ajudam ao abastecimento dos mercados em contínuo, com produtos de qualidade, a preços acessíveis;
- contribuem para a manutenção dos preços dos produtos agrícolas dentro de níveis aceitáveis;
- asseguram uma produção economicamente rentável, que é, em simultâneo, ambiental e socialmente responsável.

¹⁵ Dayan, F.E. et al. Natural products in crop protection. Bioorganic & Medicinal Chemistry, v.17, p.4022-4034. 2009.

¹⁶ Nadkarni, I. Parlamento europeu aprova nova legislação sobre pesticidas. Saúde pública. Disponível em http://www.europarl.europa.eu/news/expert/infopress_page/066-45937-012-01-03-911-20090112IPR45936-12-01-2009-2009-false/default_pt.htm. Acesso em dez 2009.

Além dos benefícios mencionados, os biopesticidas, particularmente os das chamadas novas gerações, continuarão a ter um papel fundamental na agricultura sustentável, uma vez que: (i) as culturas e a produção agrícola são ameaçadas por inúmeros organismos nocivos; (ii) o crescimento da população mundial e seus rendimentos conduzem a um aumento da procura de alimentos, quer em termos quantitativos, quer qualitativos; (iii) não é possível alimentar as populações futuras com as culturas e as produções unitárias de hoje; (iv) a urbanização em nível mundial cresce rápida e desordenadamente, ocupando muitas vezes solos de comprovada aptidão agrícola; (v) a área agrícola diminui drasticamente e o número de pessoas que trabalham na agricultura é cada vez menor; e (vi) os aumentos de produtividade terão que ser alcançados nas áreas cultivadas hoje existentes, mas de uma forma ambientalmente sustentada e socialmente aceitável. Para tal os agricultores necessitarão dispor de processos, métodos e meios mais eficazes e inovadores, entre eles o uso de biopesticidas de origem vegetal, que gradativamente vem ganhando espaço em um mercado altamente competitivo e regulado.

O terceiro segmento abordado neste Capítulo é o de aromas e fragrâncias. Aromas são preparações concentradas utilizadas para conferir sabor e as fragrâncias são composições aromáticas elaboradas por mistura de ingredientes com propriedades de conferir ou intensificar o odor, ou influenciar o odor de uma mistura.

Nos alimentos, os aromas desempenham as seguintes funções tecnológicas: (i) como ingredientes de bebidas, sorvetes, balas sobremesas lácteas, entre outras. (ii) na identificação de diversos produtos alimentícios diferenciando de seus similares apenas pelo aroma específico, por exemplo: refrescos de limão, balas de hortelã, entre outros; (iii) compensando perdas, ou seja, quando a sua adição é necessária para compensar a perda natural de substâncias aromatizantes que ocorre durante as operações de processamento de produtos alimentícios, tais como pasteurização, concentração e cocção.

Além das funções acima descritas, o emprego de aromas permite a transformação de alimentos de grande valor nutritivo, porém insípidos, em produtos de sabor agradável e de boa aceitação. A título de ilustração, citam-se: 1) na indústria alimentícia, em produtos como bebidas achocolatadas, água aromatizada, aguardente composta, balas, batidas, biscoitos, bolos, chocolates, iogurtes, licores, ração animal, refrigerantes e sopas industrializadas; 2) na indústria de nutrição animal, como mascarantes (de sabores amargos) para medicamentos, rações diversas, sais minerais, substitutos do sabor de açúcar e substitutos de leite para bezerros; 3) na indústria farmacêutica, em medicamentos de via oral. Nesse caso, utilizam-se mascarantes de sabores amargos, como abacaxi, anis, banana, baunilha, cereja, laranja, maçã, menta, morango e tangerina, por exemplo.

Já as fragrâncias têm aplicações nas indústrias de perfumes, cosméticos, domissanitários, entre outros. Como importantes matérias-primas industriais, utilizadas na manufatura de produtos dos setores da perfumaria, cosmética, farmacêutica, higiene e limpeza, alimentícia e de bebidas, destacam-se os óleos essenciais e as essências naturais.

7.1. Panorama mundial

Apresentam-se os resultados do levantamento da produção científica e propriedade intelectual realizado diretamente em bases de dados internacionais de referência, abordando-se inicialmente o tema como um todo, para em seguida focalizar as análises nos três segmentos da fitoquímica abordados neste estudo.

7.1.1. Produção científica

O panorama mundial da produção científica e propriedade intelectual sobre o tema "fitoquímica" foi elaborado a partir de levantamento direto em duas bases de dados internacionais de referência: (i) Web of Science, para o levantamento da produção científica¹⁷; e (ii) Derwent Innovations Index, para o levantamento de patentes¹⁸. Esses levantamentos abrangeram diversos termos de busca e cobriram o período 1989-2009, como apresentado na Tabela 7.1¹⁹.

¹⁷ ISI Web of Science. Disponível em: http://go5.isiknowledge.com. Acesso em: dez 2009.

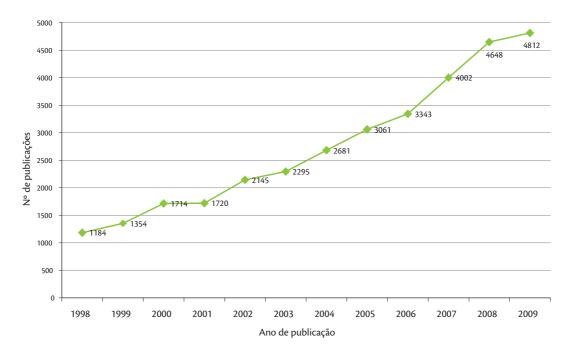
¹⁸ Derwent Innovations Index. Disponível em: http://go5.isiknowledge.com. Acesso em: dez 2009.

¹⁹ Almeida, M.F.L. Produção científica e propriedade intelectual em fitoquímica :1998-2009. Texto para discussão. Mimeo. Brasília: Centro de Gestão e Estudos Estratégicos. GGEE. Dez 2009.

Tabela 7.1: Termos utilizados na estratégia de busca de publicações científicas e patentes no tema "fitoquímica"

Ref.	Termos da estratégia de busca	Número de publicações (Web o f Science)	Número de patentes (Derwent Innovations Índex)
#1	TS=phytochemistry OR TS=phyto-chemistry OR TS=phytochemical* OR TS=phyto-chemical*	5.342	276
#2	TS=phytotherapeutic* OR TS=phyto-therapeutic OR TS=herbal medicine OR TS=herbal drug*	6.409	3.506
#3	TS=natural pesticide* OR TS=biopesticide* OR TS=phytopesticide* OR TS= phyto-pesticide*	2.797	1.104
#4	TS=essential oil* OR TS=natural flavour* OR TS=natural aroma*	19.181	13.973
#5	#1 OR #2 OR #3 OR #4	32.960*	18.503*

Nota: (*) Resultado da estratégia de busca abrangendo todos os termos com o operador booleano OR, e eliminando os documentos em duplicata. Campo TS= tópico (mais abrangente, do que o campo TI=título).

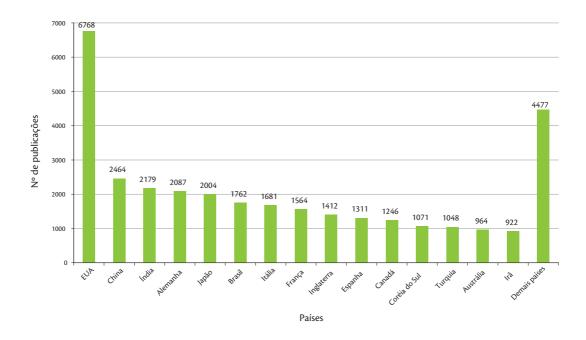

Com o objetivo de conferir maior abrangência ao estudo bibliométrico, selecionaram-se termos gerais relacionados ao tema, como por exemplo, "phytochemistry" e "phytochemical*", e alguns termos específicos relacionados aos três segmentos selecionados: fitoterápicos, biopesticidas de origem vegetal e aromas e fragrâncias. As buscas por termo foram delimitadas pelos campos "topic" (TS) e "published year" (PY).

Considerando-se o período 1998-2009 e utilizando-se a estratégia apresentada na Tabela 7.1, foram identificadas 32.960 publicações científicas e 18.503 patentes.

Apresentam-se inicialmente o panorama geral do tema, contemplando a análise bibliométrica de 32.960 publicações referentes ao período 1998-2009. Na sequência, relatam-se os resultados associados a fitoterápicos, a biopesticidas de origem vegetal e ao segmento de aromas e fragrâncias, respectivamente.

A Figura 7.1 mostra a evolução do número de publicações científicas sobre o tema "fitoquímica" no período 1998-2009.

Figura 7.1: Evolução do Número de publicações científicas sobre "fitoquímica": 1998 – 2009 Fonte: Busca direta da base de dados Web of Science. Acesso em dez 2009.


A Figura 7.1 mostra uma curva ascendente da produção científica deste tema desde 1998, destacando-se os três últimos anos da série, período no qual o número de publicações indexadas na base de dados consultada atingiu a média anual de 4.487 publicações científicas.

A Figura 7.2 apresenta os resultados da análise das 32.960 publicações científicas classificadas por país de origem dos autores.

Observa-se que os EUA lideram o *ranking* mundial, com 6.768 publicações, seguidos da China e da Índia, com 2.464 e 2.179 publicações, respectivamente. Nesse *ranking*, o Brasil tem posição de destaque, ocupando a 6ª posição na produção científica no tema "fitoquímica", com 1.762 publicações indexadas na referida base.

Outros destaques são a Alemanha e o Japão, na 4ª e 5ª posição, com 2087 e 2004 publicações. Vale ressaltar ainda a presença de países como a Coréia do Sul, Turquia, Austrália e Irã, com 1.071, 1.048, 964 e 922 publicações, respectivamente.

Figura 7.2: Publicações científicas sobre "fitoquímica", classificadas por país: 1998 – 2009 Fonte: Busca direta da base de dados Web of Science. Acesso em dez 2009

Na sequência, a Tabela 7.2 apresenta o conjunto das 32.960 publicações científicas classificadas por área de especialização, conforme sistema de indexação da referida base.

Observa-se que não há uma grande concentração de publicações em uma determinada área de especialização, como foi constatado em outros temas abordados neste estudo. A área com maior percentual de publicações associadas é ciência e tecnologia de alimentos (18,83%), seguida das áreas farmacologia/ farmácia (15,62%) e química aplicada (13,13%). Conforme informação da base consultada, foram identificadas no total 233 áreas de conhecimento.

As demais áreas de especialização situam-se em dois patamares distintos: o primeiro, na faixa de 10,51 a 4,78% de publicações classificadas nas áreas de botânica, química medicinal, bioquímica e

biologia molecular, ciências ambientais, química analítica, química multidisciplinar e biologia e microbiologia aplicada.

Tabela 7.2: Publicações científicas sobre 'fitoquímica", classificadas por área do conhecimento: 1998- 2009 (critério "top 10")

Áreas	Número de publicações	%
Ciência e tecnologia de alimentos	6.207	18,83
Farmacologia e farmácia	5.150	15,62
Química aplicada	4.329	13,13
Botânica	3.466	10,51
Química medicinal	3.363	10,20
Bioquímica e biologia molecular	2.458	7,46
Ciências ambientais	2.081	6,31
Química analítica	1.776	5,38
Química multidisciplinar	1.628	4,93
Biotecnologia e microbiologia aplicada	1.576	4,78

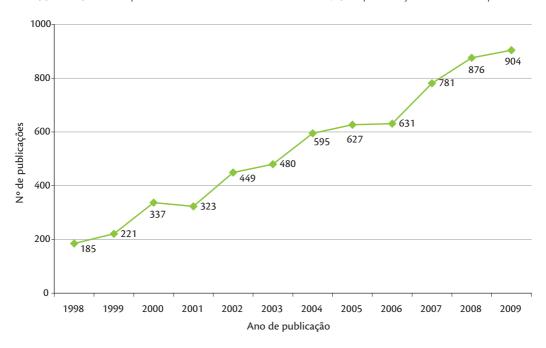
Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009.

A Tabela 7.3, a seguir, apresenta a análise do conjunto de publicações científicas em relação a instituições de origem de seus autores.

Tabela 7.3: Publicações científicas sobre "fitoquímica', classificadas por instituição de origem dos autores: 1998- 2009 (critério "top 20")

Instituição	País	Número de publicações
Chinese Academy of Science	China	370
Consejo Superior de Investigaciones Científicas (CSIC)	Espanha	285
Universidade de São Paulo	Brasil	266
US Department of Agriculture. Agricultural Research Service (USDA. ARS)	EUA	256
Anadolu University	Turquia	254
University of Illinois	EUA	211
Seoul National University	Coréia do Sul	207
Central Institute of Medicinal and Aromatic Plants	Índia	204
University of Athens	Grécia	201
Universidade Federal do Ceará	Brasil	172
The University of California, Davis (UCD)	EUA	158
Chinese University of Hong Kong	Hong Kong	156
Harvard University	EUA	155
Consiglio Nazional delle Ricerche	Itália	150
Islam Azad University	Irã	149
Cornell University	EUA	146
Institut National de la Recherche Agronomique	França	146
Universidade Estadual de Campinas	Brasil	144
University of Belgrade	Sérvia	142
University of Wisconsin	EUA	138

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009


Em um total de 14.453 instituições identificadas neste levantamento, a Chinese Academy of Science lidera o *ranking* mundial, com 370 publicações no período considerado, seguida da Universidade de São Paulo, do Consejo Superior de Investigaciones Científicas (CSIC), da Espanha, e do Agricultural

Research Service, órgão subordinado ao US Department of Agriculture (USDA) dos EUA, com 285, 266 e 256 publicações, respectivamente. Destacam-se também a presença de mais duas instituições brasileiras entre as 25 primeiras colocadas no *ranking* mundial: a Universidade Federal do Ceará, com 172 publicações, e a Universidade Estadual de Campinas, com 144 publicações no período.

Buscando-se complementar a visão geral da produção científica em fitoquímica apresentada até esse ponto, detalham-se informações sobre os três segmentos selecionados para a análise bibliométrica: (i) fitoterápicos; (ii) biopesticidas de origem vegetal; e (iii) aromas e fragrâncias.

A Figura 7.3 mostra a evolução do número de publicações científicas sobre "fitoterápicos" no período 1998-2009, compreendendo um total de 6.409 publicações neste período.

Figura 7.3: Evolução do Número de publicações científicas sobre "fitoterápicos": 1998 – 2009 Fonte: Busca direta da base de dados Web of Science. Acesso em dez 2009.

De acordo com o gráfico da Figura 7.3, observa-se uma curva ascendente da produção científica deste tema desde 2001, destacando-se os três últimos anos da série, período no qual o número de publicações indexadas na base de dados consultada atingiu a média anual de 853 publicações cien-

tíficas. A Figura 7.4 mostra os resultados da análise das 6.409 publicações científicas classificadas por país de origem dos autores.

Figura 7.4: Publicações científicas sobre "fitoterápicos", classificadas por país:1998 – 2009 Fonte: Busca direta da base de dados Web of Science. Acesso em dez 2009.

Observa-se que os EUA lideram o *ranking* mundial da produção científica sobre fitoterápicos, com 1.444 publicações, seguidos da China e do Japão, com 1.115 e 772 publicações, respectivamente, em um total de 126 países. O Brasil ocupa a 12ª posição neste *ranking*, com 117 publicações indexadas na referida base.

Na sequência, a Tabela 7.4 apresenta o conjunto das 6.409 publicações científicas classificadas por área de especialização, conforme sistema de indexação da referida base.

Observa-se que não há uma grande concentração de publicações em uma determinada área de especialização, como foi constatado em outros temas abordados neste estudo. A área com maior percentual de publicações associadas é farmacologia e farmácia (36,63%), seguida das áreas química medicinal, medicina integrativa e complementar e botânica (16,32%, 12,65% e 12,19%, respectivamente).

As demais áreas situam-se em um patamar de indicadores inferiores que variam de 7,27 a 3,56% de publicações classificadas nas respectivas áreas. Conforme informação da base consultada, foram identificadas no total 170 áreas de conhecimento. Ressalta-se, porém, que uma determinada publicação pode ser classificada em mais de uma área de conhecimento.

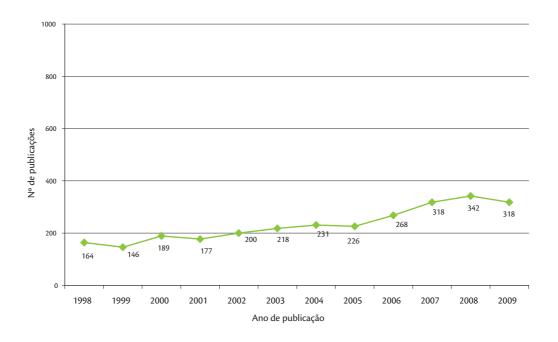
Tabela 7.4: Publicações científicas sobre "fitoterápicos", classificadas por área do conhecimento: 1998- 2009 (critério "top 10")

Áreas	Número de publicações	%
Farmacologia e farmácia	2,348	36,63
Química medicinal	1.046	16,32
Medicina integrativa e complementar	811	12,65
Botânica	781	12,19
Medicina geral e interna	466	7,27
Química analítica	420	6,55
Toxicologia	301	4,69
Ciência e tecnologia de alimentos	261	4,07
Oncologia	239	3,73
Bioquímica e biologia molecular	228	3,56

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009.

A Tabela 7.5, a seguir, apresenta a análise do conjunto de publicações científicas em relação a instituições de origem de seus autores.

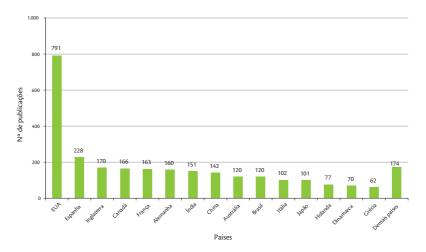
Tabela 7.5: Publicações científicas sobre "fitoterápicos", classificadas por instituição de origem dos autores: 1998- 2009 ("top 15")


Instituição	País	Número de publicações
Chinese University of Honk Kong	Hong Kong	110
Chinese Academy of Science	China	97
National Yang Ming University	China	93
University of Exeter	Inglaterra	90
Kyung Hee University	Coréia do Sul	83
Harvard University	EUA	73
Tsumura & Co	Japão	64
Seoul National University	Coréia do Sul	63
National University of Singapore	Cingapura	62
Sichuan University	China	59
Peking University	China	57
Toyama Med & Pharmaceutical University	Japão	55
China Pharmaceutical University	China	54
University of Hong Kong	Hong Kong	54
Zhejiang University	China	54

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009

Em um total de 4.651 instituições identificadas neste levantamento, a Chinese University of Honk Kong lidera o *ranking* mundial, com 110 publicações no período considerado, seguida da Chinese Academy of Science e da National Yang Ming University, com 97 e 93 publicações, respectivamente. Embora os EUA liderem o *ranking* da produção científica mundial neste segmento, as instituições líderes são de países asiáticos, como revelam os dados da Tabela 7.5.

Na sequência, focaliza-se a análise da produção científica no segundo grupo - biopesticidas de origem vegetal. A Figura 7.5 mostra a evolução do número de publicações científicas sobre "biopesticidas de origem vegetal" no período 1998-2009, compreendendo um total de 2.797 publicações neste período.


Figura 7.5: Evolução do Número de publicações científicas sobre "biopesticidas de origem vegetal" Fonte: Busca direta da base de dados Web of Science. Acesso em dez 2009.

De acordo com o gráfico da Figura 7.5, observa-se um crescimento estável com uma média anual no período em torno de 233 publicações. Nos três últimos anos, a média anual foi um pouco superior, chegando 326 publicações científicas.

A Figura 7.6 mostra os resultados da análise das 2.797 publicações científicas classificadas por país de origem dos autores.

Observa-se na Figura 7.6 que os EUA lideram o *ranking* mundial da produção científica sobre biopesticidas de origem vegetal, com 791 publicações, seguidos da Espanha e da Inglaterra, com 228 e 170 publicações, respectivamente, em um total de 109 países. O Brasil ocupa a 10ª posição neste *ranking*, com 120 publicações indexadas no período.

Figura 7.6: Publicações científicas sobre "biopesticidas de origem vegetal", classificadas por país: 1998 – 2009

Fonte: Busca direta da base de dados Web of Science. Acesso em dez 2009

Na sequência, a Tabela apresenta o conjunto das 2.797 publicações científicas classificadas por área de especialização, conforme sistema de indexação da referida base.

Tabela 7.6: Publicações científicas sobre "biopesticidas de origem vegetal", classificadas por área do conhecimento: 1998- 2009 (critério "top 10")

Áreas	Número de publicações	%
Ciências ambientais	688	24,60
Entomologia	442	15,80
Química analítica	320	11,44
Toxicologia	264	9,44
Biotecnologia e microbiologia aplicada	262	9,37
Engenharia ambiental	178	6,36
Ciências ambientais	164	5,86
Agronomia	156	5,58
Agricultura, multidisciplinar	142	5,08
Métodos de pesquisa bioquímicos	131	4,68

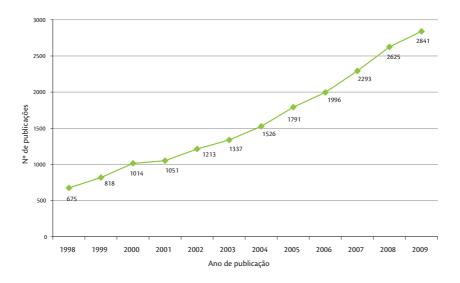
Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009.

Observa-se também neste segmento que não há uma grande concentração de publicações em uma determinada área de especialização. A área com maior percentual de publicações associadas é ciências ambientais (24,60%), seguida das áreas de entomologia (15,80%) e de química analítica (11,44%).

As demais áreas situam-se em dois patamares distintos: o primeiro, na faixa de 9,44 a 9,37% de publicações classificadas nas respectivas áreas, e o segundo, na faixa de 6,36 a 4,68%. Conforme informação da base consultada, foram identificadas 133 áreas de conhecimento no total. Ressalta-se, ainda, que uma determinada publicação pode ser classificada em mais de uma área de conhecimento.

A Tabela a seguir, apresenta a análise do conjunto de publicações científicas em relação a instituições de origem de seus autores.

Tabela 7.7: Publicações científicas sobre "biopesticidas de origem vegetal", classificadas por instituição de origem dos autores: 1998- 2009 ("top 20")


Instituição	País	Número de publicações
Agricultural Research Service (ARS)/ US Department of Agriculture (USDA)	EUA	110
Consejo Superior de Investigaciones Científicas (CSIC)	Espanha	64
US Environmental Protection Agency (US EPA)	EUA	62
University Ioannina	Grécia	38
Institut National de la Recherche Agronomique	França	36
Universidade de São Paulo	Brasil	34
Chinese Academy of Science	China	33
The University of California, Davis (UCD)	EUA	33
University of Quebec	Grécia	33
Universidad de Almeria	Espanha	30
Environm Canada	Canadá	25
University of Georgia	EUA	24
US Geol Survey	EUA	23
University of Florida	EUA	22
Wageningen University and Research Centre	Holanda	22
Agriculture and Agricultural Food Canada	Canadá	21
University California Berkeley	EUA	21
University California Riverside	EUA	21
Texas A&M University	EUA	20

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009

Em um total de 2.330 instituições identificadas neste levantamento, o Agricultural Research Service, órgão subordinado ao US Department of Agriculture (USDA) dos EUA, lidera o *ranking* com 110 publicações, seguido do Consejo Superior de Investigaciones Científicas (CSIC) da Espanha e da US Environmental Protection Agency (US EPA), com 64 e 62 publicações respectivamente. Destaca-se também a presença de uma instituição brasileira entre as 20 primeiras colocadas no *ranking* mundial da produção científica no segmento de biopesticidas de origem vegetal: a Universidade de São Paulo, com 34 publicações no período.

Finalmente, apresentam-se os resultados do levantamento focalizando-se a produção científica do terceiro segmento – aromas e fragrâncias. A Figura 7.7 mostra a evolução do número de publicações científicas sobre "aromas e fragrâncias" no período 1998-2009, compreendendo um total de 19.181 publicações neste período.

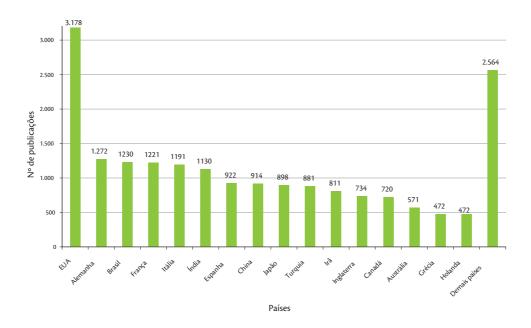


Figura 7.7: Evolução do Número de publicações científicas sobre "aromas e fragrâncias" Fonte: Busca direta da base de dados Web of Science. Acesso em dez 2009.

De acordo com o gráfico da Figura 7.7, observa-se uma curva ascendente da produção científica deste tema desde 1998, destacando-se os três últimos anos da série, período no qual o número de publicações indexadas na base de dados consultada atingiu a média anual de 2.586 publicações científicas.

A Figura 7.8 mostra os resultados da análise das 19.181 publicações científicas classificadas por país de origem dos autores.

Figura 7.8: Publicações científicas sobre "aromas e fragrâncias", classificadas por país: 1998 – 2009 Fonte: Busca direta da base de dados Web of Science. Acesso em dez 2009

Conforme o gráfico da Figura 7.8, os EUA lideram o *ranking* mundial de publicações científicas sobre "aromas e fragrâncias", com 3.178 publicações, seguidos da Alemanha e Brasil, com 1.272 e 1.230 publicações, respectivamente, em um total de 155 países. Destacam-se ainda a França, a Itália e a Índia na faixa de 1100 -1220 publicações.

Na sequência, a Tabela apresenta os resultados da análise bibliométrica do conjunto de 19.181 publicações científicas por área de especialização, conforme sistema de indexação da referida base.

Tabela 7.8: Publicações científicas sobre "aromas e fragrâncias", classificadas por área do conhecimento: 1998- 2009 (critério "top 10")

Áreas	Número de publicações	%
Ciência e tecnologia de alimentos	5.938	26,26
Química aplicada	3.655	19,05
Farmacologia e farmácia	1.651	8,61
Botânica	1.626	8,48
Bioquímica e biologia molecular	1.421	7,41
Química medicinal	1.379	7,19
Ciências ambientais	1.362	7,10
Biotecnologia e microbiologia aplicada	1.016	5,30
Química multidisciplinar	1.010	5,27
Química analítica	939	4,89

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009.

A busca revelou que neste segmento, a exemplo dos anteriores, não há uma grande concentração de publicações em uma determinada área de especialização. A área com maior percentual de publicações associadas é ciência e tecnologia de alimentos (26,26%), seguida das áreas: química aplicada (19,05%), farmacologia e farmácia (8,61%) e botânica (8,48%).

As demais áreas situam-se em dois patamares distintos: o primeiro, na faixa de 7,41 a 7,10% de publicações classificadas nas respectivas áreas e o segundo, na faixa de 5,30 a 4,89%. Conforme informação da base consultada, foram identificadas no total 220 áreas de conhecimento. Ressalta-se, ainda, que uma determinada publicação pode ser classificada em mais de uma área de conhecimento.

A Tabela, a seguir, apresenta a análise do conjunto de publicações científicas no segmento "aromas e fragrâncias" em relação a instituições de origem de seus autores.

Tabela 7.9: Publicações científicas sobre "aromas e fragrâncias", classificadas por instituição de origem dos autores: 1998- 2009

Instituição	País	Nnúmero de publicações
Anadolu University	Turquia	250
Central Institute of Medicinal and Aromatic Plants	Índia	194
Consejo Superior de Investigaciones Científicas (CSIC)	Espanha	190
University of Athens	Grécia	178
Chinese Academy of Science	China	159
Islam Azad University	Irã	139
Universidade de São Paulo	Brasil	136
Universidade Federal do Ceará	Brasil	128
University of Belgrade	Sérvia	124
Agricultural Research Service (ARS)/ US Department of Agriculture (USDA)	EUA	117
Université de Corse	França	116
Consiglio Nazional delle Ricerche	Itália	113
University of New South Wales	Austrália	109
Research Institute of Forests and Rangelands	Irã	101
Russian Academy of Science	Rússia	98
Università di Messina	Itália	96
Institut National de la Recherche Agronomique	França	95
Università di Pisa	Itália	93
University of Vienna	Áustria	93
Universidade Estadual de Campinas	Brasil	91

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009

Em um total de 9.239 instituições identificadas neste levantamento, a University of Anadolu, da Turquia, lidera o *ranking* mundial, com 250 publicações no período considerado, seguida do Central Institute of Medicinal and Aromatic Plants, da Índia, e do Consejo Superior de Investigaciones Científicas (CSIC), da Espanha, com 194 e 190 publicações, respectivamente. Destacam-se também a presença de três instituições brasileiras entre as 20 primeiras colocadas no *ranking* mundial: Universidade de São Paulo, com 136 publicações, Universidade Federal do Ceará, com 128 publicações, e a Universidade Estadual de Campinas, com 91 publicações no período.

7.1.2. Propriedade intelectual

Na sequência, apresentam-se os resultados do levantamento de patentes referentes ao tema "fito-química" no período 1998 – 2009. Como mencionado, esse levantamento foi realizado diretamente na base Derwent Innovations Índex e abrangeu os mesmos termos de busca do levantamento anterior (Tabela 7.1). Foram identificadas 18.503 patentes no referido período.

Os resultados do levantamento de patentes permitiram identificar: (i) as principais áreas de especialização associadas ao conjunto de patentes (critério "top 10"), conforme indexação das áreas pelas próprias bases de dados consultadas; (ii) o número de depositantes e os destaques, enfatizando-se a presença de empresas (critério "top 25"); e (iii) uma análise por código da International Patent Classification (ICP), que revela as subclasses ICP de maior representatividade para posterior monitoramento da evolução da propriedade intelectual no tema nos próximos anos. A Tabela 7.10 apresenta o conjunto das 18.503 patentes classificadas por área de especialização. A pesquisa indicou um total de 24 áreas de conhecimento.

Tabela 7.10: Patentes no tema "fitoquímica", classificadas por área do conhecimento: 1998 - 2009 (critério "top 10")

Áreas	Número de publicações	%
Química	17.644	95,35
Farmacologia e farmácia	7.409	40,04
Ciência dos polímeros	7.060	38,15
Instrumentos e instrumentação	4.439	23,99
Engenharia	4.028	21,77
Ciência e tecnologia de alimentos	3.597	19,44
Agricultura	2.671	14,43
Biotecnologia e microbiologia aplicada	1.882	10,17
Ciência dos materiais	1.409	7,61
Medicina geral e interna	1.323	7,15

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009

Pelas informações apresentadas na Tabela 7.10, constata-se que a grande maioria das patentes está associada diretamente à área de química (95,35%). Em um segundo patamar, situam-se as áreas de farmacologia/farmácia e ciência dos polímeros (40,04 e 38,15%, respectivamente). Neste *ranking* ("top 10"), as demais áreas possuem indicadores inferiores, na faixa de 23,99 a 7,15 % de patentes clas-

sificadas segundo o sistema da base Derwent Innovations Índex nas respectivas áreas. Cabe ressaltar, porém, que uma determinada patente pode ser classificada em mais de uma área de conhecimento.

Na sequência, a Tabela 7.11 mostra os resultados da análise das 18.503 patentes segundo as subclasses e respectivos códigos da International Patent Classification (ICP).

Tabela 7.11: Patentes no tema "fitoquímica", classificadas por código do depositante: 1998- 2009 (critério "top 10")

Classe ICP	Número de patentes
A61K-035/78	1.743
A61K-036/185	1.231
A61K-036/88	884
A61K-008/30	671
A01N-065/00	656
C08K-003/00	653
C08K-005/00	597
B60C-001/00	577
A61P-017/00	568
A61K-008/96	553

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009.

Observa-se que as subclasses ICP de maior representatividade são: A61K – "preparações para finalidades médicas, odontológicas ou higiênicas"; A01N – "conservação de corpos de seres humanos ou animais ou plantas ou partes dos mesmos, biocidas, repelentes ou atrativos de pestes..."; C08K – "uso de substâncias inorgânicas ou orgânicas não-macromoleculares como ingredientes de composições"; A61P – "atividade terapêutica específica de compostos químicos ou preparações medicinais" e B60C – "pneus para veículos".

O mesmo conjunto de patentes foi analisado em relação a seus depositantes, conforme apresentado na Tabela a seguir.

Tabela 7.12: Patentes no tema "fitoquímica", classificadas por depositante: 1998- 2009 (critério "top 10")

Depositante	Número de patentes	
L'Oreal S.A.	361	
Bridgestone Corp.	247	
Procter & Gamble Co.	155	
Yokohama Rubber Co Ltd	145	
Colgate Palmolive	137	
Henkel KGAA	109	
Goodyear Tire & Rubber Co.	96	
Council of Scientific and Industrial Research of India	93	
BASF AG	91	
Vinegar H. J.	88	

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009

A empresa que lidera o *ranking* dos depositantes das patentes em fitoquímica no período 1998 – 2009 é a L'Oreal S.A. com 361 patentes, seguida da Bridgestone Corp., com 247 patentes. Os demais depositantes que se destacam no *ranking* são: Procter & Gamble Co. (155 patentes), a Yokohama Rubber Co Ltd. (145 patentes), a Colgate Palmolive (137 patentes) e a Henkel KGAA (109 patentes). A busca indicou um total de 18.084 depositantes.

Na sequência, apresentam-se informações sobre patentes em nível mundial referentes aos três segmentos abordados neste Capítulo: (i) fitoterápicos; (ii) biopesticidas de origem vegetal; (iii) aromas e fragrâncias. A Tabela 7.13 apresenta o conjunto das 3.506 patentes referentes ao primeiro grupo - "fitoterápicos", classificadas por área de especialização. A pesquisa indicou um total de 21 áreas de conhecimento.

Tabela 7.13: Patentes do grupo "fitoterápicos", classificadas por área do conhecimento: 1998 - 2009 (critério "top 10")

Áreas	Número de publicações	%
Química	3301	94,15
Farmacologia e farmácia	2948	84,08
Ciência e tecnologia de alimentos	702	20,02
Instrumentos e instrumentação	557	15,88
Ciência dos polímeros	306	8,73
Medicina geral e interna	298	8,49
Agricultura	281	8,01
Engenharia	249	7,10
Biotecnologia e microbiologia aplicada	195	5,56
Ciência dos materiais	61	1,74

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009

Pelas informações apresentadas na Tabela 7.13, constata-se que a grande maioria das patentes está associada diretamente a duas áreas de especialização: química (94,15%) e farmacologia e farmácia (85,08%). Em um segundo patamar, situam-se as áreas de ciência e tecnologia de alimentos e instrumentos/instrumentação (20,02 e 15,88%, respectivamente). Neste *ranking* ("top 10"), as demais áreas possuem indicadores inferiores, na faixa de 8,73 a 1,74 % de patentes classificadas nas respectivas áreas. Cabe ressaltar, porém, que uma determinada patente pode ser classificada em mais de uma área de conhecimento.

Na sequência, a Tabela apresenta os resultados da análise das 3.506 patentes sobre fitoterápicos segundo as subclasses e respectivos códigos da International Patent Classification (ICP).

Tabela 7.14: Patentes do grupo "fitoterápicos", classificadas por código do depositante: 1998- 2009 (critério "top 10")

Classe ICP	Número de patentes
A61K-035/78	1.007
A61K-036/185	745
A61K-036/88	713
A61K-035/56	326
A61P-001/00	246
A61K-035/64	216
A61P-017/00	190
A61P-031/00	183
A61P-029/00	169
A61K-009/20	160

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009.

As subclasses ICP de maior representatividade são: A61K –"preparações para finalidades médicas, odontológicas ou higiênicas "e A61P – "atividade terapêutica específica de compostos químicos ou preparações medicinais".

O mesmo conjunto de patentes foi analisado em relação a seus depositantes, conforme apresentado na Tabela 7.15.

Lideram o *ranking* mundial de patentes em fitoterápicos inventores de países asiáticos, seguidos do Council Science and Industrial Research of India e do Beijing Yixintang Medicine Research Institute, da China, com 22 e 21 patentes, respectivamente. A busca indicou um total de 1.827 depositantes. Os resultados segundo o critério "top 25" confirmam a tendência observada na análise bibliométrica da produção científica neste segmento de que as instituições líderes são de países asiáticos (ver Tabela 7.5).

Tabela 7.15: Patentes do grupo "fitoterápicos", classificadas por depositante: 1998- 2009 (critério "top 10")

Depositante	Número de patentes	
Li ,Y.	53	
Ye, M.	38	
Wang, Y.	26	
Council Science and Industrial Research of India	22	
Beijing Yixintang Medicine Research Institute	21	
Zhang, L.	21	
Jiang, J.	20	
Liu, Y.	19	
Yin, K.	17	
Jiang, L.	16	

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009

A Tabela 7.16 apresenta o conjunto das 1.104 patentes referentes ao segundo grupo - biopesticidas de origem vegetal, classificadas por área de especialização. A pesquisa indicou um total de 24 áreas de conhecimento.

Tabela 7.16: Patentes do grupo "biopesticidas de origem vegetal", classificadas por área do conhecimento: 1998 - 2009 (critério "top 10")

Áreas	Número de publicações	%
Química	971	95,75
Agricultura	795	78,40
Ciência dos polímeros	342	33,73
Instrumentos e instrumentação	306	30,18
Farmacologia e farmácia	280	27,61
Biotecnologia e microbiologia aplicada	258	25,44
Engenharia	179	17,65
Ciência e tecnologia de alimentos	113	11,14
Ciência dos materiais	72	7,10
Recursos hídricos	58	5,72

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009

Pelas informações apresentadas na Tabela 7.16, constata-se que a grande maioria das patentes está associada diretamente a duas áreas de especialização: química (95,75%) e agricultura (78,40%). Em um segundo patamar, situam-se as áreas de ciência dos polímeros, instrumentos/instrumentação, farmacologia e farmácia e biotecnologia e microbiologia aplicada, com percentuais na faixa de 33,73 a 25,44% de patentes associadas a essas áreas. Neste *ranking* ("top 10"), as demais áreas possuem indicadores inferiores, na faixa de 17,65 a 5,72%. Cabe ressaltar, ainda, que uma determinada patente pode ser classificada em mais de uma área de conhecimento. A Tabela 7.17 mostra os resultados da análise das 1.104 patentes segundo as subclasses e respectivos códigos da International Patent Classification (ICP).

Tabela 7.17: Patentes do grupo "biopesticidas de origem vegetal", classificadas por código do depositante: 1998- 2009 (critério "top 10")

Classe ICP	Número de patentes
A01N-065/00	127
A01N-063/00	94
A01N-025/00	91
A01P-007/04	58
A01P-003/00	46
A01N-000/00	44
A01N-053/00	42
A01P-007/00	41
C12N-001/20	40
A01N-025/04	39

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009.

Constata-se que as subclasses ICP de maior representatividade são: Ao1N – "biocidas, por exemplo como desinfetantes, como pesticidas ou como herbicidas", Ao1P – "atividade de compostos químicos ou preparações biocidas, repelentes ou atrativos de pestes ou reguladores do crescimento de plantas" e C12N - "microorganismos ou enzimas, suas composições (biocidas, repelentes ou atrativos de pestes)...". O mesmo conjunto de patentes foi analisado em relação a seus depositantes, conforme apresentado na Tabela 7.18.

Tabela 7.18: Patentes do grupo "biopesticidas de origem vegetal", classificadas por depositante: 1998- 2009 (critério "top 10")

Depositante	Número de patentes	
Syngenta Part. AG	14	
Novartis AG	8	
Basf SE	7	
Bayer Cropscience AG	7	
Dow Corning Corporation	7	
Genoptera LLC	7	
Monsanto Technology	7	
University of California	7	
US Secretary of Agriculture	7	
Bayer Cropscience GMBH	6	

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009

No período 1998 – 2009, entre 1.525 depositantes, as empresas que lideram o *ranking* dos depositantes das patentes em biopesticidas de origem vegetal são: Syngenta Participations AG e Novartis AG, com 14 e 8 patentes, respectivamente. Os demais depositantes que se destacam no *ranking* são as empresas Basf, Bayer, Dow, Genoptera e Monsanto; e a US Secretary of Agriculture e a University of Califórnia.

A Tabela 7.19 apresenta o conjunto das 13.973 patentes referentes ao terceiro grupo - aromas e fragrâncias, classificadas por área de especialização. A pesquisa indicou um total de 24 áreas de conhecimento.

Tabela 7.19: Patentes do grupo "aromas e fragrâncias", classificadas por área do conhecimento: 1998 - 2009 (critério "top 10")

Áreas	Número de publicações	%
Química	13.361	95,62
Ciência dos polímeros	6.447	46,14
Farmacologia e farmácia	4.144	29,65
Engenharia	3.616	25,87
Instrumentos e instrumentação	3.599	25,76
Ciência e tecnologia de alimentos	2.706	19,36
Agricultura	1.671	11,95
Biotecnologia e microbiologia aplicada	1.408	10,07
Ciência dos materiais	1.293	9,25
Ciência da imagem e tecnologia fotográfica	1.249	8,94

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009

Pelas informações apresentadas na Tabela 7.19, constata-se que a grande maioria das patentes está associada diretamente à área de química (95,62%) e ciência dos polímeros (46,14%). Em um segundo patamar, situam-se as áreas de farmacologia/farmácia, engenharia e instrumentos/instrumentação (29,65, 25,87 e 25,76%, respectivamente). Neste *ranking* ("top 10"), as demais áreas possuem indicadores inferiores, na faixa de 19,36 a 8,94 % de patentes classificadas nas respectivas áreas. Cabe ressaltar, ainda, que uma determinada patente pode ser classificada em mais de uma área de conhecimento.

Na sequência, a Tabela 7.20 mostra os resultados da análise das 13.973 patentes segundo as subclasses e códigos da International Patent Classification (ICP).

As subclasses ICP de maior representatividade são: A61K - "preparações para finalidades médicas, odontológicas ou higiênicas"; C08K – "uso de substâncias inorgânicas ou orgânicas não-macromoleculares como ingredientes de composições"; B60C – "pneus para veículos, caracterizados pelo material", C08L – "composições de compostos macromoleculares" e A01N – "conservação de corpos de seres humanos ou animais ou plantas ou partes dos mesmos; biocidas, por ex.,desinfetantes, pesticidas, herbicidas, repelentes ou atrativos de pestes.....".

Tabela 7.20: Patentes do grupo "aromas e fragrâncias", classificadas por código do depositante: 1998- 2009 (critério "top 10")

Classe ICP	Número de patentes
A61K-035/78	699
C08K-003/00	646
A61K-008/30	636
C08K-005/00	593
B60C-001/00	577
C08L-009/00	485
A01N-065/00	476
A61K-007/00	469
A61K-036/185	464
A61K-008/96	449

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009.

O mesmo conjunto de patentes foi analisado em relação a seus depositantes, conforme apresentado na Tabela 7.21.

Tabela 7.21: Patentes do grupo "aromas e fragrâncias", classificadas por depositante: 1998- 2009 (critério "top 15")

Depositante	Número de patentes
L'Oreal S.A.	360
Bridgestone Corp.	247
Procter & Gamble Co.	149
Yokohama Rubber Co Ltd	145
Colgate Palmolive	137
Henkel KGAA	106
Goodyear Tire & Rubber Co.	96
Vinegar H. J.	88
BASF AG	86
Sumitomo Rubber Ind. Ltd	85
Wellington, S.L.	83
Shell Oil Co	75
Berchenko, I.E.	69
General Electric Co	68
Council of Scientific and Industrial Research of India	66

Fonte: Pesquisa direta na base de dados Derwent Innovations Index. Acesso em dez 2009

A empresa que lidera o *ranking* dos depositantes das patentes no segmento aromas e fragrâncias no período 1998 – 2009 é a L'Oreal S.A. com 360 patentes, seguida da Bridgestone Corp.com 247 patentes. Os demais depositantes que se destacam no *ranking* são: Procter & Gamble Co. (149 patentes), a Yokohama Rubber Co Ltd. (145 patentes), a Colgate Palmolive (137 patentes) e a Henkel KGAA (106 patentes). A busca indicou um total de 14.561 depositantes.

Buscou-se mostrar indicadores bibliométricos de patentes e publicações científicas em nível mundial, associados ao tema "fitoquímica" – objeto deste Capítulo. Vale destacar, entretanto, que qualquer resultado de uma análise bibliométrica tem caráter apenas indicativo, recomendando-se seu cruzamento posterior com outras informações e análises referentes aos tópicos associados ao tema (Seção 7.3). Recomenda-se ainda que os tópicos gerais aqui abordados, bem como específicos, de-

verão ser objeto de monitoramento tecnológico em bases de dados internacionais de referência, como as que foram acessadas neste estudo.

7.1.3. Aspectos de mercado

A próxima Tabela apresenta uma visão do mercado mundial de produtos fitoquímicos, a partir de consulta a fontes secundárias.

Tabela 7.22: Mercado mundial de produtos fitoquímicos

	Mercado de fi	Mercado de fitoquímicos	
Segmentos	Valor estimado 2010 (US\$ bilhões)	Taxa de crescimento anual (%)	
Fitoterápicos	36,8	6,3	
Nutracêuticos	4,7	8,3	
Alimentos funcionais	26,6	11,0	
Suplementos dietéticos	16,4	2,8	
Cosmecêuticos	25,0	9,0	
Aromas e fragrâncias	17,3	4,0	
Ervas e plantas	5,9	10,0	
Biopesticidas	0,8	9,9	

Fontes: Kasim, 2007; Lehr, 2010.

Os fitoterápicos sempre apresentaram uma parcela significativa no mercado de medicamentos. Esse segmento movimenta globalmente US\$ 36,8 bilhões por ano²⁰. O consumo de medicamentos fitoterápicos tem aumentado consideravelmente nas últimas duas décadas, tanto nos países desenvolvidos, como naqueles em desenvolvimento. A taxa de crescimento anual estimada é de 6,3%, conforme indicado na Tabela 7.22. Somente na Europa, o mercado de medicamentos fitoterápicos vem atingindo cerca de 7 bilhões de dólares ao ano, sendo a Alemanha responsável por 50% de valor²¹. Nos Estados Unidos, este mercado representa US\$ 5 bilhões de faturamento ao ano. Na África, embora não existam dados oficiais atualizados, 80% da população faz uso de fitoterápicos, os quais

²⁰ Kasim, Z. A. A. Herbal biotechnology development: the way forward and market access opportunities. 2007. Disponível em http://www.eumbio.org. Acesso em: dez 2009

²¹ Comciência. Entre o conhecimento popular e o científico. Disponível em: http://www.comciencia.br/framebusca.htm. Acesso em: dez 2009.

representam alternativa frente ao alto custo dos fármacos sintéticos²². Considerando as perspectivas globais de crescimento segundo taxa média anual em torno de 7%, o mercado de fitoterápico poderá atingir valores em torno de 5 trilhões de dólares no ano de 2050²³.

Com relação ao mercado de biopesticidas, observa-se uma tendência de crescimento desde 2005 e prevê-se que no final de 2014 este mercado deverá atingir mais de um bilhão de dólares, segundo uma taxa média anual estimada de 9,9%. Por outro lado, o mercado de pesticidas sintéticos vem apresentando uma tendência de queda. na taxa de 1,5% ao ano. Os biopesticidas hoje representam cerca de 2,5% do mercado global de pesticidas e devem atingir 4,2% em 2010²⁴.

O continente com maior perspectiva de crescimento em relação aos biopesticidas é o europeu. Esse mercado deverá alcançar US\$ 270 milhões em 2010, com uma taxa média anual estimada de 15,0%. Esse crescimento está sendo seguido de perto pela Ásia, cuja previsão é de US\$ 120 milhões de faturamento na venda de biopesticidas (taxa média anual estimada de 12%). Para a América Latina, prevê-se um crescimento mais lento, quando comparada às demais regiões. O mercado latino-americano de biopesticidas deverá atingir US\$ 88 milhões em 2010, com uma taxa média anual estimada de 5,0%²⁵.

Um relatório recente da Frost & Sullivan, empresa internacional de consultoria e inteligência de mercado, relata que a crescente demanda por produtos agrícolas livres de agrotóxicos e mais orgânicos, tem elevado o uso de biopesticidas na América do Norte e Europa Ocidental. O faturamento pela venda de biopesticidas nesses dois mercados alcançou US\$ 594,2 milhões em 2008 e a demanda deverá duplicar até 2015, com previsão de faturamento da ordem de US\$ 1,02 bilhão²⁶. O principal fator de crescimento para o mercado de biopesticidas é a elevada demanda por culturas livres de produtos químicos por usuários finais e supermercados. Os governos dos países desenvolvidos estão apoiando a redução do nível de produtos químicos utilizados na agricultura, com regulamentação para limitar os níveis máximos de resíduos (LMR). Este é um fator de crescimento significativo para biopesticidas²⁷.

Em relação ao terceiro segmento – aromas e fragrâncias, de acordo com a base de dados americana Comtrade (United Nations Commodity Trade Statistics Database), os maiores consumidores de

²² Turolla, M. S. R.; Nascimento, E. S. Informações toxicológicas de alguns fitoterápicos utilizados no Brasil. Revista Brasileira de Ciências Farmacêuticas, v.42, n.2, p.289-306. 2006.

²³ Kasim, Z. A. A. Ibid. 2007. Disponível em http://www.eumbio.org. Acesso em: dez 2009.

²⁴ Lehr, P. The new biopesticide market. Business Communications Company. Report ID CHM029B. February 2010.

²⁵ Agro News. Biopesticides market to reach \$1 billion in 2010. 2009. Disponível em: http://news.agropages.com/News/NewsDetail---1944.htm. Acesso em dez 2009.

²⁶ Frost & Sullivan's Chemicals and Materials Research & Consulting. North American & Western European biopesticides market. 2010. Summary. Disponível em: < http://www.frost.com> Acesso em: dez 2009.

²⁷ Frost & Sullivan's Chemicals and Materials Research & Consulting. Ibid. 2010.

óleos essenciais no mundo são os EUA (40%), a União Européia (30%), sendo a França o país líder em importações e o Japão (7%), ao lado do Reino Unido, Alemanha, Suíça, Irlanda, China, Cingapura e Espanha. O mercado mundial de óleos essenciais gira em torno de US\$ 15 milhões/ano, apresentando crescimento aproximado de 11% por ano²⁸.

As importações de óleos essenciais pelos EUA, no período de 2004-2007, totalizaram cerca de US\$ 9.432 milhões, de acordo com os dados da Foreign Agriculture Service, órgão do US Department of Agriculture (USDA)²⁹. Os principais exportadores de óleos essenciais para os EUA, no mesmo período, foram Índia, França, Argentina, Brasil, México, Canadá e Irlanda. O Brasil ocupa a quarta posição neste *ranking*, contribuindo principalmente com óleos essenciais cítricos, com destaque para o óleo essencial de laranja.

7.2. Panorama nacional

Apresentam-se os resultados do levantamento da produção científica e propriedade intelectual em nível nacional também realizado diretamente nas bases de dados Web of Science e Derwent Innovations Index, abordando-se inicialmente o tema fitoquímica como um todo, para em seguida focalizar a análise bibliométrica nos três segmentos da fitoquímica abordados neste estudo. Complementa-se o panorama nacional com os resultados de um levantamento dos grupos de pesquisa em fitoquímica no Brasil, por consulta direta ao Diretório dos Grupos de Pesquisa no Brasil mantido pelo CNPq³º, e informações sobre o potencial de mercado de fitoquímicos no país.

7.2.1. Produção científica

Com relação à produção científica nacional no tema fitoquímica em geral, o levantamento na base Web of Science indicou que o Brasil ocupa hoje a 6ª posição do *ranking* mundial de produção científica, com 1.762 publicações científicas, em um total de 32.960 publicações referentes a este tema indexadas na referida base (Ver Figura 7.2).

²⁸ United Nations Commodity Trade Statistics Database. Statistics. 2009. Disponível em: http://data.un.org/Data.aspx?d=ComTrade&f=_11Code%3a34. Acesso em: dez 2009.

²⁹ US Department of Agriculture. USDA. Foreign Agricultural Service. Imports. Essential oils. 2009. Disponível em:http://www.fas.usda.gov/ustrade/USTIMFAS.asp. Acesso em: dez 2009.

³⁰ CNPq. Diretório dos Grupos de Pesquisa no Brasil. 2009. Conselho Nacional de Desenvolvimento Científico e Tecnológico. Disponível em: http://dgp.cnpq.br. Acesso em: dez 2009.

Buscou-se analisar esse conjunto de publicações em relação a instituições de origem de seus autores. Os resultados são apresentados na Tabela 7.23, a seguir.

Tabela 7.23: Publicações científicas de autores brasileiros sobre o tema "fitoquímica", classificadas segundo a instituição de origem de seus autores: 1998 – 2009

Instituição	Estado	Número de publicações
Universidade de São Paulo	São Paulo	266
Universidade Federal do Ceará	Ceará	172
Universidade Federal do Rio de Janeiro	Rio de Janeiro	161
Universidade Estadual de Campinas	São Paulo	144
Universidade Estadual Paulista (UNESP)	São Paulo	122
Universidade Federal de Santa Catarina	Santa Catarina	87
Universidade Federal da Paraíba	Paraíba	69
Universidade Federal do Pará	Pará	60
Universidade Estadual do Ceará	Ceará	58
Universidade Federal de Pernambuco	Pernambuco	58
Universidade Federal de Viçosa	Minas Gerais	58
Universidade Federal do Rio Grande do Sul	Rio Grande do Sul	56
Universidade Federal de Minas Gerais	Minas Gerais	53
Universidade Federal do Paraná	Paraná	52
Museu Paraense Emilio Goeldi	Pará	51
Universidade Estadual de Maringá	Paraná	49
Embrapa	Rio de Janeiro	48
Universidade Federal de São Carlos	São Paulo	46
Universidade Federal de Santa Maria	Rio Grande do Sul	44
Universidade Federal de Goiás	Goiás	33
Universidade Federal de Lavras	Minas Gerais	33
Universidade Estadual do Norte Fluminense	Rio de Janeiro	26
Universidade Federal da Bahia	Bahia	26
Universidade Vale do Itajaí	Santa Catarina	25

Instituição	Estado	Número de publicações	
Fiocruz	Rio de Janeiro	23	
Universidade de Brasília	DF	22	
Universidade Federal de Pelotas	Rio Grande do Sul	22	
Universidade Federal Rural de Pernambuco	Pernambuco	21	
Universidade Federal de São Paulo	São Paulo	19	
Universidade Federal de Uberlândia	Minas Gerais	19	
Universidade Federal Fluminense	Rio de Janeiro	17	
Instituto de Botânica de São Paulo	São Paulo	16	
Universidade de Caxias do Sul	Rio Grande do Sul	16	
Instituto Nacional de Pesquisas da Amazônia	Amazônia	14	
Universidade Federal do Piauí	Piauí	14	
Universidade Federal do Mato Grosso do Sul	Mato Grosso do Sul	13	
Universidade Federal do Rio Grande do Norte	Rio Grande do Norte	13	
Universidade Federal Rural do Rio de Janeiro	Rio de Janeiro	13	

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009

Com relação à produção científica nacional no segmento de fitoterápicos, o levantamento na base Web of Science indicou que o Brasil ocupa hoje a 12ª posição do *ranking* mundial de produção científica, com 117 publicações científicas, em um total de 6.409 publicações referentes a este tema indexadas na referida base (Ver Figura 7.4). Buscou-se analisar esse conjunto de publicações em relação a instituições de origem de seus autores. Os resultados são apresentados na Tabela 7.24.

Tabela 7.24: Publicações científicas de autores brasileiros sobre o tema "fitoterápicos", classificadas segundo a instituição de origem de seus autores

Instituição	Estado	Número de publicações
Universidade de São Paulo	São Paulo	22
Universidade Federal de Santa Catarina	Santa Catarina	14
Universidade Estadual de Maringá	Paraná	9
Universidade Federal do Ceará	Ceará	8
Universidade Federal do Rio de Janeiro	Rio de Janeiro	8
Universidade de Brasília	DF	7
Universidade Estadual Paulista	São Paulo	6
Universidade Federal Fluminense	Rio de Janeiro	6
Universidade do Vale do Itajaí	Santa Catarina	5
Universidade Estadual de Campinas	São Paulo	5
Universidade Federal da Paraíba	Paraíba	5
Universidade Federal de Minas Gerais	Minas Gerais	5
Instituto Nacional do Câncer	Rio de Janeiro	4
Universidade Federal de Pernambuco	Pernambuco	4
Universidade Federal de Santa Maria	Rio Grande do Sul	4
Universidade Federal de Uberlândia	Minas Gerais	4
Universidade Federal do Rio Grande do Norte	Rio Grande do Norte	4
Universidade Federal do Rio Grande do Sul	Rio Grande do Sul	4
Fiocruz	Rio de Janeiro	3
Universidade Estadual do Rio de Janeiro	Rio de Janeiro	3
Universidade Federal de Goiás	Goiás	3
Universidade Federal de Viçosa	Minas Gerais	3
Universidade Federal do Paraná	Paraná	3
Centro Universitário Newton Paiva	Belo Horizonte	2
Instituto Adolfo Lutz	São Paulo	2
Universidade de Ribeirão Preto	São Paulo	2
Universidade Estadual de Londrina	Paraná	2
Universidade Federal de São Carlos	São Paulo	2
Universidade Federal de Sergipe	Sergipe	2
Universidade Federal Rural de Pernambuco	Pernambuco	2

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009

Lideram o *ranking* das instituições brasileiras a Universidade de São Paulo, a Universidade Federal de Santa Catarina, a Universidade Estadual de Maringá e a Universidade Federal do Ceará, perfazendo 61 publicações em um total 117 publicações científicas de autores brasileiros no período 1998-2009. Foram identificadas 109 instituições às quais os autores brasileiros estão vinculados.

Com relação à produção científica nacional no segmento de biopesticidas de origem vegetal, o levantamento na base Web of Science indicou que o Brasil ocupa hoje a 10ª posição do *ranking* mundial de produção científica, com 120 publicações científicas, em um total de 2.927 publicações referentes a este tema indexadas na referida base (Ver Figura 7.6).

Esse conjunto de publicações foi analisado em relação a instituições de origem de seus autores. Os resultados são apresentados na Tabela, a seguir.

Tabela 7.25: Publicações científicas de autores brasileiros sobre o tema "biopesticidas de origem vegetal", classificados segundo a instituição de origem de seus autores: 1998 – 2009

Instituição	Estado	Número de publicações
Universidade de São Paulo	São Paulo	40
Embrapa	Diversos	24
Universidade Estadual Paulista	São Paulo	16
Universidade de Brasília	DF	7
Universidade Federal do Rio Grande do Sul	Rio Grande do Sul	6
Universidade Federal de Viçosa	Minas Gerais	6
Universidade Federal de São Carlos	São Paulo	6
Universidade Federal do Paraná	Paraná	5
Universidade Federal do Rio de Janeiro	Rio de Janeiro	4
Universidade Federal de Lavras	Minas Gerais	4
Universidade Federal Rural do Rio de Janeiro	Rio de Janeiro	2
Universidade Federal do Ceará	Ceará	2
Universidade Federal de Pelotas	Rio Grande do Sul	2
Universidade Federal de Juiz de Fora	Minas Gerais	2
Universidade Estadual de Londrina	Paraná	2
Universidade Estadual de Campinas	São Paulo	2
Universidade Católica de Brasília	DF	2
Instituto Biologia	n.d.	2

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009

A análise das instituições no Brasil vinculadas aos autores brasileiros que publicaram sobre biopesticidas de origem vegetal no período 1998-2009 revelou que a Universidade de São Paulo e a Embrapa lideram o *ranking* com 64 publicações em um total de 120 publicações científicas de autores brasileiros no referido período. Foram identificadas 132 instituições às quais os autores brasileiros estão vinculados.

Com relação à produção científica nacional no segmento de aromas e fragrâncias, o levantamento na base Web of Science indicou que o Brasil ocupa hoje a 3ª posição do *ranking* mundial de produção científica, com 123 publicações científicas, em um total de 19.181 publicações referentes a este tema e indexadas na referida base (Ver Figura 7.8).

Buscou-se analisar esse conjunto de publicações em relação a instituições de origem de seus autores. Os resultados são apresentados na Tabela 7.26, a seguir.

A análise das instituições no Brasil vinculadas aos autores brasileiros que publicaram sobre "aromas e fragrâncias" no período 1998-2009 indicou que a Universidade de São Paulo, a Universidade Federal do Ceará, a Universidade Estadual de Campinas e Universidade Federal do Rio de Janeiro lideram o *ranking*, perfazendo 488 publicações em um total de 1.230 publicações científicas de autores brasileiros no referido período. Foram identificadas 660 instituições às quais os autores brasileiros estão vinculados.

Tabela 7.26: Publicações científicas de autores brasileiros sobre o tema "aromas e fragrâncias", classificados segundo a instituição de origem de seus autores

Instituição	Estado	Número de publicações
Universidade de São Paulo	São Paulo	163
Universidade Federal do Ceará	Ceará	128
Universidade Estadual de Campinas	São Paulo	107
Universidade Federal do Rio de Janeiro	Rio de Janeiro	90
Universidade Federal do Rio Grande do Su	Rio Grande do Sul	77
Universidade Estadual do Ceará	Ceará	70
Universidade Estadual Paulista	São Paulo	61
Embrapa	Diversos	58
Universidade Federal do Pará	Pará	
Universidade Federal da Paraíba	Paraíba	53

Instituição	Estado	Número de publicações
Museu Paraense Emilio Goeldi	Pará	51
Universidade Federal de Santa Catarina	Santa Catarina	49
Universidade Federal de Pernambuco	Pernambuco	45
Universidade Federal do Paraná	Paraná	39
Universidade Federal de Viçosa	Minas Gerais	38
Universidade Federal de Sergipe	Sergipe	34
Universidade Federal de Santa Maria	Rio Grande do Sul	33
Universidade Federal de Minas Gerais	Minas Gerais	33
Universidade Federal de Lavras	Minas Gerais	30
Universidade Estadual de Maringá	Paraná	30
Universidade Federal de Goiás	Goiás	27
Universidade de Caxias do Sul	Rio Grande do Sul	26
Fiocruz	Rio de Janeiro	15
Universidade Federal Rural de Pernambuco	Pernambuco	13
Universidade Federal do Mato Grosso do Sul	Mato Grosso do Sul	12
Universidade Federal de Uberlândia	Minas Gerais	12
Universidade Estadual do Norte Fluminense	Rio de Janeiro	

Fonte: Pesquisa direta na base de dados Web of Science. Acesso em dez 2009

7.2.2. Propriedade intelectual

Recomenda-se levantamento e análise bibliométrica das patentes brasileiras no tema fitoquímica, por meio de consulta às bases de dados Derwent Innovations Índex (internacional), Spacenet (Europa) e INPI (Brasil).

7.2.3. Grupos de pesquisa

Apresenta-se a situação atual dos grupos de pesquisa de fitoquímica no Brasil, baseada em consulta ao Diretório dos Grupos de Pesquisa no Brasil³¹. O levantamento focalizou os três segmentos abor-

³¹ Conselho Nacional de Desenvolvimento Científico e Tecnológico. CNPq. Diretório dos Grupos de Pesquisa no Brasil. 2009. Disponível em: http://dgp.cnpq.br. Acesso em dez 2009.

dados neste estudo: (i) fitoterápicos; (ii) biopesticidas de origem vegetal; e (iii) aromas e fragrâncias. A Tabela 7.27 fornece uma visão geral dos grupos de pesquisa de fitoquímica no Brasil: são ao todo 176 grupos pertencentes a 119 instituições, com o envolvimento de 1.544 pesquisadores.

Tabela 7.27: Quadro-síntese dos grupos de pesquisa em fitoquímica no Brasil

Grupo da fitoquímica	Número de grupos de pesquisas	Número de instituições	Númerode pesquisadores
Fitoterápicos	87	53	842
Biopesticidas de origem vegetal	30	25	281
Aromas e fragrâncias	59	41	421
Total	176	119	1.544

Fonte: Pesquisa direta no Diretório dos Grupos de Pesquisa no Brasil. Acesso em dez 2009.

A seguir, apresentam-se em detalhe os resultados do levantamento dos grupos de pesquisa, por grandes grupos da fitoquímica.

Para fitoterápicos, foram utilizados os termos "fitoterápicos", "fitoquímica", "química de produtos naturais" e "espectroscopia e farmacologia" (Tabela 7.28).

Tabela 7.28: Grupos de pesquisas com ênfase em fitoterápicos: 2009

Grupo de pesquisa	Instituição	Número de pesquisadores
Produção vegetal e manejo de populações de insetos na agropecuária sustentável.	AGRAER	14
Produtos naturais aplicados ao controle microbiológico.	CEFET/AM	05
Recursos genéticos e biotecnologia de plantas medicinais.	EMBRAPA	09
Plantas medicinais na Amazônia: recursos genéticos e agronomia.	EMBRAPA	05
Biodiversidade da Caatinga.	EMBRAPA	08
Homeopatia e saúde vegetal.	EPAGRI	05
Plantas bioativas.	EPAGRI	12
Plantas-matrizes para fitoterápicos: prospecção, caracterização e aplicação.	FIOCRUZ	09
Farmacologia neuro-cardiovascular.	FIOCRUZ	04
Grupo de estudo em produtos naturais de interesse farmacêutico.	FURB	10

Grupo de pesquisa	Instituição	Número de pesquisadores
Desenvolvimento tecnológico.	IEPA	13
Prospecção e aplicação de micromoléculas naturais da Amazônia.	INPA	09
Pesquisas integradas em leishmaniose e doença de chagas na Região Amazônica.	INPA	21
Farmack.	MACKENZIE	12
Controle de qualidade microbiológico e físico -químico de alimentos e fitoterápicos.	PUC Campinas	03
Neuroendócrino e metabolismo.	UEL	02
Micologia humana e ambiental no processo saúde doença.	UEM	09
Controle e desenvolvimento tecnológico de fitoterápicos.	UEM	12
Produtos naturais.	UEM	17
Saúde pública e veterinária.	UEMA	05
Plantas medicinais.	UEPB	07
Biotecnologia de plantas e fitoterapia, microrganismos endofíticos e produtos apícolas.	UFAL	07
Oncologia molecular - diagnóstico e fitoterapia.	UFAL	04
Grupo de pesquisa do laboratório de produtos naturais da UFC.	UFC	07
Polimorfismo em sólidos farmacêuticos: caracterização físico-química e aplicações.	UFC	06
UNIFAC - Pesquisa pré-clínica e clínica de fármacos e medicamentos.	UFC	34
Grupo de pesquisa em medicamentos, saúde e sociedade.	UFES	03
Olericultura e plantas medicinais.	UFGD	09
Pesquisa e desenvolvimento de fitoterápicos e fitocosméticos.	UFJF	06
Farmacologia, imunologia e toxicologia de produtos naturais.	UFMA	18
GEPLAMT - Grupo de estudos e pesquisas de plantas aromáticas, medicinais e tóxicas.	UFMG	14
Atividade terapêutica de própolis e plantas medicinais em lesões infecciosas, neoplásicas e microbianas de mucosa da cavidade bucal. Desenvolvimento de medicamentos à base de produtos naturais.	UFMG	19
Grupo interdisciplinar de pesquisa em medicina veterinária e zootecnia.	UFMT	17
Documentação e investigação de fitoterápicos e desenvolvimento de fitomedicamentos – GPLAM.	UFPA	11

Grupo de pesquisa	Instituição	
Farmacologia de produtos naturais e sintéticos bioativos.	UFPB	24
Desenvolvimento e ensaios de medicamentos.	UFPB	09
Plantas medicinais e tóxicas.	UFPB	21
Grupo de estudo multidisciplinar em plantas medicinais.	UFPE	07
Avaliação de drogas psicobioativas e sua toxicologia.	UFPE	08
Desenvolvimento de fármacos.	UFPI	05
Farmacologia dos produtos naturais.	UFPI	14
Estudo da cicatrização de tecidos moles e duros.	UFPR	09
Polissacarídeos de fungos liquenizados.	UFPR	10
Plantas medicinais e aromáticas.	UFPR	04
Tecnologia de produtos farmacêuticos.	UFRGS	06
Desenvolvimento de insumos farmacêuticos de origem vegetal e sintética.	UFRGS	05
Grupo de pesquisa de plantas medicinais e cactáceas brasileiras.	UFRJ	08
Laboratório de farmacognosia e produtos naturais Rodolfo Albino.	UFRJ	01
Resistência múltipla a drogas - modelo levedura.	UFRJ	09
Instituto do Milênio: inovação e desenvolvimento de fármacos e medicamentos.	UFRJ	71
Desenvolvimento de medicamentos.	UFRN	15
Produtos naturais.	UFS	12
Grupo de extração supercrítica.	UFSC	05
Análise e desenvolvimento de fármacos de origem natural.	UFSC	15
Doenças infecciosas e parasitárias.	UFSC	07
Farmacologia de substâncias bioativas de origem natural.	UFSC	10
Estudos orientados pela quimica medicinal e supramolecular.	UFSC	07
Farmacologia de substâncias bioativas de origem natural.	UFSC	10
Grupo de RMN do DQ-UFSCar.	UFSCAR	02
Desenvolvimento de testes e ensaios para avaliação de insumos e produtos farmacêuticos.	UFSM	11
Fitocerrado.	UFU	15

Grupo de pesquisa	Instituição	Número de pesquisadores	
Desenvolvimento e avaliação de produtos farmacêuticos e cosméticos.	UNAERP	08	
Centro de pesquisas em distrofia muscular.	UNAERP	05	
Desenvolvimento e controle da qualidade de fármacos e medicamentos.	UNB	15	
Investigação da diversidade genética e evolução de populações naturais	UNB	10	
Biotecnologia vegetal, controle de qualidade e validação de processos tecnológicos aplicados à fitoterápicos.	UNESA	04	
Estudo interdisciplinar de plantas medicinais.	UNIARARAS	15	
Grupo de pesquisa em fármacos e fitofármacos.	UNICAMP	06	
Laboratório de pesquisa de compostos bioativos.	UNICENTRO	11	
Produtos naturais, síntese, determinação estrutural e avaliação de compostos bioativos.	UNIFAL/MG	09	
Plasticidade neural e fitoterápicos.	UNIFESP	01	
Fármacos e medicamentos, com ênfase em fitoterápicos.	UNILAVRAS	07	
Produtos fitoterápicos e cosméticos da Amazônia.	UNINILTON	06	
Fitoterápicos.	UNINOVE	06	
Biologia molecular, celular e tecidual.	UNINOVE	05	
Laboratório de estudos físico-químicos e produtos naturas (LEFQPN).	UNIPAMPA	05	
Núcleo interdisciplinar de biologia e biomedicina – NIBIOMED.	UNIPAR	06	
Núcleo de pesquisa em educação, saúde e plantas medicinais.	UNISUL	09	
Tecnologia farmacêutica, farmacotécnica e garantia da qualidade.	UNIVALI	09	
GIPPE - Grupo de informática para pesquisa epidemiológica.	UPF	07	
Grupo multidisciplinar de pesquisa em ciências farmacêuticas.	URI	11	
Estresse oxidativo mecanismos de doenças e antioxidantes de origem natural.	USP	06	
Grupo secagem e aglomeração de produtos farmacêuticos.	USP	05	
Farmacognosia da FCF-USP.	USP	05	
Pesquisa em processos tecnológicos farmacêuticos.	USP	01	
Grupo de análise fitoquímica.	USP	02	
Citogenética e mutagênese.	USP	02	
Total: 87 grupos de pesquisa	53	842	

Na sequência, apresentam-se os resultados do levantamento dos grupos de pesquisa com ênfase em biopesticidas de origem vegetal. Para esse grupo, foram utilizados os termos "pesticidas naturais", "biodefensivos", "bioinseticidas", "fungicidas naturais", "inseticidas naturais", "herbicidas naturais", "antropologia e ecologia dos insetos" e "extratos vegetais no controle de pragas". A Tabela 7.29 apresenta os grupos de pesquisa com ênfase em biopesticidas de origem vegetal.

Tabela 7.29: Grupos de pesquisas com ênfase em biopesticidas de origem vegetal: 2009

Grupo	Instituição	Número de pesquisadores
Genética de bactérias diazotróficas.	EMBRAPA	17
Ecologia química aplicada.	EMBRAPA	40
Manejo ecológico de pragas e doenças de plantas.	EPAMIG	12
Tecnologias para a produção de hortaliças.	EPAMIG	12
Grupo de pesquisas em toxicologia e saúde ambiental	FIOCRUZ	07
Ação de bactérias entomopatógenas em culicídeos e resistência.	FIOCRUZ	08
Farmacologia de fitoterápicos e outros bioativos naturais.	FMT	10
Acarologia agrícola.	IB	05
Bioprospecção e etnociência na Região Amazônica.	INPA	18
Entomologia.	UEL	04
Química ambiental e fotocatálise heterogênea	UENF	04
Entomologia agrícola.	UFAL	05
Sustentabilidade na Amazônia	UFAM	12
Artropodologia médica e veterinária.	UFG	06
Plantas daninhas.	UFGD	05
Produtos naturais para aplicação na agropecuária.	UFLA	10
Identificação da entomofauna e manejo ecológico de pragas em espécies vegetais nativas do cerrado, de plantas medicinais e de hortaliças não convencionais.	UFMG	05
Flora de MS: Alternativas para o uso sustentável	UFMS	10
Estudo químico, avaliação biológica e biossíntese de produtos naturais.	UFMS	05
Entomologia econômica	UFPEL	09
Laboratório de controle integrado de insetos.	UFPR	03

Grupo	Instituição	Número de pesquisadores
Proteínas tóxicas: estrutura versus função. Ureases como modelo	UFRGS	16
Engenharia de bioprocessos.	UFRN	05
Microbiologia do solo	UFRPE	12
Modelagem de compostos bioativos	UFRRJ	03
Grupo de síntese de moléculas biologicamente ativas.	UFRRJ	09
Núcleo de ecossistemas costeiros	UFS	13
Química de produtos naturais.	UFU	05
Interações artrópodes-pesticidas	UFV	01
Biodiversidade como ferramenta de gestão dos biomas Mato-Grossenses.	UNEMAT	10
Total: 30 grupos de pesquisa	25	281

Na sequência, apresentam-se os resultados do levantamento dos grupos de pesquisa com ênfase em aromas e fragrâncias. Para esse grupo, foram utilizados os termos "aromas", "cosméticos", "extratos vegetais aromáticos" e "óleos essenciais". A Tabela 7.30 apresenta os grupos de pesquisa com ênfase em aromas e fragrâncias.

Tabela 7.30: Grupos de pesquisas com ênfase em aromas e fragrâncias: 2009

Grupo	Instituição	Número de pesquisadores
Grupo de pesquisa e desenvolvimento de produtos tecnológicos.	Cefet/PE	05
Núcleo de produtos naturais - estudo de plantas do Cerrado.	Cefet/RV	05
Aromas de alimentos.	Embrapa	18
Processos com membranas / alimentos.	Embrapa	08
Métodos alternativos ao uso de animais no controle de qualidade de produtos sob a ação da vigilância sanitária.	Fiocruz	10
Grupo de biotransformação e catálise enzimática (Biotrans).	FURB	04
PPFA-Desenvolvimento de processos e produtos farmacêuticos e de alimentos.	FURB	06
Medicamentos, cosméticos e domissanitários: avaliação da eficácia e segurança e impacto em saúde.	IAL	08
Desenvolvimento tecnológico.	IEPA	13

Grupo	Instituição	Número de pesquisadores	
Embalagens plásticas.	ITAL	14	
Conhecimentos botânicos e a otimização tecnológica de plantas medicinais e aromáticas.	MPEG	12	
Desenvolvimento de processos industriais na área de alcoolquímica e óleos essenciais.	PUC-PR	04	
Óleos essenciais e extratos vegetais.	UCS	07	
Controle de qualidade de medicamentos e cosméticos.	UEL	05	
Desenvolvimento de produtos farmacêuticos e cosméticos com ação antioxidante.	UEL	08	
Química de produtos domissanitários.	UEL	03	
Grupo de pesquisas em química de biomoléculas da Amazônia.	UFAM	15	
Grupo de pesquisa do laboratório de produtos naturais da UFC.	UFC	07	
Obtenção de aromas por via microbiológica.	UFF	01	
Assistência farmacêutica e atenção básica à saúde.	UFG	04	
Pesquisa e desenvolvimento de fitoterápicos e fitocosméticos.	UFJF	06	
Processamento de alimentos.	UFLA	15	
Núcleo de imunologia básica e aplicada (NIBA)/Departamento de Patologia.	UFMA	19	
Grupo de química de óleos essenciais e alimentos.	UFMA	07	
Estudo de toxicidade in vitro e in vivo de produtos naturais e sintéticos.	UFMG	07	
Laboratório de controle de qualidade de medicamentos e cosméticos.	UFMS	03	
Engenharia de produtos naturais-GEPRON.	UFPA	04	
Tecnologia mineral.	UFPB	03	
Grupo de estudos e monitorações ambientais (GEMA).	UFPE	07	
Engenharia de bioprocessos e biotecnologia.	UFPR	06	
Laboratório de desenvolvimento galênico.	UFRJ	08	
Proteases de microrganismos.	UFRJ	10	
Processos biotecnológicos.	UFSC	06	
Fitocerrado.	UFU	15	
Desenvolvimento e avaliação de produtos farmacêuticos e cosméticos.	Unaerp	08	
Pesquisas interativas em toxicologia.	Unaerp	06	

Grupo	Instituição	Número de pesquisadores
Biotecnologia vegetal, controle de qualidade e validação de processos tecnológicos aplicados à fitoterápicos.	Unesa	04
Desenvolvimento e controle de produtos farmacêuticos e cosméticos	Unesp	08
Desenvolvimento de preparações cosméticas.	Unesp	07
Grupo de pesquisa Fritz Feigl.	Unesp	05
Estudo interdisciplinar de plantas medicinais.	Uniararas	15
Química de produtos naturais.	Uniban	12
Ecologia química.	Unicamp	07
Grupo de toxicologia de alimentos e fármacos (GTAF).	Unicamp	05
Uso da secagem em spray e microcápsulas para o desenvolvimento de alimentos funcionais.	Unicamp	02
Desenvolvimento e controle de qualidade de fármacos, medicamentos e cosméticos.	Unicep	05
Cosmetologia e cosmética dermatológica.	Unimep	05
Produtos fitoterápicos e cosméticos da Amazônia.	Uninilton	06
Pesquisa, desenvolvimento, análise e controle de qualidade de princípios ativos, medicamentos e cosméticos.	Unisa	04
Tecnologia farmacêutica, farmacotécnica e garantia da qualidade.	Univali	09
Grupo de pesquisa em ciências farmacêuticas (GPCFAR).	URI	03
Grupo multidisciplinar de pesquisa em ciências farmacêuticas.	URI	11
Ciência e tecnologia de alimentos aplicadas a frutos tropicais.	USP	06
Pesquisa, desenvolvimento e avaliação de produtos cosméticos.	USP	04
Determinação e quantificação das vitaminas C e E associadas em produtos cosméticos.	USP	01
Santoro, M.I.R.M	USP	04
Qualidade de produtos, processos e sistemas.	USP	03
Controle físico e químico de qualidade de medicamentos e cosméticos.	USP	04
Desenvolvimento e validação de novas técnicas analíticas aplicadas à análise de substâncias ativas e estudos de estabilidade em formulações farmacêuticas e cosméticas.	USP	04
Total: 59 grupos de pesquisa	41	421

7.2.4. Aspectos de mercado

De acordo com dados da Abifisa, pesquisas demonstraram que mais 90% da população brasileira já fez uso de alguma planta medicinal³². A riqueza da diversidade dos biomas brasileiros contribuiu para que a utilização de plantas medicinais seja considerada uma área estratégica para o pais que detém cerca de 23% das espécies existentes em todo o planeta³³.

O governo brasileiro percebendo a importância do setor de plantas medicinais vem desenvolvendo políticas públicas de saúde para essa cadeia produtiva. No intuito de estabelecer as diretrizes para atuação do governo nas áreas de plantas medicinal e fitoterápico, foi elaborada a Política Nacional de Plantas Medicinais e Fitoterápicos (PNPMF), que foi aprovada em junho de 2006³⁴. Essa política estabelece diretrizes e linhas prioritárias para o desenvolvimento de ações públicas em torno de objetivos comuns voltados à garantia do acesso seguro e uso racional de plantas medicinais e fitoterápicos no Brasil, ao desenvolvimento de tecnologias e inovações, assim como ao fortalecimento das cadeias e dos arranjos produtivos, ao uso sustentável da biodiversidade brasileira e ao desenvolvimento do Complexo Produtivo da Saúde.

A PNPMF contempla questões como o desenvolvimento da agricultura familiar, fortalecimento da base produtiva e de inovação local e para competitividade da indústria nacional e ampliação das opções terapêuticas ofertadas aos usuários do Sistema Único de Saúde, com garantia de acesso a plantas medicinais, fitoterápicos e serviços relacionados à fitoterapia, com segurança, eficácia e qualidade. Além da PNPMF, foi estabelecida para o setor de plantas medicinais e fitoterápicos a primeira Portaria Ministerial MS/GM n. 971/2006, que aprova a Política Nacional de Práticas Interativas e Complementares (PNPIC) no Sistema Único de Saúde³⁵.

No Brasil, a legislação para medicamentos fitoterápicos vem sofrendo modificações nos últimos anos. A Agência Nacional de Vigilância Sanitária (Anvisa) do Ministério da Saúde, vem elaborando normas para a regulamentação desses medicamentos, desde a Portaria Número 6 de 1995. Esta Portaria estabeleceu prazos para que as indústrias farmacêuticas apresentassem dados de eficácia e segurança dos medicamentos fitoterápicos, passando pela Resolução de Diretoria Colegiada (RDC)

³² Associação Brasileira de Empresas do Setor Fitoterápico. Abifisa. Suplemento alimentar e de promoção da saúde, 2007. Disponível em http://www.abifisa.org.br. Acesso em 10 mai. 2007.

³³ Batalha, M.O. et.al. Plantas medicinais no Estado de São Paulo: situação atual, perspectivas e entraves ao desenvolvimento. 2007. Disponível em: < http://www.sisflor.org.br/fel15_4.asp>. Acesso em set. 2007.

³⁴ Brasil. Presidência da República. Decreto Número 5.813, aprova a Política Nacional de Plantas Medicinais e Fitoterápicos e dá outras providências. Poder Executivo, Brasília, DF, 23 jun.2006.

³⁵ Brasil. Ministério da Saúde. Portaria no. 971, de 03 de maio de 2006. Aprova a Política Nacional de Práticas Interativas e Complementares (PNPIC) no Sistema Único de Saúde. Poder Executivo, Brasília, DF, 04 mai.2006.

Número 17 de 2000 e a RDC Número 18 de 16 de março de 2004, atualmente em vigor, que dispõe sobre registro de medicamentos fitoterápicos³⁶.

A RDC 48/2004 determina os aspectos essenciais ao registro, como identificação botânica das espécies vegetais utilizadas, padrão de qualidade e identidade e provas de eficiência e segurança que validem as indicações terapêuticas propostas. Esta Resolução permite o registro como fitoterápico apenas do derivado de droga vegetal: extrato, tintura, óleo, cera, exsudado, suco, etc. De acordo com sua abrangência, não é objeto de registro ou cadastro a planta medicinal, ou suas partes, após processo de coleta, estabilização e secagem, podendo ser íntegra, triturada ou pulverizada.

Embora existam iniciativas do governo brasileiro em alavancar o agronegócio das plantas medicinais e fitoterápicos por meio da PNPMF, há um enorme potencial ainda a ser explorado. Segundo estimativas da Convenção da Diversidade Biológica (CDB), o país hospeda entre 15 e 20% de toda biodiversidade mundial, sendo considerado o maior do planeta em números de espécies endêmicas. Dados estatísticos indicam ainda que existam 55 mil espécies de plantas com sua maioria completamente desconhecidas³⁷.

Do total de espécies com registros na Agência Nacional de Vigilância Sanitária (Anvisa), menos de 30% são nativas da América do Sul. Tal fato pode ser visto como um indicativo que há necessidade de investimentos em pesquisa voltada para a avaliação da eficácia e segurança de espécies brasileiras, bem como no desenvolvimento dos fitoterápicos que as contenham³⁸.

No Brasil, mesmo perante a importância do mercado de fitoterápicos, não existem dados oficiais de quanto as empresas desse tipo de medicamento movimentam. Estima-se algo em torno de um bilhão de reais/ano³⁹. Devido à existência de problemas relacionados à qualidade e à regularidade de oferta, a maioria da empresas farmacêuticas (70% transacionais instaladas no Brasil), preferem importar suas matérias-primas. Embora haja demanda de plantas medicinais e potencialidade de atendimento, existe certo despreparo por parte dos agricultores/coletores para atender as exigências do

³⁶ Turolla, M. S. R.; Nascimento, E. S. Informações toxicológicas de alguns fitoterápicos utilizados no Brasil. Revista Brasileira de Ciências Farmacêuticas, v.42, n.2, p.289-306. 2006.

³⁷ Bareiro, E. J.; Bolzani, V. S. Biodiversidade:fonte potencial para a descoberta de fármacos. Química Nova, v.32, n.3, p.679-688. 2009.

³⁸ Carvalho, A. C. B. et al. Situação do registro de medicamentos fitoterápicos no Brasil. Revista Brasileira de Farmacognosia, v.18, n.2, p.314-319. 2008.

³⁹ Associação Brasileira de Empresas do Setor Fitoterápico, Suplemento Alimentar e de Promoção da Saúde. 2009. Atividades desenvolvidas. Disponível em http://www.abifisa.org.br. Acesso em dez 2009.

mercado e da cadeia produtiva em geral. Isso incluiu também as espécies vegetais já recomendadas pelo Sistema Único de Saúde (SUS)^{40,41}.

O segmento de fitoterápicos brasileiro encontra-se em pleno crescimento⁴². Em 2003, o faturamento alcançou R\$ 384.116.000,00; enquanto que em 2006 este valor foi ultrapassado para R\$ 543.261.000,00. O desempenho deste mercado, com o respaldo da legislação sanitária, vinha sinalizando para uma nova estratégia com o uso de extratos parciais, caracterizados por um maior valor agregado e pela constância de qualidade, por meio da padronização, e com indicações clinicamente comprovadas. O que significa dizer que um crescimento das monodrogas no contexto do mercado de fitomedicamentos era esperado. Na Tabela 7.31 apresenta-se a participação de espécies vegetais no total de vendas de produtos classificados como monodrogas no período 2003 a 2006.

Tabela 7.31: Participação de espécies vegetais no total de vendas de produtos classificados como monodrogas

Espécies vegetais	2003	2004	2005	2006
Ginkgo biloba	36,9%	32,2%	31,2%	29,3%
Plantago ovata	19,0%	19,3	17,7%	17,0%
Hedera helix	0,7%	4,4%	5,7%	7,7%
Valeriana officinalis	5,3%	6,5%	6,8%	6,2%
Melilotus officinalis	0,8%	3,4%	4,5%	5,2%
Mentha crispa	3,0%	4,6%	4,6%	4,1%
Trifolium pratense	6,2%	4,8%	4,3%	3,5%
Cynara scolymus	3,5%	4,2%	3,5%	3,4%
Hypericum perforatum	4,7%	3,4%	2,8%	2,7%
Verbena officinalis (Codia verbenacea DC.)	0,0%	0,0%	1,0%	2,3%
Dez espécies (> Fat 06)	R\$ 123.085.727,0)6		81,4%
Demais espécies vegetais	R\$ 30.712.341,71			18,6%
Total do mercado de monodrogas	R\$ 153.798.068,	77		100%

Fonte: Freitas, 2007.

⁴⁰ Corrêa; Alves. Plantas medicinais como alternativa de negócios: caracterização e importância. 2008. Disponível em: http://www.sober.org.br/palestra/9/418.pdf>. Acesso em jan. 2010.

⁴¹ Lourenzani et al. Barreiras e oportunidades na comercialização de plantas medicinais provenientes da agricultura familiar. Revista Informações Econômicas, v.34, n.3, p.15-25. 2004.

⁴² Freitas, A. Estrutura de mercado do segmento de fitoterápicos no contexto atual da indústria farmacêutica brasileira. Ministério da Saúde, p.1-15. 2007.

Um levantamento realizado em 2008 nas páginas da Anvisa e da Visalegis indicam um total de 512 medicamentos fitoterápicos registrados, sendo 80 fitoterápicos associados e 432 simples, ou seja, obtidos de derivados de apenas uma espécie vegetal. Entre os medicamentos fitoterápicos registrados, as principais formas farmacêuticas cadastradas foram as cápsulas com 41,10%, seguido de comprimidos (20,62%), solução oral (12,82%), xarope (4,50%), drágeas (4%), elixir (2,25%), tintura (2,10%) e outras (6,40%). Percebe-se com isso a predominância pelas formas farmacêuticas sólidas no registro de fitoterápicos. Neste mesmo ano, 162 espécies vegetais apresentavam derivados registrados.

As espécies vegetais com maior número de registros encontram-se dispostas na Tabela 7.32. Com relação à distribuição geográfica 28,40% são espécies asiáticas; 27,16% européias; 25,92% da América do Sul, incluindo as espécies brasileiras; 19,75% da América do Norte e/ou Central e 8% africanas. As somas dos dados estão maiores que 100% em virtude de algumas espécies ocorrerem em mais de uma região.

Encontram-se na Tabela 7.33 as espécies com origem brasileira ou sul-americana com maior número de registros e com as respectivas indicações terapêuticas. Nas Tabelas 734 estão relacionadas todas as espécies vegetais registradas como fitoterápicos simples, distribuídas de acordo com sua classificação terapêutica. Além das espécies vegetais com derivados registrados como fitoterápicos simples, há ainda 83 espécies vegetais cujos derivados possuem registro exclusivamente como fitoterápico associado, são elas: Aconitum napellus, Adonis vernalis, Aloe ferox, Alpinia officinarum, Anacardium occidentale, Anemopaegma mirandum, Angelica archangelica, Apodanthera smilacifolia, Artemisia absinthium, Baccharis genistelloides ,Baccharis trimera, Berberis laurina, Caesalpinia ferrea, Carduus marianus, Carina brasiliensis, Carum carvi, Caryophyllus aromaticus, Casearia sylvestris, Cassia fistula, Centaurium erythraea, Cereus grandiflorus, Cereus peruvianus, Chamomilla recutita, Chondrodedon platyphyllum, Cinchona calisaya, Cinnamomum cassia, Cinnamomum zeylanicum, Citrus aurantium, Citrus limetta risso, Cola nitida, Commyphora myrrha, Convolvulus scammonia, Coriandrum sativum, Davilla rugosa, Dorstenia multiformis, Echinacea pallida, Echinodorus macrophyllus, Erythrina mulungu, Eucalyptus citriodora, Foeniculum vulgare, Gentiana lutea, Gossypium herbaceum, Humulus lupulus, Hydrastis canadensis, Hyosciamus niger, Illicium verum, Jacaranda caroba, Jateorhiza palmata, Juniperus oxycedrus, Juniperus Sabina, Lantana camara, Lavandula officinalis, Leptolobio elegans, Luffa operculata, Marsdenia cundurango, Myrospermum erythroxylum, Myroxylon balsamum, Nasturtium officinale, Operculina macrocarpa, Passiflora alata, Peltodon radicans, Periandra mediterranea, Physalis angulata, Picrasma crenata, Pimpinella anisum, Pinus palustris, Piptadenia colubrina, Plantago major, Plumeria lancifolia, Polygala senega, Polygonum hidropiper, Ptychopetalum olacoides, Remijia ferruginea, Rheum officinale, Rheum palmatum, Roripa nasturtium, Ruta graveolens, Solanum paniculatum, Tamarindus indica, Trianosperma tayuya, Trichilia catigua, Uncaria gambir e Viburnum prunifolium.

Com relação às empresas cadastradas (total 119), constata-se uma grande concentração na região Sudeste do país (62%), seguida da região Sul (22%) de número de registros concedidos pelas mesmas. Observa-se também que as participações das regiões Norte (2%), Nordeste (6%) e Centro-Oeste (8%) são ainda muito pequenas. A partir desses dados, é possível notar que a indústria de fitoterápicos segue um padrão de desenvolvimento e distribuição bem próximo da indústria de medicamentos sintéticos, concentrando-se nas regiões Sudeste e Sul do pais⁴³.

Tabela 7.32: Espécies vegetais com maior número de derivados registrados como fitoterápicos simples

Espécie vegetal	Número de registros
Ginkgo biloba (Ginkgo)	33
Aesculus hippocastanum (Castanha da índia)	29
Cynara scolymus (Alcachofra)	21
Hypericum perforatum (Hipérico)	20
Glycine max (Soja)	20
Valeriana officinalis (Valeriana)	20
Panax ginseng (Ginseng)	17
Cassia angustifolia, Cassia senna e Senna alexandrina (Sene)	14
Cimicifuga racemosa (Cimicífuga)	14
Mikania glomerata (Guaco)	14
Maytenus ilicifolia (Espinheira Santa)	13
Peumus boldus (Boldo)	13

Fonte: Carvalho et al., 2008.

⁴³ Carvalho, A. C. B. et al. Situação do registro de medicamentos fitoterápicos no Brasil. Revista Brasileira de Farmacognosia, v.18, n.2, p.314-319. 2008.

Tabela 7.33: Espécies vegetais nativas mais registradas como fitoterápicos simples e respectiva indicação terapêutica

Planta	Número de registros	Indicação terapêutica
Mikania glomerata (Guaco)	14	Expectorante, broncodilatador
Maytenus ilicifolia (Espinheira Santa)	13	Dispepsias, coadjuvante no tratamento de úlceras gástricas
Paullínia cupana (Guaraná)	12	Astenia, estimulante do Sistema Nervoso Central

Fonte: Carvalho et al., 2008.

Tabela 7.34: Classificação de acordo com a principal categoria terapêutica comprovada no registro

Categoria terapêutica	Nomenclatura botânica
Analgésicos contra enxaqueca	Tanacetum parthenium
Analgésicos	Salix alba
Andrógeno	Tribulus terrestris
Ansiolíticos simples	Valeriana officinalis, Piper methysticum, Passiflora incarnata, Melissa officinalis, Matricaria recutita
Antiagregante plaquetário	Ginkgo biloba
Antialérgicos	Glycyrrhiza glabra, Petasites hybridus
Antiarrítmico	Crataegus oxyacantha
Antidepressivos	Hypericum perforatum
Antieméticos e antinauseantes	Zingiber officinale
Antiespasmódico	Atropa belladonna, Fumaria officinalis, Matricaria recutita, Melissa officinalis, Mentha piperita,Papaver somniferum, Peumus boldus
Anti-hemorroidários (tópico)	Hamamelis virginiana
Antilipêmicos	Allium sativum, Oryza sativa
Antiinflamatórios (oral)	Borago officinalis, Boswellia serrata, Cassia occidentalis, Harpagophytum procumbens, Oenothera biennis, Uncaria tomentosa
Antiinflamatórios (tópico)	Calendula officinalis, Capsicum annum, Cordia verbenacea, Matricaria recutita, Uncaria tomentosa
Antiparasitários	Mentha crispa
Anti-sépticos urinários simples	Arctostaphylus uva-ursi
Antiulcerosos	Maytenus ilicifolia
Antivaricosos de ação sistêmica, inclusive anti- hemorroidário	Aesculus hippocastanum, Hamamelis virginiana, Melilotus officinalis, Ruscus aculeatus

Categoria terapêutica	Nomenclatura botânica
Antivertiginoso	Ginkgo biloba
Cicatrizante (tópico)	Aloe vera, Calendula officinalis, Stryphnodendron barbatiman
Climatério (coadjuvante no alívio dos sintomas)	Cimicifuga racemosa, Glycine Max, Trifolium pratense
Colagogos e coleréticos	Peumus boldus, Cynara scolymus, Rosmarinus officinalis
Demulcentes e outros medicamentos de uso oral p/ tratamento de orofaringe	Malva sylvestris
Diuréticos	Equisetum arvense, Orthosiphon stamineus
Expectorantes	Ananas comosus, Eucalyptus globulus, Hedera helix, Mentha piperita, Mikania glomerata, Sambucus nigra
Imunomodulador	Echinacea purpurea
Colagogo, colerético e hepatoprotetor	Silybum marianum
lodoterapia	Fucus vesiculosus
Laxante irritantes ou estimulantes	Senna alexandrina, Rhamnus purshiana, Operculina alata
Laxantes incrementadores do bolo intestinal	Plantago ovata, Plantago psyllium
Medicamentos com ação no aparelho visual	Cineraria maritima
Melanizante	Brosimum gaudichaudii
Moduladores do apetite e produtos para dietas especiais	Garcinia cambogia
Outros produtos com ação na pele e mucosas	Arnica montana
Outros produtos com ação no trato urinário	Pygeum africanum, Serenoa repens
Outros produtos com ação sobre o aparelho cardiovascular	Centella asiatica, Vaccinium myrtillus, Vitis vinifera
Outros produtos para o aparelho respiratório	Pelargonium sidoides, sambucus nigra
Outros produtos para uso em ginecologia e obstetrícia	Vitex agnus-castus
Produtos ginecológicos antiinfecciosos tópicos simples	Schinus terebenthifolius, Triticum vulgare
Psicoanalético	Paullinia cupana, Rhodiola rosea, Panax ginseng
	Ginkgo biloba

Fonte: Carvalho et al., 2008.

Com relação ao segundo segmento - biopesticidas de origem vegetal - Desde 1985, a Secretaria Nacional de Vigilância Sanitária do Ministério da Saúde publica as monografias dos pesticidas que apresentam registro para uso no Brasil, informando os respectivos valores de Limites Máximos de Resíduos (LMR) nos alimentos, oriundos das culturas em que estão sendo registradas. No início os dados técnicos exigidos para o registro do produto eram limitados e os LMR eram fornecidos pelos fabricantes.

Em 1989, a Lei Número 7.802 e seus decretos regulamentares criaram novos parâmetros de registro de pesticidas no Brasil e incluíram o estabelecimento de LMR baseados em estudos supervisionados em campo e utilizando as boas práticas agrícolas praticadas no país⁴⁴. Esta lei determina que o certificado de registro de pesticidas e afins deve ser concedido por órgãos federais específicos das áreas de uso produto, desde que atendidas às diretrizes e exigências estabelecidas pelos seguintes órgãos: Ministério da Agricultura, Pecuária e do Abastecimento (MAPA); Agência Nacional de Vigilância Sanitária (Anvisa) e Instituto Brasileiro de Meio e dos Recursos Renováveis (Ibama). O MAPA registra produtos agrícolas de áreas cultivadas, florestas plantadas e pastagens; a Anvisa registra produtos destinados ao uso em ambientes urbanos, industriais, domiciliares, públicos ou coletivos, ao tratamento de água e ao uso em campanhas de saúde pública e o Ibama, produtos destinados em ambientes hídricos, proteção de florestas nativas e outros ecossistemas⁴⁵.

Posteriormente, com o objetivo de agilizar e permitir maior transparência ao processo de análise técnica e registro de pesticidas na Anvisa, Ibama e MAPA, foi instituído o Sistema Integrado de Informações sobre Agrotóxicos (SAI), por meio do Art. 94 do decreto Número 4.074, de 4 de janeiro de 2002, no qual estão registrados as monografias de 476 ingredientes ativos. Entre os pesticidas com registro para uso com maior número de princípios ativos, encontram-se herbicidas (142), inseticidas (141), fungicidas (114) e os acaricidas (63)⁴⁶.

A utilização de biopesticidas com atividades inseticidas, fungicidas, bactericidas, herbicidas e repelentes tem merecido destaque entre os métodos alternativos ao controle químico convencional, devido aos aspectos de segurança e pela necessidade de conservação do equilíbrio do agroecossistema⁴⁷. O crescente interesse por biopesticidas se deve também ao elevado número de aplicações de defensivos químicos sintéticos na agricultura. Como consequência dessas aplicações, principalmente nos frutos que geralmente são consumidos *in natura*, citam-se os altos índices de resíduos

⁴⁴ Brasil. Lei n.7802, de 11 de julho de 1989. Disponível em: http://www3.dataprev.gov.br/SISLEX/paginas/42/1989/7802.htm. Acesso em dez 2009.

⁴⁵ Ribeiro, M. L. et al. Pesticidas: usos e riscos para o meio ambiente. Holos Environment, v.8, n.1, p.53-71. 2008.

⁴⁶ Ribeiro, M. L. et al. Ibid. 2008.

⁴⁷ Vilela, E. F. Produtos naturais no manejo de pragas. In: Workshop sobre produtos naturais no controle de pragas, doenças e plantas daninhas. Embrapa/CNPDA, 1990. p.15-18.

de pesticidas sintéticos que colocam em risco a saúde do consumidor, contaminam o meio ambiente e, por fim, dificultam ou até mesmo impedem a exportação de frutos, em razão das restrições impostas pelo mercado externo. Por outro lado, as aplicações excessivas de defensivos têm levado a erradicação de inimigos naturais, que auxiliam na manutenção do equilíbrio das populações de pragas secundárias e favorece o desenvolvimento da resistência das pragas aos inseticidas utilizados, colocando em risco a sustentabilidade da cultura em longo prazo⁴⁸ ⁴⁹.

Para estimular a produção e a aplicação de biopesticidas de origem vegetal, o Ministério da Agricultura, um dos três órgãos responsáveis pelo registro de defensivos agrícolas no país - os outros são o Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Ibama) e a Agência Nacional de Vigilância Sanitária (Anvisa) - lançou uma campanha para acelerar os trâmites da etapa burocrática da validação dos biodefensivos. O tempo para o registro de um defensivo biológico tenderá a ser metade do de um químico e a lei estabelece que produtos de baixa toxicidade e periculosidade terão que ser priorizados⁵⁰.

Em termos estatísticos, o Brasil, em 2003, foi classificado como oitavo país entre os maiores consumidores de pesticidas e o quarto mercado de pesticidas do mundo^{51,52}. Segundo a Anvisa, em 2006, o Brasil passou a ser classificado como segundo maior consumidor do mundo.

Apesar da escassez de informações sobre o mercado de biopesticidas no Brasil, dados publicados revelam que em um universo de 1,4 mil agrotóxicos registrados, apenas 16 são biológicos. No momento, em contrapartida, estão em andamento ao menos 50 processos para registros de novos produtos biológicos. O contingente atual dos biológicos representa apenas 1,14% do total de defensivos registrados no país. Se todos os 50 forem aprovados, essa fatia passará a 4,55%. Há de se reconhecer que a parcela ainda é marginal, mas, com os novos registros, o número de defensivos biológicos no mercado será mais que quadruplicado em um curto espaço de tempo⁵³.

- 48 Guimarães, J. A. et al. Recomendações para o manejo das principais pragas do meloeiro na Região do Semi-árido nordestino. Embrapa Agroindústria Tropical, 9p. (Embrapa Agroindústria Tropical. Circular Técnica, 24). 2005.
- 49 Gonçalves, M.E.C.; Bleicher, E. Uso de extratos aquosos de nim e azadiractina via sistema radicular para o controle de moscabranca em meloeiro. Revista Ciência Agronômica, v.37, n.2, p.182-187. 2006.
- 50 Cruz, P. Indústrias investem em defensivos biológicos. 2009. ABIN. Disponível em: http://www.abin.gov.br/modules/articles/articles/article.php?id=4913>. Acesso em dez 2009.
- 51 Caldas, E. D.; Souza. Avaliação de risco crônico na ingestão de resíduos de pesticidas na dieta brasileira. Revista Saúde Pública, v.34, n. 5, p. 529-537.2000.
- 52 Rodrigues, N. R. Agrotóxicos: Análises de resíduos e monitoramento. 2006. Disponível em: http://www.multiciencia.unicamp.br/artigos_07/a_09_7.pdf>. Acesso em dez 2009.
- 53 Cruz, P. Indústrias investem em defensivos biológicos. 2009. ABIN. Disponível em: http://www.abin.gov.br/modules/articles/articles/article.php?id=4913>. Acesso em dez 2009.

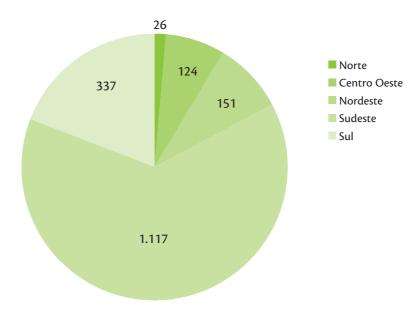
Finalmente, com relação ao terceiro segmento – aromas e fragrâncias – o mercado brasileiro de flavors, essência usada pelos fabricantes de bebidas e alimentos para dar sabor aos produtos, está desenvolvendo novas soluções para atender a uma demanda maior de consumidores. O setor está com foco na produção flavors de alta qualidade e mais nutricional⁵⁴.

O mercado de aromas e fragrâncias no Brasil é impulsionado pelos setores de higiene pessoal, perfumaria e cosméticos que apresentou um crescimento médio composto deflacionado de 10,6% nos últimos 13 anos, tendo passado de um faturamento "ExFactory", líquido de imposto sobre vendas, de R\$ 4,9 bilhões em 1996 para R\$ 21,7 bilhões em 2008.

A queda das vendas em dólares no período entre 1999 e 2002 deveu-se a desvalorização do real, que sofreu valorização de 1994 a 1996, devido à utilização como âncora no controle inflacionário após a implantação do Plano Real em meados de 1994. A partir de 2003 o real passou a ser novamente valorizado vigorosamente até 2007. O forte crescimento em dólar nos anos recentes foi motivado por esta valorização do real, em conjunto com o crescimento deflacionado no mercado interno superior a dois dígitos. Vários fatores têm contribuído para este excelente crescimento do setor, entre os quais destacam-se: (i) participação crescente da mulher brasileira no mercado de trabalho; (ii) utilização de tecnologia de ponta e o consequente aumento da produtividade, favorecendo os preços praticados pelo setor, que têm aumentos menores do que os índices de preços da economia em geral; (iii) lançamentos constantes de novos produtos, buscando atender cada vez mais às necessidades do mercado; e (iv) aumento da expectativa de vida, o que traz a necessidade de conservar uma aparência e imagem de juventude⁵⁵.

Dados de mercado levantados até 2008 mostram que os setores de perfumaria, cosmética, higiene e limpeza vêm apresentando elevado potencial de crescimento, com exportações nos últimos anos aumentando em mais de 20% (US\$ 647.000 milhões). Para o mesmo período, constata-se que as importações de insumos (óleos essenciais, óleos-resina, resinóides, entre outros) para os referidos segmentos elevaram-se em mais de 24 % (US\$ 465.000 milhões)^{56,57}.

⁵⁴ Pimenta, R. Mercado brasileiro de flavors em crescimento. 2007. Disponível em: http://www.pimenta.com/lermais_materias_ php?cd_materias=3090>. Acesso em dez 2009.


⁵⁵ ABIHPEC. Panorama do setor higiene pessoal, perfumaria e cosméticos. 2009. Disponível em: http://www.abihpec.org.br/conteu-do/Panorama2009_Portugues.pdf>. Acesso em dez. 2009.

⁵⁶ Associação Brasileira da Indústria de Higiene Pessoal, Perfumaria e Cosméticos. ABIHPEC. Panorama do setor higiene pessoal, perfumaria e cosméticos. 2008. Disponível em http://www.abihpec.org.br/noticias_texto.php? >. Acesso em dez 2009.

⁵⁷ Guerrero, A. E. Cosméticos. 2008. Disponível em: https://www.finep.gov.br/PortalDPP/relatorio_setorial/impressao_relatorio.asp?lst_setor=28>. Acesso em dez 2009.

Existem no Brasil 1.755 empresas atuando no mercado de produtos de higiene pessoal, perfumaria e cosméticos, sendo que 14 empresas de grande porte, com faturamento líquido de impostos acima dos R\$ 100 milhões, representando 73,4% do faturamento total. As empresas estão distribuídas por região/estado, conforme é mostrado na Figura 7.9⁵⁸.

Figura 7.9: Distribuição regional das empresas fabricantes de produtos de higiene pessoal, perfumaria e cosméticos

A Associação Brasileira das Indústrias de Óleos Essenciais, Produtos Químicos Aromáticos, Fragrâncias, Aromas e Afins (Abifra) tem como objetivos promover ações para o fortalecimento da indústria nacional, divulgando padrões internacionais de qualidade e segurança dos produtos junto ao seu mercado, consumidores e governo. A Abifra é filiada a duas organizações internacionais: a International Fragrance Association (Ifra) e a International Organization of the Flavour Industry (IOFI), representando o setor de fragrâncias e de aromas, respectivamente. Ambas financiam e implementam programas científicos que visam estabelecer as boas práticas de fabricação nesse segmento e garantir o uso seguro de seus produtos. São associadas 47 empresas que fornecem insumos aromáticos para as cadeias produtoras de cosméticos, saneantes, alimentos e bebidas (Tabela 7.35)⁵⁹.

⁵⁸ Associação Brasileira da Indústria de Higiene Pessoal, Perfumaria e Cosméticos. ABIHPEC. Ibid. 2008.

⁵⁹ Associação Brasileira das Indústrias de Óleos Essenciais, Produtos Químicos Aromáticos, Fragrâncias, Aromas e Afins. (Abifra). Empresas associadas. Disponível em: http://www.abifra.org.br/associadosLC.htm. Acesso em dez 2009.

Tabela 7.35: Empresas de aromas, fragrâncias, óleos essenciais e de produtos químicos aromáticos associadas da Abifra

Empresa	Cidade/Estado	Homepage	Área
Apliquímica Aplicações Quim. Especiais Ltda.	São Paulo/SP	www.apliquimica.com.br	[A]
Aromaty Essências e Fragrâncias Ltda.	Cajamar/SP	www.aromaty.com.br	[F]
Aromax Ind. Com. Ltda.	Pindamonhangaba/SP	www.aromax.com.br	[A]
Belmay Fragrâncias Ind. Com. Ltda.	São Paulo/SP	www.belmay.com.br	
Capuani do Brasil Ltda.	Cruz Alta Tietê/SP	www.capuani.com.br	[F][OE][PQA]
Cargill Agrícola S.A.	Cosmópolis/SP	www.cargill.com.br	[OE][PQA]
Carlos Cramer Prods Aromáticos do Brasil Ltda.	Araras/SP	www.cramerbrasil.com.br	[A][F]
Citral Óleos Essenciais Ltda.	Barueri/SP	www.citral-oe.com.br	[OE][PQA]
Citromax Essências Ltda.	Guarulhos/SP	www.citromax.com.br	[A][OE][PQA]
Dohler América Latina Ltda.	Limeira/SP	br.doehier.com/br/home	[A]
Drom International Fragrâncias Ind. e Com. Ltda	Charqueada/SP	www.drom.com	[F]
Duas Rodas Industrial Ltda.	Jaraguá do Sul/SC	www.duasrodas.com.br	[A][OE]
FAV 105 Frangrances Ltda.	São Paulo/SP	www.fav105.com.br	[F]
Firmenich & Cia. Ltda.	Cotia/SP	www.firmenich.com	[A][F][PQA]
Fortibras Comercial Industrial Ltda.	Jaguariúna/SP	www.fortinbras.com.br	[F]
Fransflor Aromatizantes Ltda.	Diadema/SP	www.transflor.com.br	[F][OE]
Frutarom do Brasil Ltda.	São Paulo/SP	www.frutarom.com	[OE][PQA]
Geroma do Brasil Ind. Com. Ltda.	Ponta Grossa/PR	www.geroma.com.br	[PQA]
Givaudan do Brasil Ltda.	São Paulo/SP	www.givaudan.com	[A][F][OE]
Givaudan do Brasil Indústria e Comércio de Aromas e Fragrâncias Ltda.	Vinhedo/SP	www.givaudan.com	[A][F][OE]
Glamir Import. Prod. Químicos Ltda-EPP.	São Paulo/SP	www.glamir.com.br	[F][PQA]
IFF Essências e Fragrâncias Ltda.	Barueri/SP	www.iff.com	[A][F][OE][PQA]
Isan Essências e Aromas Ltda.	Jandira/SP	www.isan.com.br	
Kerry Ingredientes e Aromas.	Barueri/SP	www.kerry.com.br	[A]

Empresa	Cidade/Estado	Homepage	Área
Lapiendrius Flavors.	Itaquaquecetuba/SP	www.lapiendrius.com.br	[A]
L'Essence Fragrances.	Itaquaquecetuba/SP	www.lessence.com.br	[F]
Liberty Fragrâncias Ltda.	Carapicuiba/SP	www.libertyfragrancias.com.br	[F]
Majufran Indústria e Comércio	Parapuã/SP	www.majufran.com.br	[A]
Mane do Brasil Ind. e Com. Ltda.	Rio de Janeiro/RJ	www.mane.com.br	[A][F]
Memphis S/A Industrial	Porto Alegre/RS	www.memphisbr.com	[F]
Milenia Agrociencias S.A.	São Paulo/SP	E-mail: fatima.a@agricur.com.br	[PQA]
Natura Inovação e Tecnologia de Prods. Ltda.	Cajamar/SP	www.natura.net	[F]
Norscent Fragrâncias e Aromas Ltda.	Recife/PE	www.norscent.com.br	[A][F]
Ottens Flavors do Brasil Ltda.	Cotia/SP	www.ottens.com.br	[A]
Petite Marie Química Fina Ind. e Com. de Prod. Quims. Ltda.	Itaquaquecetuba/SP	www.petitmarie.com.br	[F][PQA]
Phytoessence Fragrâncias Ltda.	Barueri/SP	www.phytoessencefragrancias. com.br	[F]
Primola Fragrâncias Ind. e Comércio Ltda.	São Paulo/SP	www.primolasul.com.br	[F]
Proaroma Indústria e Comércio Ltda.	Diadema/SP	www.proaroma.com.br	[A]
Race Comésticos Ltda.	Rio de Janeiro/RJ	www.raceessencias.com.br	[F]
Rai Ingredientes Aromas e Fragrâncias Ltda.	Bernardo do Campo/SP	www.ralingredients.com.br	[A][F][PQA]
Rhodia Poliamida e Especialidades Ltda.	São Paulo/SP	www.rhodia.com.br	[PQA]
Robertet do Brasil Ind. Com. Ltda.	Barueri/SP	www.robertet.com	[A][F]
Sabores, Aromas e Fragrâncias Ltda.	Duque de Caxias/RJ	www.saboresearomas.com.br	[A]
Saporati do Brasil Ltda.	Pinhais/PR	www.saporiti.com.br	[A][OE]
Symrise Aromas e Fragrâncias Ltda.	São Paulo/SP	www.symrise.com	[A][F][PQA]
Takasago Fragrâncias e Aromas e Ltda.	Cajamar/SP	www.takasago.com	[A][F][PQA]
Ventós do Brasil Ltda.	Cotia/SP	www.ventos.com	[PQA][OE]

Legenda: A = Aromas; F = Fragrâncias; OE = Óleos Essenciais; PQA = Produtos Químicos Aromáticos.

Com a intensificação competitiva dos setores de perfumaria, cosmética, farmacêutica, higiene e limpeza, alimentícia e de bebidas, as empresas brasileiras de aromas e fragrâncias têm elevado nos últimos anos a importação de óleos essenciais, principalmente de países como a França, Estados Unidos, Paraguai, Argentina, China e Vietnã, em razão da qualidade, variabilidade e disponibilidade ao nível comercial de novas essências naturais.

Apesar das pesquisas mostrarem a elevada biodiversidade brasileira de plantas aromáticas, com milhares de espécies já identificadas como produtoras de essências, pouquíssimos trabalhos fitoquímicos envolvendo avaliação do potencial olfativo e toxicológico com a participação das indústrias de aromas e fragrâncias instaladas no país têm sido realizados. Este fato vem dificultando as chances de redução de importação, bem como a descoberta de novas essências tão demandadas pelas referidas empresas. Em consequência, têm-se proporcionado a subutilização da flora brasileira, que além de não trazer nenhuma contribuição efetiva de geração de renda para população, poderá proporcionar a extinção de várias espécies vegetais, devido à falta de conhecimento do potencial aromático^{60,61,62}.

O país destaca-se no ranking da produção mundial de óleos essenciais, mas sofre de problemas crônicos como falta de manutenção do padrão de qualidade dos óleos, representatividade nacional e baixos investimentos governamentais no setor, que levam ao quadro estacionário observado. Recentemente, foi fundada a Associação Brasileira de Produtores de Óleos Essenciais com os objetivos de estreitar o relacionamento entre produtores e centros de pesquisa nacionais para agregar qualidade aos óleos por meio de pesquisa e estudos de padronização; fornecer dados atualizados de mercado e representar a área frente aos órgãos e programas governamentais⁶³.

Pela complexidade do tema e magnitude das possibilidades de desenvolvimento de produtos fitoquímicos frente à megabiodiversidade brasileira, optou-se por apresentar neste estudo somente um quadro atual da produção científica, propriedade intelectual e aspectos de mercado referentes aos segmentos: fitoterápicos, biopesticidas de origem vegetal e aromas e fragrâncias. A definição dos respectivos tópicos tecnológicos e análises prospectivas dos referidos segmentos deverão ser objeto de estudo posterior, envolvendo especialistas representantes do governo, da academia e de empresas.

⁶⁰ Garcia, R. Internacionalização comercial e produtiva na indústria de cosméticos: desafios competitivos para empresas brasileiras. Revista Produção, v. 15, n. 2, p.158-171. 2005.

⁶¹ Mattoso, E. Estudo de fragrâncias amadeiradas da Amazônia. Universidade Estadual de Campinas, Dissertação (Mestrado). 148 p. 2005.

⁶² Kato, V. Uso de óleos essenciais inovadores da biodiversidade brasileira para a perfumaria fina e o desenvolvimento sustentável. 2004. Natura. Disponível em < http://www.iac.sp.gov.br/ sboe2005/ SergioGallucci.pdf >. Acesso em dez 2009.

⁶³ Bizzo, H. R.; Hovell, A. M. C; Rezende, C. M. Óleos essenciais no Brasil: aspectos gerais, desenvolvimento e perspectivas. Química Nova, v. 32, n. 3, p. 588-594, 2009.

7.3. Tópicos associados ao tema

O conjunto de tópicos tecnológicos deverá ser definido em função das informações constantes nos panoramas mundial e nacional apresentados nas seções anteriores. Constituirão desdobramentos dos três grupos principais da fitoquímica, a saber: fitoterápicos, aromas e fragrâncias e biopesticidas de origem vegetal. Para a seleção dos tópicos tecnológicos recomenda-se a ênfase naqueles tópicos que possam ser alvos de políticas públicas e objetos de projetos de P,D&I no âmbito da futura Rede Brasileira de Química Verde.

7.4. Mapa tecnológico no mundo: 2010-2030

A construção do mapa tecnológico em nível mundial deverá seguir a proposta metodológica e formatação gráfica apresentadas na Seção 3.2 do Capítulo 3. A representação gráfica do mapa tecnológico do desenvolvimento do tema "fitoquímica" no mundo visa comparar as trajetórias mundiais dos tópicos com as trajetórias no Brasil, tendo em vista a definição da estratégia tecnológica a ser seguida em nível nacional e o estabelecimento das prioridades da Rede Brasileira de Química Verde no que se refere à geração de conhecimento e inovações neste tema.

7.5. Mapa tecnológico no Brasil: oportunidades estratégicas no período 2010- 2030

A construção do mapa tecnológico em nível nacional deverá seguir a proposta metodológica e representação gráfica apresentadas na Seção 3.2 do Capítulo 3. A representação gráfica do mapa tecnológico do desenvolvimento do tema "fitoquímica" no Brasil tem por objetivo analisar as vantagens competitivas potenciais para o país, em comparação com o cenário tecnológico mundial, principalmente no curto e médio prazo. Deverão ser comentados os destaques e pontos críticos do mapa.

A partir dessa análise, o próximo passo é construir o *portfolio* tecnológico estratégico do tema "fitoquímica", no qual os tópicos associados deverão ser classificados e dispostos no gráfico segundo dois critérios: (i) sustentabilidade, calculada em função do impacto econômico e socioambiental das aplicações potenciais do tópico no período 2010-2030; e (ii) grau de esforço para atingir o posicionamento desenhado no mapa tecnológico do Brasil. A representação genérica e as orientações metodológicas para a construção do portfólio encontram-se também na Seção 3.3 do Capítulo 3.

7.6. Condicionantes do futuro em relação ao desenvolvimento do tema

A análise dos principais condicionantes do futuro em relação ao desenvolvimento dos tópicos associados ao tema "fitoquímica" no Brasil deverá ser conduzida na perspectiva de correlacionar condicionantes econômicos, regulatórios, políticos, tecnológicos, ambientais, sociais e éticos aos planos de ação de curto, médio e longo prazo que viabilizarão o desenvolvimento dos três segmentos da fitoquímica nos períodos 2010-2015; 2016 -2025; e 2026 -2030 (Capítulo 13). A visão de futuro a ser construída para o Brasil, no que se refere à geração de novos conhecimentos e inovações no tema "fitoquímica" nesses horizontes temporais estará sujeita, portanto, a tais condicionantes.