

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA

DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM RECURSOS GENÉTICOS VEGETAIS

IERLA CARLA NUNES DOS SANTOS RIBEIRO

ANÁLISE DA DIVERGÊNCIA GENÉTICA EM ACESSOS DE Mangifera indica COM BASE EM DESCRITORES AGRO-MORFOLÓGICOS E MARCADORES MICROSSATÉLITES

FEIRA DE SANTANA – BA

IERLA CARLA NUNES DOS SANTOS RIBEIRO

ANÁLISE DA DIVERGÊNCIA GENÉTICA EM ACESSOS DE Mangifera indica COM BASE EM DESCRITORES AGRO-MORFOLÓGICOS E MARCADORES MICROSSATÉLITES

FEIRA DE SANTANA- BAHIA

IERLA CARLA NUNES DOS SANTOS RIBEIRO

ANÁLISE DA DIVERGÊNCIA GENÉTICA EM ACESSOS DE Mangifera indica COM BASE EM DESCRITORES AGRO-MORFOLÓGICOS E MARCADORES MICROSSATÉLITES

Dissertação apresentada ao Programa de pós-graduação em Recursos Genéticos Vegetais, da Universidade Estadual de Feira de Santana, como requisito parcial para a obtenção do título de Mestre em Recursos Genéticos Vegetais.

Orientador: Prof. Dr. Carlos Antônio Fernandes Santos

FEIRA DE SANTANA - BAHIA

Ficha Catalográfica – Biblioteca Central Julieta Carteado

Ribeiro, Ierla Carla Nunes dos Santos

R369a

Análise da divergência genética em acessos de *Mangifera indica* com base em descritores agro-morfológicos e marcadores microssatélites/ Ierla Carla Nunes dos Santos Ribeiro. – Feira de Santana, 2011.

114f.: il.; tab.

Orientador: Carlos Antônio Fernandes Santos

Dissertação (mestrado) — Programa de Pós-Graduação em Recursos Genéticos Vegetais. Universidade Estadual de Feira de Santana, 2011.

1.Mangueira – Caracterização morfológica 2.Mangueira – Caracterização molecular 3.*Mangifera indica* – Banco germoplasma 4.Dendrograma 5.Descritores morfológicos I.Santos, Carlos Antônio Fernandes. II. Universidade Estadual de Feira de Santana. III. Título.

CDU: 634.441

BANCA EXAMINADORA

Dr. Francisco Pinheiro Lima Neto
Dr. João Gomes da Costa
Dr. Carlos Antônio Fernandes Santos
Orientador e Presidente da Ranca

Feira de Santana – BA

AGRADECIMENTOS

- Ao Deus eterno, autor e consumador da minha fé, quem me deu o fôlego da vida e aos irmãos da Igreja Batista Calvário pelas orações.
- À Embrapa Semiárido, pela oportunidade e infra-estrutura disponível para o desenvolvimento deste trabalho.
- À FAPESB, pela bolsa concedida, sem a qual não conseguiria concluir esta etapa.
- Ao meu orientador Dr. Carlos Antônio Fernandes Santos, pelo apoio e ensinamentos fundamentais para o andamento do trabalho.
- Ao meu amor e amigo Reinato, por sua presença em minha vida pelo incentivo e compreensão.
- Aos meus pais Aliete Nunes e José Rodrigues, minhas irmãs Elizana e Érica pelo incentivo e minha sobrinha Marianne por ser uma doçura de criança.
- A minha cunhada Rosineide e seu esposo Edvaldo, por terem me hospedado e também a mestranda Sara onde dividimos o mesmo teto durante algum tempo.
- A minha amiga Marciene pelo otimismo e por nossa amizade.
- As Fazendas Frank's Fruits, AM Export, Copa Fruit.
- A Kátheen Politowski pela grande ajuda na tradução dos resumos para o inglês.
- Aos funcionários do Campo Experimental de Mandacaru/Embrapa Semiárido.
- Às bolsistas Rosângela e Tuany pela colaboração e disposição para trabalhar (até aos fins de semana!).
- À Empresa Gontijo de transportes Ltda pela contribuição nas viagens semanais de Petrolina-PE a Feira de Santana/BA.
- Aos bolsistas e funcionários do laboratório de genética (Embrapa Semiárido).

O temor do Senhor é o princípio da sabedoria. Salmo 111.10

SUMÁRIO

AGRADECIMENTOS			
INTRODUÇÃO GERAL	1		
CAPÍTULO I – CARACTERIZAÇÃO DE GERMOPLASMA DE Mangifera in	ndica POR		
DESCRITORES AGRO-MORFOLÓGICOS	6		
CAPÍTULO II – DIVERSIDADE GENÉTICA ENTRE ACESSOS DE Mangifera indica			
COM BASE EM DESCRITORES AGRO-MORFOLÓGICOS	31		
CAPÍTULO III – CARACTERIZAÇÃO MOLECULAR DE ACESSOS DE .	Mangifera		
indica COM BASE EM MARCADORES MICROSSATÉLITES	46		
CONCLUSÕES GERAIS	69		
RESUMO	73		
ABSTRACT	74		

75

ANEXOS

INTRODUÇÃO GERAL

A classificação mais recente das espécies de Mangifera foi baseada na morfologia floral (Kostermans e Bompard, 1993) e incluiu 69 espécies, a maioria das quais estão incluídas em dois subgêneros, Mangifera e Limus, com outras 11 espécies que ocupam uma posição incerta (Mukherjee et al., 2009).

A mangueira originou-se no segundo grande centro, o indiano, e no subcentro Indo-Malaio e dessas diferentes regiões originaram-se duas raças, a indiana e a filipínica, cada uma delas com características distintas de frutos, sendo que o primeiro tipo apresenta frutos de boa aparência, coloridos e sementes monoembriônicas e o segundo tipo, frutos com casca verde-amarelada e sementes poliembriônicas (Mukherjee, 1985).

Árvores adultas podem atingir uma altura de 40 metros ou mais e podem sobreviver por várias centenas de anos, as flores são dispostas em panículas terminais de forma piramidal, a inflorescência é rígida e ereta, com até 30 cm de comprimento, e é amplamente ramificada, geralmente é densamente florida, com centenas de pequenas flores, que medem de 5 - 10 mm de diâmetro. O fruto é uma drupa grande e carnosa, contendo um mesocarpo comestível de espessura variável.O formato do fruto varia, incluindo formas alongadas, retangulares e ovaladas ou intermediárias envolvendo duas dessas formas. A morfologia foliar é altamente variável, dependendo da cultivar as folhas podem ser lanceoladas, oblongas, ovadas e intermediárias. Intervalos de comprimento de folha 12-38 cm e largura pode ser entre 2 a 13 cm. As folhas jovens são de cor cobre, mudando gradualmente à luz e, em seguida, verde-escuro com a idade. As folhas são dispostas em espiral em giros e são produzidas em cachos. Sementes de manga são solitárias, grandes e planas, forma oblonga oval e cercado pelo endocarpo fibroso na maturidade. Os embriões são dicotiledôneas. Sementes monoembriônicas contêm um único embrião zigótico, cujos cotilédones podem ser desiguais em tamanho ou em forma, enquanto as sementes poliembriônicas contêm um ou mais embriões, normalmente um embrião é zigótico, enquanto que os embriões restantes são derivados diretamente do nucelo, o tecido materno (Mukherjee et al. 2009).

O desenvolvimento de novos cultivares de mangueira, com melhor qualidade póscolheita e de propriedades nutricionais, deverá fortalecer e manter a competitividade do agronegócio da mangicultura no Nordeste Brasileiro, com visíveis impactos na geração de emprego e renda da região. No ano de 2005 a variedade americana Tommy Atkins respondia por 86,68% da produção, a variedade Palmer 3,62% seguidas em números menos expressivos pelas variedades Kent, Haden, Keitt e outras (Codevasf, 2006).

O agronegócio torna-se vulnerável quando o cultivo se concentra em apenas uma cultivar ficando assim os pomares expostos ao ataque de pragas e de doenças e às alterações na preferência do mercado. Espera-se que a mudança no consumo internacional a médio prazo deva ser centrada em um tipo de manga de mesa que associe o aspecto e a resistência ao transporte e à prateleira da Tommy Atkins ao maior teor de sólidos solúveis totais, maior valor na relação brix/acidez, baixo teor de fibras e altos teores de anti-oxidantes e pró-vitamina A, como carotenóides (Wyzykowsky et al., 2002).

Analisar as características apresentadas pelos acessos de mangueira existentes no banco ativo de germoplasma (BAG) da Embrapa Semiárido, é importante, pois com isso se pode conhecer a variabilidade genética entre acessos oriundos de várias regiões do mundo. Estas informações, em conjunto com o conhecimento adquirido através das análises genéticas propiciadas pelo estudo com marcadores moleculares, poderão ser utilizados em programas de melhoramento genético, contribuindo ainda para a preservação do germoplasma conservado.

Segundo Ferreira et al.(2007), a caracterização de bancos de germoplasma tradicionalmente baseia-se em descritores morfológicos que possibilitam a separação dos acessos da coleção. A caracterização agro-morfológica tem proporcionado grandes avanços, os quais vêm permitindo o conhecimento e a organização das coleções de germoplasma vegetal, apesar de algumas limitações como o baixo polimorfismo.

Algumas características podem ser influenciadas pelo ambiente, elevando o grau de erros na caracterização e na diferenciação de acessos distintos, podendo ainda apresentar algum impacto na viabilidade dos acessos, dificultando inclusive a manutenção das coleções de germoplasma vegetal (Ferreira et al.,2007).

O número estimado de bancos de germoplasma existente no mundo é de 287 e no Brasil há 177 bancos. (Veiga, 2010). O acervo mundial de germoplasma de mangueira compõe quase seis mil acessos incluindo as repetições (Bettencourt et al., 1992). Um dos mais expressivos bancos de mangueira no Brasil é o da Embrapa Semiárido, atualmente com 150 acessos (Silva et al. 2010).

As técnicas baseadas no DNA, introduzidas nas últimas duas décadas, são capazes de identificar polimorfismos nas sequências de bases. Uma das vantagens é a ausência de

interferência ambiental podendo-se realizar o estudo com plantas em qualquer estádio de crescimento utilizando-se pequenas quantidades de material genético. (Hodgkin et al.,2001; Karp, 2002).

Microssatélites ou marcadores genéticos moleculares baseados em Seqüências Simples Repetidas (SSR) consistem em unidades de cerca de um a seis nucleotídeos repetidos em seqüência dentro do genoma de vários organismos (Goldstein & Scholtterer, 2001).

Ferreira (2001) menciona dois pontos principais sobre a utilidade das técnicas moleculares de análise genômica, incluindo os microssatélites, que são permitir identificar variabilidade nas sequências de DNA dos indivíduos analisados com resolução várias vezes superior ao polimorfismo passível de detecção no plano morfológico e reduzir a enorme complexidade do genoma estudado a análises mendelianas dos segmentos de DNA detectados.

Marcadores microssatélites foram desenvolvidos por causa da co-dominância e do alto polimorfismo adequado para estudar a diversidade e as relações intra-específicas (Duval et. al, 2005).

Viruel et al. (2005) desenvolveram o primeiro conjunto de 16 marcadores microssatélites para mangueira, dos quais 14 produziram os resultados esperados, uma ou duas amplificações por genótipo. Duval et al. (2005), Schnell et al. (2006) e Honsho et al. (2005) publicaram em torno de 65 microssatélites para mangueira.

REFERÊNCIAS BIBLIOGRÁFICAS

BETTENCOURT, E; HAZEKAMP, T.;PERRY, M.C. **Directory of germplasm collections**: 6.1. Tropical and subtropical fruits and tree nuts.Rome: IBPGRI, 1992. 237 p.

CODEVASF. Dados: cadastros frutícolas 2002 e 2005. Brasília, DF, 2006.

DUVAL, M.F.; BUNEL J.; SITBON, C.; RISTERUCCI, A.M. **Development of microsatellite markers for mango** (*Mangifera indica* L.). Molecular Ecology Notes, Oxford, v. 5, p. 824–826. 2005.

FERREIRA, M.E; MORETZSOHN, M.C; BUSO, G.S.C. **Recursos genéticos vegetais**. Brasília: Embrapa Recursos Genéticos e Biotecnologia, 2007. p 385-386.

FERREIRA, M.E. Técnicas e estratégias para a caracterização molecular e uso de recursos genéticos. In: GARAY,I.E.G.;DIAS, B. F.S. Conservação da biodiversidade em ecossistemas tropicais: avanços conceituais e revisão de novas metologias de avaliação e monitoramento. Petrópolis:Vozes, 2001.p. 233-267.

GOLDSTEIN, B.D.;SCHLOTTERER, C. **Microssatelites**: evolution and applications. Orford: Orford University Press, 2001.p.352.

HODGKIN, T.; ROVIGLIONI, R.; DE VICENTI, M.C.; DUDNICK, N. Molecular methods in the conservation and use of plant genetic resources. **Acta Horticulturae**, Leuven, n. 546, p. 107-118,2001.

HONSHO, C, NISHIYAMA, K., EIADTHONG, W., and YONEMORI, K. 2005. **Isolation and characterization of new microsatellite markers in mango Mangifera indica.** Mol. Ecol. Notes,5(1): 152-154.

KARP, A. The new genetic era: will it help us in managing genetic diversity In: Engels, J.M.M, RAMANATHA, R.V.;BROWN, A.H.D.; JACKSON,M.T.(Ed.). **Managing plant genetic diversity**. Wallingford: CAB International; Rome: IPGRI, 2002. Cap. 4, p. 43-56.

KOSTERMANS, A.J.G.H. and BOMPARD, J.M (1993) The mangoes: Botany, Nomenclature, Horticulture, Cultivation and Utilization. Academic Press, London.

MUKHERJEE S.K.,LITZ R.E.. **Introduction: Botany and Importance**, In: LITZ,R.E(Ed.). The mango, London, UK: British Library (2009),1-18p.

MUKHERJEE, S.K. Systematic and ecogeographic studies of crop genepools: 1. **Mangifera IBPGR Secretariat**, Rome. 86 p. 1985.

WYZYKOWSKI, J.; ARAÚJO, J. L. P.; ALMEIDA, C. O. Mercado e comercialização. In: Genú, P. J. C.; Pinto, A. C. Q. **A cultura da mangueira. Brasília**: Embrapa Informação Tecnológica, 2002. p. 433-444.

SILVA, F.A; SANTOS, C.A.F; ARAÚJO, F.P; MOREIRA, J.N; FERREIRA, M.A.J.F; LEÃO, P.C.S; DIAS, R.C.S; ALBUQUERQUE, S.G. **Recursos genéticos vegetais conservados na Embrapa Semiárido**. In: SÁ, I.B; SILVA, P.C.G. (Ed.). Semiárido Brasileiro, Pesquisa, Desenvolvimento e inovação, Petrolina, PE: Embrapa Semiárido, 2010. Cap.8, p. 277-315.

SCHNNEL, R.J.; BROWN, J.S.; OLANO, C.T.; MEEROW, A.W.; CAMPBELL, R.J.; KUHN, D.N. Mango genetic diversity analysis and pedigree inferences for Florida cultivars using microsatellite markers. **Journal of the American Society for Horticultural Science**, Athens, v. 131, n. 2, p. 214-224. 2006

VEIGA, R. F. A. **Bancos de Germoplasma**. Disponível em: WWW.biota.org.br/pdf/v72cap04.pdf>. Acesso em: 14. maio. 2010.

VIRUEL, M.A.; ESCRIBANO, P.; BARBIERI, M.; FERRI, M.; HORMAZA, J.I. Fingerprinting, embryo type and geographic differentiation in mango (*Mangifera indica* L., Anacardiaceae) with microsatélites. **Molecular Breeding**, Dordrecht, v. 15, p. 383-393. 2005.

CAPÍTULO I - CARACTERIZAÇÃO DE GERMOPLASMA DE Mangifera indica POR DESCRITORES AGRO-MORFOLÓGICOS

RESUMO

Este trabalho teve o objetivo de caracterizar 103 acessos de mangueira do Banco ativo de germoplasma da Embrapa Semiárido, localizado em Juazeiro, BA, adotando 50 descritores estabelecidos pelo Ministério da Agricultura, Pecuária e Abastecimento, para auxiliar no desenvolvimento de novas cultivares para a região Nordeste do Brasil. Foram utilizadas quatro plantas, coletadas folhas adultas, inflorescências e frutos, resultando no total de 32 amostras por acesso. Foram analisadas características desde o porte da planta até a embrionia da semente. Percentagens simples foram estimadas para todos os descritores e fotografias foram obtidas para alguns dos descritores, principalmente para aqueles relacionados ao fruto. Apenas os descritores simetria da folha e cerosidade do fruto não apresentaram variabilidade entre os acessos. Oito acessos não apresentaram fibras, enquanto outros nove acessos apresentaram firmeza, que são características importantes para o melhoramento. O teor de sólidos solúveis que verificado foi alto, acima de 14ºBrix para 95% dos acessos, tendo sido baixo, menor do que 12,5°Brix, apenas para a Tommy Atkins. Houve grande variabilidade para a cor da epiderme variando da cor verde até o vermelho. Os acessos Amrapali e Salitre apresentaram cor de polpa laranja escura. As características analisadas, associadas a com estudos de divergência genética, poderão auxiliar na escolha dos melhores parentais e também contribuir para a proteção de cultivares de mangueira no Brasil, de acordo com os descritores estabelecidos pela legislação brasileira.

Palavras-chave: Mangueira, banco germoplasma, acessos.

ABSTRACT

The goal of this work was to characterize 103 mango accessions of the field Germplasm Bank of Embrapa Semi-arid, located in Juazeiro, Bahia, Brazil, adopting 50 descriptors established by the Ministry of Agriculture, Livestock and Supply, to help in the development of new mango cultivars for the Northeast region of Brazil. Four plants were used, with eight adult leaves, eight flowers and 16 fruits being collected per plant, resulting in a total of 32 examples per accession. Characteristics were evaluated from the plant size to the seed embryo. Simple percentages were estimated for all the descriptors and photographs were obtained for some of the descriptors, principally for those related to the fruit. Only the descriptors leaf symmetry and fruit waxiness did not present variation among the accessions. Eight accessions did not present fruits with fibers while others nine accessions presented pulp firmness, which are important characteristics for breeding improvement. The soluble solids content was high, above the 14°Brix, for 95% of the accessions, with Tommy Atkins presenting the lowest value, 12.5 Brix. There was a great diversity for the color of the epidermis ranging from green to red. The accessions Amrapali and Salitre presented a dark orange color for the pulp. These characteristics with studies of genetic divergence can help in the choice of the best parental to develop populations with desirable attributes and also contribute to the protection of mango cultivars in Brazil, according to the descriptors established by Brazilian legislation.

Keywords: Mango, Germplasm Bank, Accessions.

INTRODUÇÃO

De acordo com a classificação de Vavilov (1950) sobre os centros de origem, Mukherjee (1985) sugere que a mangueira é originada no segundo grande centro, o indiano, e no subcentro Indo-Malaio, originando-se as raças indiana e filipínica, cada uma delas com características distintas de frutos. A primeira apresentando frutos de boa aparência, coloridos e sementes monoembriônicas e a segunda com frutos de casca verde-amarelada e sementes poliembriônicas.

No século XVI, os portugueses, através de contatos comerciais, transportaram sementes e mudas de mangueira da Índia para a África e depois chegando ao Brasil, que foi o primeiro país a cultivar a espécie nas Américas (Simão, 1971). No Brasil essa espécie está presente em vários Estados, mas como cultivo econômico apenas nas regiões Nordeste e Sudeste predominando nos estados da Bahia, Pernambuco, Ceará, Minas Gerais e São Paulo (Fávero, 2008).

Uma das mais importantes espécies frutíferas tropicais, a mangueira produz frutos de excelente qualidade que são muito apreciados, possuindo atributos que facilitam a adaptação em diferentes ambientes em que é introduzida, com dispersão em todos os continentes, sendo cultivada em países de clima tropical e subtropical (Pinto et al., 2002a).

Segundo Valls (2007) o Brasil em poucas décadas será um dos países com maior variabilidade disponível para a pesquisa relacionada às culturas tradicionais e aquele que mais tem reunido opções novas para ampliação da gama de espécies cultiváveis para vários objetivos e ecossistemas, em conseqüência da redução das perdas de variabilidade associada ao processo de enriquecimento. Uma das etapas do processo de caracterização e avaliação é aquela que trata dos aspectos morfológicos e fenológicos, observada de forma sistemática nos acessos por meio do confronto com listas de características descritivas ou "descritores".

A análise das características individuais de cada variedade de mangueira é necessária para torná-la disponível para o melhoramento. As variedades ou acessos são reunidos em Bancos de Germoplasma, que são unidades conservadoras de material genético de uso imediato ou com potencial de uso futuro. O acervo mundial de germoplasma de mangueira compõe quase seis mil acessos incluindo as repetições (Bettencourt et al., 1992)

O Banco Ativo de germoplasma de mangueira da Embrapa Semiárido, localizado na Estação Experimental de Mandacaru, Juazeiro, BA, é constituído por 150 acessos, sendo provavelmente a maior coleção brasileira da espécie, sendo composto por variedades crioulas, como também por variedades introduzidas de outros países tais como Estados Unidos, México, Israel, Índia, Tailândia, África do Sul, Austrália e Filipinas (Silva et al., 2010).

Valls (2007) relacionou cinco etapas do processo de caracterização e avaliação: 1. identificação botânica, 2. elaboração do cadastro de acessos disponíveis, 3. anotação de caracteres botânicos de alta herdabilidade, facilmente visíveis ou mensuráveis, 4. avaliação preliminar, e 5. avaliação aprofundada ou complementar, com número reduzido de acessos.

A caracterização e a avaliação de germoplasma, além de proporcionar melhor conhecimento do que se tem disponível, permitem a identificação de acessos duplicados, possibilitando assim a eliminação de alguns acessos. Por meio da caracterização dos acessos, têm sido obtidos grandes avanços e com isso tem sido possível conhecer e organizar os Bancos ativos de Germoplasma (Ferreira et al.,1998).

Um descritor pode ser entendido como sendo um caráter de alta herdabilidade que se mantém constante em diferentes ambientes sendo usado para diferenciar uma variedade de outra. Atualmente o desenvolvimento de novas cultivares de mangueira está associado à proteção, com normas, regras e descritores mínimos para o reconhecimento e registro (Pinto et al., 2002).

Segundo Chitarra & Chitarra (2005), o melhoramento genético de plantas é obtido pela combinação de caracteres desejáveis através da seleção de determinados genótipos existentes na natureza ou por hibridação manual para combinação de caracteres disponíveis em diferentes acessos.

Trabalhos de caracterização em mangueira já foram realizados, grande parte deles descrevendo caracteres relacionados aos frutos (Costa et al., 2002ab, 2003, 2004) altura da planta e diâmetro do tronco, diâmetro da copa (Fonseca et al., 1994; Siqueira et al., 1989) e início, regularidade e época de produção (Costa et al., 2001). Existem trabalhos que reúnem descritores de porte da planta, folha, flor e fruto com alguns acessos do Banco ativo de Germoplasma da Embrapa Semiárido (Santos et al., 2008ab).

O objetivo deste trabalho foi caracterizar 103 acessos de mangueira do Banco ativo de germoplasma da Embrapa Semiárido, localizado em Juazeiro, BA, adotando 50

descritores estabelecidos pelo Ministério da Agricultura, Pecuária e Abastecimento, para auxiliar no desenvolvimento de novas cultivares para a região Nordeste do Brasil.

MATERIAL E MÉTODOS

Caracterização Morfológica-Banco Ativo de Germoplasma (BAG)

O Banco Ativo de Germoplasma (BAG) de mangueira esta localizado no Campo experimental de Mandacaru da Embrapa Semiárido, no município de Juazeiro/BA, nas coordenadas latitude: 09°24'S, longitude: 40°26'W, altitude 375,5m. O clima é semiárido e o solo do tipo Vertissolo, a média da precipitação pluvial anual é de 541,6mm, e da umidade relativa do ar é 58,8%. A temperatura média anual é de 26,8°C, sendo que a média da temperatura máxima é de 31,7°C e da mínima é de 20,8°C. O BAG é formado por 150 acessos dos quais 103 (Tabela 1) foram caracterizados com 50 descritores (Brasil, 2002).

Cada acesso do BAG é composto por quatro plantas com espaçamento de 10 m x 10 m, realizando-se normalmente uma poda anual logo após a colheita. A aplicação dos nutrientes é realizada por meio de sulcos abertos ao lado das plantas e delimitados pela projeção da copa e pelo bulbo molhado, região que apresenta a maior concentração do sistema radicular. Alterna-se anualmente, em todas as mangueiras, o lado da abertura do sulco para a aplicação dos nutrientes. A aplicação baseia-se nas necessidades determinadas pelas análises de solo e foliares. O sistema de irrigação é de microaspersores.

Coleta de dados - Para compor a amostra de caracterização, foram utilizadas as quatro plantas de cada acesso, coletadas oito folhas adultas, oito inflorescências e 16 frutos por planta, perfazendo um total de 32 amostras por acesso. O material foi coletado ao redor de toda a copa, com exceção das inflorescências que foram analisadas diretamente na planta. As quatro árvores de cada acesso foram avaliadas com os descritores publicados por Brasil (2002):

Árvore - Foi observado diretamente no campo o hábito de crescimento das árvores por meio de comparação com figuras existentes nos descritores, classificando-os em vertical, vertical a semi-vertical, semi-vertical a aberto e aberto.

Folhas - As medições de comprimento e largura da lâmina foram feitas com o auxílio de uma régua. Para as variáveis comprimento do pecíolo, posição em relação ao ramo, simetria, razão comprimento/largura forma predominante, ondulação da borda do limbo e forma da base e do ápice adotou-se os procedimentos como descritos por Brasil (2002). A

coloração pela antocianina das folhas jovens foi analisada visualmente em folhas jovens de até 6 cm de comprimento com até 15 dias de idade.

Inflorescências - As medidas da largura da base da panícula e o comprimento foram feitas com o auxílio de uma régua. Foi também analisada a forma predominante da inflorescência.

Frutos - Os frutos para análise em ponto de colheita foram coletados com cerca de 10 cm de pedúnculo. As medidas de comprimento e largura (seção transversal) dos frutos foram feitas com o auxílio de um paquímetro. Uma balança foi utilizada para a medição do peso da polpa da epiderme e do endocarpo. Um corte transversal foi feito com uma faca para verificar a forma da seção transversal, conforme descritores (Brasil 2002). A coloração da epiderme e da polpa foi definida visualmente e classificada conforme descritores (Brasil 2002). A cerosidade foi determinada pela presença de uma camada esbranquiçada no fruto. Outras variáveis analisadas: profundidade da cavidade peduncular, proeminência na base do pedicelo, base do pedicelo, forma da base ventral e dorsal, reentrância, profundidade da reentrância, protuberância próxima à cicatriz pistilar, forma da cicatriz pistilar, distribuição da coloração da epiderme, tamanho das lenticelas e relevo da superfície do endocarpo. Retirado com tesoura de poda para expor a semente e verificar a embrionia e a forma. Para o descritor base do pedicelo foi adicionada uma categoria às três já existentes que foi a ausente.

Frutos com cerca de 10 cm de pedúnculo, colhidos nas primeiras horas da manhã, foram levados até o laboratório da estação experimental e posicionados verticalmente de forma que o látex escorresse em Becker, durante 30 minutos, seguido de medição com uma seringa graduada de 3 mL. A contagem das lenticelas foi realizada em um retângulo de 4,0 cm x 2,5 cm, vazando-se a epiderme com caneta para determinar a densidade das lenticelas. A espessura da casca foi determinada separando-se a epiderme da polpa com uma faca, seguida da mensuração com paquímetro. A firmeza da polpa foi obtida com a retirada de uma pequena porção da epiderme na área central do fruto nos dois lados para introdução do aparelho penetrômetro. O teor de sólidos solúveis foi determinado em gotas do suco do fruto com apoio de um refratômetro.

A intensidade da aderência da casca à polpa foi determinada puxando-se a epiderme manualmente. Tanto a suculência como a fibrosidade da polpa foi observada analisando-as sensorialmente, a quantidade de fibra aderida ao caroço e a quantidade de fibra ligada à polpa abaixo da casca foram obtidas utilizando-se as referências de Brasil (2002). Para a

análise da embrionia, foi retirado o endocarpo com utilização de tesoura de poda, fazendose um corte lateral longitudinalmente com uma faca para observar-se a semente. Quando segmentada foi classificada como poliembriônica e quando não foi classificada como monoembriônica.

Percentagens simples foram estimadas para todos os descritores aplicados aos acessos avaliados. Fotografias foram obtidas para alguns dos descritores, principalmente para aqueles relacionados ao fruto (Anexo I).

RESULTADOS E DISCUSSÃO

Descritores da árvore, da folha juvenil e desenvolvida e da inflorescência

O hábito de crescimento predominante foi o semi-vertical (60,1%), com o vertical presente em apenas 3,7% dos acessos (Tabela 2). As cultivares originadas da Flórida, EUA, apresentaram na maioria o hábito de crescimento semi-vertical (56,5%), seguido pelos hábitos semi-vertical a aberto (21,7%), aberto (13,0%) e vertical (8,7%) (Anexo II). Verifica-se, portanto, que o hábito de crescimento predominante nas variedades de origem norte-americana é o semi-vertical, que segundo Albuquerque et al. (2002), pode simplificar o manejo do pomar, uma vez que a poda lateral, descrita pela literatura, é realizada para manter um espaçamento entre as fileiras, permitindo o trânsito de veículos e máquinas. Variedades que apresentam hábito de crescimento aberto ou espraiado certamente requerem uma freqüência maior na aplicação do referido tipo de poda, ao contrário, portanto, das variedades que apresentam hábito de crescimento semi-vertical.

A maioria dos acessos apresentou coloração pela antocianina (78,2%), bem como pecíolo curto (77,8%) (Tabela 2). Laroussilhe (1980) menciona que as folhas da mangueira quando jovens podem apresentar coloração verde-clara a levemente amarronzada ou arroxeada, confirmando o observado no presente estudo. Ainda segundo Laroussilhe (1980), o comprimento do pecíolo varia de 2,5 a 10 cm. No presente trabalho, observou-se que a maioria dos acessos apresentou pecíolo menor do que 4 cm, não tendo sido encontrados pecíolos maiores do que 8 cm.

A posição da folha em relação ao ramo foi semi-ereta na maioria dos acessos estudados, enquanto praticamente não houve variabilidade a para simetria, presente em 99% dos acessos (Tabela 2). Não foram encontrados estudos semelhantes para os dois descritores na bibliografia consultada.

O comprimento das folhas predominante foi o médio, entre 16 e 21 cm (Tabela 2 e Anexo II). Para Laroussilhe (1980), o comprimento da folha varia entre 15 a 40 cm, o que é próximo do observado no presente trabalho. A largura predominante da folha, média, ou larga, foi observada na quase totalidade dos acessos, superior a 4 cm (Tabela 2 e Anexo II), diferindo da literatura de Laroussilhe (1980), que menciona valores variando de 1,5 a 4 cm.

Quanto à forma predominante da folha, não foi observada a forma lanceolada a ovada (Tabela 2). Para Cunha (2002), as folhas da mangueira são ovóide-lanceoladas, contrastando com o observado no presente estudo.

No descritor ondulação da borda do limbo da folha ocorreu uma distribuição semelhante entre a média e a fraca, com predominância da forma da base obtusa (Tabela 2). Santos et al. (2008) caracterizaram 24 acessos e entre outras características analisaram descritores referentes à folha, no entanto a ondulação da borda do limbo não foi analisada. Para os descritores da inflorescência, foi observado o comprimento médio em 56% dos acessos, com valores variando de 22,5 a 30 cm, a forma piramidal como a predominante e largura estreita para 72% dos acessos (Tabela 2, Anexo II). Para Campbell & Malo (1974), a inflorescência da mangueira tem forma piramidal, enquanto Mukherjee (1985) menciona a forma cônica a piramidal, não havendo citações para o tamanho e a largura.

Descritores do fruto (ponto de colheita e de consumo)

Os frutos dos acessos avaliados apresentaram comprimento predominante variando de seis a 13,9 cm, correspondendo às categorias curto, médio e longo dos descritores de Brasil (2002). Quase 90% dos acessos apresentaram largura do fruto variando de 6,5 a 8,5 cm, que correspondendo às classes média e larga (Tabela 2 e Anexo II). Para os dois descritores não foram encontradas referências bibliográficas que possibilitassem comparações.

A forma predominante da seção transversal do fruto foi elíptica larga (61,6%), não se observando uniformidade entre acessos da mesma origem: no acesso brasileiro Pingo de Ouro foi elíptica larga, enquanto no Mastruz, outro acesso brasileiro, foi elíptica estreita. Para os acessos oriundos da Flórida, EUA, Florigon e Eldon, a forma observada foi elíptica estreita e elíptica larga, respectivamente (Anexo II).

A cor verde da epiderme foi a mais frequente(28,8%), seguida pela cor verde e rósea (17,3%) (Tabela 2). Laroussilhe (1980) menciona apenas de forma geral a cor, não especificando o estádio de maturação e definindo uma variação entre verde, amarelo e vermelho. Foi observada presença de cerosidade na epiderme em todos os acessos

avaliados, não havendo, portanto, variabilidade. A profundidade da cavidade peduncular foi considerada ausente ou muito baixa para quase 80% dos acessos avaliados ocorrendo uma distribuição semelhante entre os acessos com o descritor proeminência na base do pedicelo (Tabela 2). Para o descritor base do pedicelo, observou-se predominância da classe ausente a muito fracamente notada (75,0%), como observado nos acessos Maya e Manguito, o acesso Manzanillo apresentou pedicelo ausente (Anexo II).

A forma da base dorsal predominante foi a inclinada para baixo (39,4%), enquanto a menos freqüente foi a forma inclinação abrupta (10,6%), apresentada em 11 acessos, como exemplos as variedades Itiúba, Espada Manteiga e Ruby (Tabela 2 e Anexo II).

Os acessos apresentaram o descritor reentrância (sinus) com distribuição próxima a 50% entre as duas classes possíveis: ausência (Manga d'água) e presença (Foice), (Figura 1). Entre os acessos que apresentaram reentrância, a predominância foi da classe muito fracamente notada (51,9%), como observado no acesso Mastruz (Figura 2). A maioria dos frutos apresentou da protuberância próxima à cicatriz pistilar (Tabela 2). Segundo Iyer & Subramanyam (1979), a presença de bico é um caráter dominante.

A forma predominante da cicatriz pistilar nos frutos dos acessos foi a forma no plano (51%), como pode ser observado no acesso Itamaracá. A quantidade de látex no pedúnculo para mais da metade dos acessos avaliados foi classificada como ausente ou muito baixa, ou seja, entre 0,1 e 0,5 mL, enquanto nos demais acessos variou entre média (0,6 a 2,0 mL) e alta (maior que 2 mL). Para os dois descritores não foram encontrados estudos na bibliografia consultada.

Observou-se a presença de quase todas as categorias de cores disponíveis para os frutos de acordo com os descritores de Brasil (2002), exceto as cores laranja e roxa e vermelha e roxa. Três categorias de cores foram mais freqüentes: amarela (16,3%), amarela e vermelha (15,4%) e laranja e vermelha (15,4%)(Tabela 2). Costa (2001) também analisou a cor dos frutos no Banco de Germoplasma da Embrapa Semiárido, encontrando resultados discrepantes, como o acesso Hilda cuja cor foi classificada como avermelhada, diferente portanto da encontrada no presente trabalho classificada como amarela. Outra discrepância verificada foi o acesso Salitre, cuja cor foi classificada como verde e amarela, e enquanto no presente trabalho foi considerada laranja como predominante. Outros acessos receberam classificações de cor iguais nos dois trabalhos, como Amrapali (verde e amarela), Manzanillo (vermelha), Ubá (amarela e verde), Espada (verde e amarela), Espada Ouro (amarela), Black Java (amarela e vermelha) e Maçã (amarela).

Segundo Chitarra & Chitarra (2005) a coloração é um atributo de qualidade mais atrativo para o consumidor, variando intensamente entre as espécies frutíferas e mesmo entre cultivares. A distribuição da coloração da casca foi desuniforme em quase 82% dos frutos (Tabela 2).

A densidade das lenticelas dos acessos foi classificada como média, ou seja, observaram-se entre 101 e 200 lenticelas na área da casca analisada. O acesso que apresentou o número mais elevado de lenticelas foi Ataulfo, com 600 lenticelas na área de avaliação (Anexo II). Em algumas variedades a contagem não foi possível, pois as lenticelas eram muito claras, quase da mesma cor da epiderme, como observado nos acessos Moraes e Maçã (Anexo II). Para Donadio et al. (1996), não existem lenticelas no acesso Brasil, o que não foi corroborado no presente estudo, encontrando-se 181 lenticelas, segundo o procedimento adotado (Anexo II). Em torno de 92% dos acessos apresentaram lenticelas de tamanho pequeno e médio (Tabela 2)

A espessura da epiderme encontrada na maioria das variedades variou entre 0,61 e 0,9 mm, classificando-se como média. O peso da epiderme variou entre 41,0 e 80,0g, sendo classificados como médio na maioria dos acessos, enquanto a aderência da casca à polpa foi média na maioria dos acessos (Tabela 2 e anexo II),

Quanto à cor da polpa, foi observada uma grande diversidade destacando-se a amarela e laranja (73,8%). Iyer (1991) observou que a cor amarela é dominante sobre a laranja, enquanto Chitarra & Chitarra (2005) mencionam que a variação de coloração entre as cultivares de uma mesma espécie deve-se às diferenças na concentração dos pigmentos.

A polpa dos frutos dos acessos foi classificada como polpa de alta a média suculência (Tabela 2). Pinto et al. (2002) mencionam a cultivar Bourbon como exemplo de variedade suculenta, confirmando o resultado obtido no presente trabalho.

Os frutos da maioria dos acessos apresentaram polpa com baixo peso, ou seja, até 250 g (Tabela 2 e Anexo II). Donadio et al. (1996) e Pinto et al. (2002) mencionam a variedade brasileira Itamaracá apresentando peso de até 200g, o que confirma o peso de 122 g encontrado no presente trabalho (Anexo II). Observaram-se também acessos com peso médio, entre 250 e 400g e em menor proporção, acessos com peso acima de 400 g. Pinto et al. (2002) mencionam a Kent com peso superior a 400 g, corroborando o presente estudo no qual o acesso referido apresentou peso de 569,8 g. O acesso com maior peso foi observado no acesso R2E2 (783,14 g).

Na maioria dos acessos avaliados observou-se pouca fibrosidade, embora alguns tenham apresentado alta percentagem (Tabela 2). A ausência de fibras observada em 7,7% dos acessos é uma característica desejável em cultivares de mangueira. Pinto et al. (2002) relacionam os três principais segmentos da cadeia produtiva, produtores, distribuidores e consumidores, ressaltando a preferência pelo último elo, de frutos de melhor qualidade, desprovidas de fibras.

A quantidade de fibra aderida ao caroço foi bem distribuída entre os acessos apresentando quase na mesma proporção acessos com quantidade baixa, média e alta, em menor número, muito alta e muito baixa respectivamente. Para o descritor referente à quantidade de fibra ligada à polpa abaixo da casca, a maior parte dos acessos mostrou uma baixa percentagem, observando-se proporções iguais de acessos com alta e média percentagem (Tabela 2).

Em torno de 70% dos frutos dos acessos apresentaram polpa com baixa firmeza (Tabela 1). Pinto et al. (2002) mencionam que a variedade Surpresa apresenta polpa firme, sem especificar a intensidade, o que não foi observado no presente estudo.

Para o descritor referente aos sólidos solúveis, a quase totalidade dos acessos apresentou alto teor, ou seja, maior que 14 ° Brix. O acesso Tommy Atkins, base dos cultivos comerciais do Brasil, apresentou um teor de sólidos solúveis baixo, de apenas 12,5 °Brix, diferindo de Pinto et al. (2002) que mencionam um teor médio para o referido acesso.

Descritores da semente (caroço)

Considerando-se o descritor relevo da superfície do endocarpo, observou-se uma distribuição semelhante dos acessos entre duas das categorias: lisa e com fendas (Tabela 2). A literatura especializada faz referências quanto à forma da semente e à quantidade de fibras na superfície, sem no entanto mencionar o relevo. Quanto ao peso do endocarpo, a maior parte dos acessos apresentou valor médio ou alto, ou seja, entre 21 e 35 g (Tabela 2 e Anexo II). Donadio et al. (1996) mencionam para a variedade Brasil, que o peso da semente corresponde a 13% do fruto, estimativa próxima ao valor encontrado nas análises realizadas no presente estudo. Costa et al. (2002) avaliaram quanto a porcentagem do peso da casca, do caroço e da polpa, os acessos Maçã, Palmer, Zill, Kensington, Manzanillo, Black Java, Kent, Keitt, Tommy Atkins, Ametista e Momi-k, encontrando valores semelhantes aos obtidos no presente trabalho, exceto o referente ao acesso Black Java. Em

torno de 84% dos acessos apresentaram sementes com forma levemente reniforme a reniforme (Tabela 2).

Na maioria dos acessos (56,8%) as sementes foram classificadas como monoembriônicas a predominantemente monoembriônicas (Tabela 2). Segundo Knight & Schnell (1993), as variedades monoembriônicas têm uma boa adaptação nas regiões de clima subtropical, ou seja o clima do centro indiano de onde são originadas, enquanto as poliembriônicas são mais bem adaptadas à região tropical úmida, pois são originárias do sudeste da Ásia. Comparando-se os resultados obtidos com aqueles apresentados por Donadio et al. (1996), observa-se que houve algumas divergências em variedades brasileiras, como a Bourbon, que, segundo o autor, é poliembriônica, mas nas análises realizadas, foi classificada como monoembriônica, a Dama de Ouro considerada pelo autor como monoembriônica, mas no presente trabalho, classificada como poli e monoembriônica, e a Maçã, citada pelo autor como poliembriônica, mas considerada como predominantemente monoembriônica no presente estudo.

No geral, os descritores apresentaram fácil aplicação, sendo que alguns ajustes foram necessários, como a classificação prévia de acordo com o comprimento ou o peso e a distribuição em classes de acordo com as categorias dos descritores relatados por Brasil (2002), assim como adaptações para a coleta e a mensuração do látex dos frutos.

Descritores como simetria da folha juvenil e cerosidade do fruto maduro foram invariantes, pois quase que exclusivamente uma única categoria foi observada, sugerindo que não existe variabilidade no germoplasma estudado.

Segundo Pinto et al. (2002), o melhorista, ao iniciar um programa de melhoramento genético da mangueira deve considerar algumas características básicas como porte baixo, produção precoce, frutos com padrão e tamanho adequados ao mercado, resistência ao transporte e coloração do fruto atrativa, entre outras.

Na presente coleção de germoplasma foi observada grande variabilidade para a cor da epiderme do fruto nos pontos de colheita e de consumo (Tabela 2), podendo-se atender a diferentes mercados consumidores. Dois acessos apresentaram polpa com cor laranja escura, Amrapali de origem indiana, e Salitre, variedade brasileira (Tabela 1), que assim podem ser interessantes para o melhoramento, pois a referida coloração está associada a altos teores de carotenóides totais. Oito acessos entre os 103 avaliados apresentaram polpa não fibrosa e também podem ser interessantes para os melhoristas. Nove acessos apresentaram polpa com alta firmeza o que pode ser indicativo de alta resistência ao

transporte e a um maior tempo de prateleira, podendo, portanto, ser aproveitadas pelos melhoristas.

Outras informações podem ainda ser derivadas do presente estudo, como o peso total do fruto que pode ser obtido pela soma do peso da casca, da polpa e da semente (Anexo II), orientando na escolha de acessos com frutos de diferentes tamanhos, destinados tanto aos consumo *in natura*, como ao processamento industrial.

As informações morfológicas obtidas no presente estudo são as mais abrangentes para uma das principais coleções de germoplasma de mangueira do Brasil, e assim poderão auxiliar em diferentes programas de melhoramento genético da cultura. Se associadas a estudos de divergência genética, poderão auxiliar os melhoristas na escolha dos melhores parentais para desenvolver populações com maior potencial de seleção. Por último, deve ser mencionado que o presente trabalho, é pioneiro e poderá ser uma grande contribuição para a proteção de cultivares de mangueira no Brasil, de acordo com os descritores estabelecidos pela legislação brasileira.

Conclusões

Foram aplicados 50 descritores dos 64 publicados pelo MAPA. Os principais resultados do capitulo I foram:

- Geração de ampla base dados com 50 descritores para 103 acessos do BAG de mangueira (Anexo I), bem como de fotos de frutos para 85 acessos dessa coleção;
- Adaptações para classificação em uma determinada categoria de um descritor, ou adaptações para coleta e mensuração do látex dos frutos;
- Descritores como simetria da folha juvenil e cerosidade do fruto maduro foram invariantes, sugerindo que não existe variabilidade para esses caracteres no germoplasma estudado;
- Detecção de grande variabilidade para cor da epiderme do fruto no ponto de colheita e de consumo que podem atender a diferentes mercados consumidores.
- Oito acessos entre os avaliados apresentaram polpa não fibrosa e nove acessos apresentaram alta firmeza da polpa.
- As informações morfológicas obtidas são as mais abrangentes para uma das principais coleções de germoplasma de mangueira do Brasil, que poderão auxiliar em diferentes programas de melhoramento da cultura.

REFERÊNCIAS BIBLIOGRÁFICAS

ALBUQURQUE, J.A.S; MOUCO, M.A.C; MEDINA, V.D; VASCONCELOS, L.F.L. Sistemas de poda. In: GENU, P. J. de C.; PINTO, A. C. de Q.(Ed.). A cultura da mangueira. Brasília, Embrapa Informação Tecnológica, 2002. cap. 12, p. 245-257. il.

BRASIL. Instruções normativas no 4, de 18 de setembro de 2002. Dispõe sobre instruções para execução dos ensaios de distinguibilidade, homogeneidade e estabilidade de cultivares de mangueira (Mangifera indica L.). Diário Oficial [da] República Federativa do Brasil. Brasília, DF, 23 setembro 2002

BETTENCOURT, E.; HAZEKAMP, T.;PERRY, M.C. **Directory of germplasm colleciotions:6.I. Tropical and subptropical fruits and tree nuts.** Rome: IBPGR, 1992.237 p.

CAMPBELL, C.MALO, S.E. Fruits Crops Fact Sheet – **The Mango**. Gainesville: University of Florida, 1974.4p.

CHITARRA, M.I.F.; CHITARRA, A.B. **Pós-colheita de frutas e hortaliças: fisiologia e manuseio**.2.ed. atualizada e ampliada. Lavras: Universidade Federal de Lavras, 2005.783 p.il.

COSTA, J. G. Avaliação preliminar do potencial de alguns acessos de germoplasma de mangueira no semiárido brasileiro. In: Simpósio de Recursos Genéticos para a América Latina e Caribe, 2001, Londrina. Simpósio de recursos Genéticos para a América Latina e Caribe, 2001. v. 3. p. 269-271

COSTA, J. G.; ASSIS, J. S.; PAIVA, L. E.; MORAES, P. L. P.; SOUZA, S. S. O. Characterization of mango germplasm in the brazilian semi-árid region. In: INTERNATIONAL MANGO SYMPOSIUM, 2002, Recife. INTERNATIONAL MANGO SYMPOSIUM, 2002b. v. 7.

COSTA, J. G.; ASSIS, Joston Simão de; SANTOS, C. A. F. Características físicas e químicas dos frutos de 46 acessos de germoplasma de mangueira. In: Congresso Brasileiro de Fruticultura, 2004, Florianópolis. XVIII Congresso Brasileiro/ Tecnologia Competitividade, Sustentabilidade. Florianópolis : Sociedade Brasileira de Fruticultura, 2004, v. XVIII.

COSTA, J. G.; PAIVA, L. E.; ALMEIDA, A. S.; SOUZA, S. O. Comparação entre variedades de mangueira em relação a características do fruto nas condições do submédio São Francisco. In: CONGRESSO BRASILEIRO DE FRUTICULTURA, 2002, Belém. CONGRESSO BRASILEIRO DE FRUTICULTURA. Jaboticabal : Sociedade Brasileira de Fruticultura, 2002.

COSTA, J. G.; SÁ, P. G. . **Divergência genética em germoplasma de mangueira baseada em caracteres qualitativos do fruto.** In: Congresso Brasileiro de Melhoramento de Plantas, 2003, Porto Seguro. CONGRESSO BRASILEIRO DE MELHORAMENTO DE PLANTAS. Viçosa: Sociedade Brasileira de Melhoramento de Plantas, 2003.

CUNHA, G.A.P.;PINTO, A.C.Q.; FERREIRA, F. R. **A cultura da mangueira**. Brasília: Embrapa Informação Tecnológica, 2002. p 33-36.

DONADIO, L.C.; FERREIRA,F.R.; SOARES, N.B.; RIBEIRO, I.J.; **Variedades brasileiras de manga.**Fundação Editora da UNESP, São Paulo,SP, 1996.

FÁVERO, L.A.(Org). A cultura da manga no São Francisco: posicionamento, limites, oportunidades e ações estratégicas. Fortaleza: Banco do Nordeste do Brasil, 2008.232.il.

FERREIRA, F.R.; PINTO, A.C.Q. **Tropical and subtropical fruits genetic resources in Brasil.** In: MESFIN MEETING IN FRUIT PRODUCTION ,2., 1997, Madeira, Portugal. Procedings. Portugal: FAO; Gobierno de Canarias, 1998.p 39-62.

FONSECA, N; SILVA, S. O. e; SAMPAIO, J. M. M. Caracterização de cultivares de manga na região do Recôncavo Baiano. Revista Brasileira de Fruticultura, Cruz das Almas, BA, v. 16, n. 3, p. 29-45, 1994.

IYER, C.P.A. (1991) **Recent advances in varietal improvement in mango**. Acta Horticulturae 291,109-132.

IYER, C.P.A. and SUBRAMANYAM, M.D.(1979). Improvement of mango by selection and hybridization. Annual Report of the Indian Institute for Horticultural Research. Indian Institute for Horticultural Research, Banagalore, p.16.

KNIGHT, R.J., JR and SCHNELL, R.J. (1993) Mango (Mangifere indica L.) introduction and evaluation in Florida and its impact on the world industry. Acta Horticulture 341, 125-135.

LAROUSSILHE, F. de. La manguier. Paris: Maisonneuve et Larose, 1980.312 p. MUKHERJEE, S.K. Systematic and ecogeographic studies of crop genepools: 1. Mangifera IBPGR Secretariat, Rome. 86 p. 1985.

PINTO, A.C. de Q.; COSTA, J.G.; SANTOS, C.A.F. **Principais variedades**. In: Genú, P. J. C.; Pinto, A. C. Q. A cultura da mangueira. Brasília: Embrapa Informação Tecnológica, 2002. p. 95-115.

PINTO, A.C. de Q.; SOUZA, V.A.B. de; ROSSETO, C.J.; FERREIRA, F.R.; COSTA, J.G.da. **Melhoramento genético**. In: GENU, P.J. de C.; PINTO, A.C. de Q. (Ed.). A cultura da mangueira. Brasília, DF: Embrapa Informação Tecnológica, 2002a.cap.4, p.51-92

SANTOS, I. C. N.; NETO, F. P.L. **Descrição de caracteres morfológicos de 24 acessos do BAG de Mangueira da Embrapa Semi-árido**. In: III Jornada de iniciação científica da Embrapa semiárido, 2008, Petrolina. III Jornada de iniciação científica da Embrapa semi árido, 2008a.

SANTOS, I. C. N. dos; DAMASO, J. R. de M.; FERRAZ, S. D.; ARAÚJO, W. D. de; LIMA NETO, F. P. Caracterização morfológica de acessos de mangueira do banco ativo de germoplasma da Embrapa Semi-Árido. In: III Encontro da rede de Recursos Genéticos Vegetais da Bahia, 2008, Vitória da Conquista. III Encontro da Rede de

Recursos Genéticos Vegetais da Bahia e do II Simpósio de Recursos Genéticos de plantas cultivadas no Nordeste Brasileiro, 2008b.

SIQUEIRA, D. L. de; RAMOS, V. H. V. **Avaliação de dezessete variedades de mangueira (Mangifera indica L.) em Uberaba-MG.** In: Congresso Brasileiro de Fruticultura, 1989, Fortaleza. Anais do 10 Congresso Brasileiro de Fruticultura. Cruz das Almas: Sociedade Brasileira de Fruticultura, 1989. v. 1. p. 312-318

SIMÃO, S. Manual de Fruticultura. São Paulo: CERES, 1971.

VALLS, J.F.M. **Recursos genéticos vegetais**. Brasília: Embrapa Recursos Genéticos e Biotecnologia, 2007. p 283-305

VAVILOV, N.I. The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica, Waltham, v.13, p.1-366, 1950.

Tabela 1. Origem dos 103 acessos avaliados do Banco ativo de Germoplasma da Embrapa Semiárido

Genótipos	Origem	Genótipos	Origem
Alfa	Brasil	Juazeiro VI	Brasil
Alphonso	Índia	Lita	Embrapa
Amarelinha	Brasil	Keitt	EUA
Ametista	Brasil	Kensington	Austrália
Amrapali	Índia	Kent	EUA
Aplle DCG 406	Tailândia	Langra	Índia
Ataulfo	México	M-13269	EUA
Beta	Brasil	Mallindi	India
Black Java	Austrália	Maçã	Brasil
Bonita	Brasil	Mallika	Índia
Bourbon	Brasil	Manga d'água	Brasil
Brasil	Brasil	Manguito	Brasil
Calmon	Brasil	Manila	Filipinas
Carabao	Filipinas	Manzanillo	México
Carlotão	Brasil	Mastruz	Brasil
Caxangá	Brasil	Maya	México
Chené	África do Sul	Momi-K	EUA
China	Brasil	Mon Amon	Tailândia
Comprida Roxa	Brasil	Morais	Brasil
Coração Magoado	Brasil	Nego não chupa	Brasil
CPR	Brasil	Néldica	África do Sul
Dama de Ouro	Brasil	Olour	Índia
Da Porta	Brasil	Ômega	Brasil
Dashehari	Índia	Palmer	EUA
Duncan	EUA	Papo de Peru I	Brasil
Edward	EUA	Parwin	EUA
Eldon	EUA	Pêssego DPV	Brasil
Espada	Brasil	Pingo deOuroDPV	Brasil
Espada 35	Brasil	Pingo de Ouro DPV	Brasil
Espada Itaparica	Brasil	Primor Amoreira	Brasil
Espada Manteiga	Brasil	Princesa	Brasil
Espada Vermelha	Brasil	Roxa	Brasil
Espada Ouro	Brasil	Recife	Brasil
Extrema	Brasil	R2E2	Austrália
Favo de Mel	Brasil	Rosa	Brasil
Florigon	EUA	Rosary	Brasil
Foice	Brasil	Ruby	EUA
Haden	EUA	Salitre	Brasil
Haden 2H	Brasil	Sta Alexandrina	Brasil
Haden Rosa	Brasil	Scuper Many	EUA
Heidi	África do Sul	Simmonds	EUA
Hilda	Brasil	Smith	EUA
Imperial I	Brasil	Surpresa	Brasil
Ipuçaba	Brasil	Tommy Atkins	EUA
Irwin	EUA	Torbet	EUA
Itamaracá	Brasil	Tyler Premier	EUA
Itiúba	Brasil	Ubá	Brasil
Joa	África do Sul	Umbu	Brasil
Juazeiro II	Brasil	Winter	EUA
Juazeiro III	Brasil	Van Dyke	EUA
Juazeiro IV	Brasil	Zill	EUA
		65	EUA

Tabela 2. Caracterização de 103 acessos do Banco Ativo de Germoplasma de mangueira (*Mangifera indica*) de acordo com 50 descritores oficiais do Ministério da Agricultura, Pecuária e Abastecimento. Petrolina, 2011.

Descritor	Classe	(%)
1.Descritor da árvore		
1.1 Hábito de crescimento	Vertical	3,7
	Vertical a semi-vertical	6,4
	Semi-vertical	60,1
	Semi-vertical a aberto	13,8
	Aberto	15,7
2.Folha juvenil		
2.1 Coloração pela antocianina	Ausente	21,7
	Presente	78,2
3. Folha desenvolvida		
3.1 Comprimento do pecíolo	Curto	77,8
	Médio	22,2
	Longo	0
3.2 Posição em relação ao ramo	Semi-ereta	66,6
	Horizontal	32,4
	Semi-pendente	0,92
3.3 Simetria	Ausente	0,92
	Presente	99,07
3.4 Comprimento	Curto	1,8
	Médio	70,4
	Longo	27,8
3.5 Largura	Estreita	1,9
	Médio	48,1
	Larga	50
3.6 Razão comprimento/largura	Curto	0,92
	Muito baixa	0,92
	Baixa	40,7
	Média	57,4
	Alta	0,92
	Muito alta	0
3.7 Forma predominante	Lanceolada a ovada	0
	Lanceolada	55,5
	Elíptica lanceolada	44,4
3.8 Ondulação da borda do limbo	Fraca	48
	Média	50

	Forte	2
3.9 Forma da base	Aguda	37
	Obtusa	60
	Arredondada	3
3.10. Forma do ápice	Acuminada	46
	Cuspidada	5
·	Aguda	49
4. Inflorescência	Curto	26
4.1 Comprimento	Médio	56
	Longo	18
4.2 Largura (na base)	Estreita	72
	Média	22
	Larga	6
4.3 Forma	Cônica	34
	Cônica a piramidal	3
	Piramidal	55
	Piramidal larga	8
5. Fruto maduro (ponto de colheita)	Muito curto	1,9
5.1 Comprimento	Curto	28,8
	Médio	37,6
	Longo	28,8
	Muito longo	2,9
5.2 Largura (seção transversal)	Muito estreita	0,9
	Estreita	8,6
	Média	47,2
	Larga	31,8
	Muito larga	11,5
5.3 Razão comprimento / largura	Muito baixa	0
	Baixa	40,4
	Média	48,1
	Alta	11,5
	Muito alta	0
5.4 Forma (seção transversal)	Elíptico estreita	19,2
	Elíptico larga	61,6
	Circular	19,2
5.5 Cor da epiderme	Verde	28,8
-	Verde e amarela	13,6
	Verde e rósea	17,3

	Verde e laranja Verde e vermelha Verde e roxa	0,9 15,4 24
5.6 Cerosidade	Ausente Presente	0 100
5.7 Profundidade da cavidade peduncular	Ausente ou muito baixa Baixa Média Alta Muito alta	61,5 18,3 17,3 2,9
5.8 Proeminência na base do pedicelo (pescoço)	Ausente Presente	53,6 46,4
5.9 Base do pedicelo (pescoço)	Ausente Muito fracamente notada Fracamente notada Fortemente notada	39,4 35,6 19,2 5,8
5.10 Forma da base ventral	Arredondada para acima Arredondado plana Arredondada para abaixo Inclinada para abaixo Inclinação abrupta	9,6 49,1 35,6 5,7 0
5.11 Forma da base dorsal	Arredondada para acima Arredondado plana Arredondada para abaixo Inclinada para abaixo Inclinação abrupta	0 22,1 26,9 39,4 10,6
5.12 Reentrância (sinus)	Ausente Presente	51 49
5.13 Profundidade da reentrância (sinus)	Muito fracamente notada Fracamente notada Fortemente notada	51,9 34,6 13,5
5.14 Protuberância próxima à cicatriz pistilar (bico)	Ausente Presente	36,5 63,5
5.15 Forma da cicatriz pistilar (bico)	Reentrante No plano Saliente	14,4 51 34,6

Alta	5.16 Quantidade de látex no pedúnculo	Ausente ou muito baixa Média	63,3 35,7
6.1 Cor predominante da epiderme Verde amarelada Amarela e verde 11,5 Amarela e verde 11,5 Amarela e laranja 2,9 Rósea 3 Amarelo e vermelha 15,4 Vermelha 11,6 Laranja e vermelha 15,4 Vermelha 11,6 Laranja e roxa 0 Vermelha e roxa 0 Roxa 1,9 15,4 Vermelha 11,6 Laranja e roxa 0 Roxa 1,9 6.2 Distribuição da coloração da casca Uniforme 81,7 18,3 Desuniforme 81,7 6.3 Densidade das lenticelas Baixa Média 57,4 Alta 18,8 23,8 Média 43,7 Grande 8,7 6.4 Tamanho das lenticelas Pequena Média 70 Grande 8,7 47,6 Média 70 Grossa 20,3 6.5 Espessura da casca Baixo 32,3 Médio 52,4 Alto 15,6 32,4 Média 54,4 Forte 23,3 6.6 Peso da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 48,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6 9,7 Amarela 39,8 Laranja pálida 14,6		Alta	1
Amarela e verde Amarela 16,3 Amarela 16,3 Amarela e laranja 2,9 Rósea 3 Amarelo e vermelha 15,4 Laranja e vermelha 15,4 Vermelha 11,6 Laranja e roxa 0 Vermelha e roxa 0 Roxa 1,9 6.2 Distribuição da coloração da casca Uniforme Roxa 1,9 6.3 Densidade das lenticelas Baixa Média 57,4 Alta 118,8 6.4Tamanho das lenticelas Pequena Média 43,7 Grande 8,7 6.5 Espessura da casca Fina Média 70 Grossa 20,3 6.6 Peso da casca Baixo Alto 15,6 6.7 Aderência da casca à polpa Fraca Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo e sverdeada Amarelo pálida 0 Amarela 39,8 Laranja pálida 14,6	6. Fruto maduro (ponto de consumo)	Verde	4,8
Amarela 16,3 Amarela 2,9 Rósea 3 Amarelo e vermelha 15,4 Laranja 2,9 Rósea 3 Amarelo e vermelha 15,4 Laranja e vermelha 11,6 Laranja e vermelha 11,6 Laranja e roxa 0 Roxa 1,9	6.1 Cor predominante da epiderme	Verde amarelada	8,6
Amarela e laranja 2,9 Rósea 3 Amarelo e vermelha 15,4 Laranja e vermelha 15,4 Laranja e vermelha 11,6 Laranja e roxa 0 Vermelha e roxa 0 Vermelha e roxa 1,9 6.2 Distribuição da coloração da casca Uniforme 81,7 6.3 Densidade das lenticelas Baixa 23,8 Média 57,4 Alta 18,8 6.4 Tamanho das lenticelas Pequena 47,6 Média 43,7 Grande 8,7 6.5 Espessura da casca Fina 9,7 Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7 Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 9,7 Amarela 39,8 Laranja pálida 14,6		Amarela e verde	11,5
Laranja 2,9 Rósea 3 Amarelo e vermelha 15,4 Laranja e vermelha 11,6 Laranja e roxa 0 Vermelha e roxa 0 Vermelha e roxa 1,9 6.2 Distribuição da coloração da casca Uniforme 18,3 Desuniforme 81,7 6.3 Densidade das lenticelas Baixa 23,8 Média 57,4 Alta 18,8 6.4 Tamanho das lenticelas Pequena 47,6 Média 43,7 Grande 8,7 Grande 8,7 6.5 Espessura da casca Fina 9,7 Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7 Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6 Caranja pálida		Amarela	16,3
Rósea		Amarela e laranja	8,6
Amarelo e vermelha Laranja e vermelha Laranja e vermelha Laranja e vermelha Vermelha Laranja e roxa 0 Vermelha e roxa 0 Roxa 1,9 6.2 Distribuição da coloração da casca Uniforme Roxa 1,9 6.3 Densidade das lenticelas Baixa Média 57,4 Alta 18,8 6.4Tamanho das lenticelas Pequena Média Grande 8,7 6.5 Espessura da casca Fina Média 70 Grossa 20,3 6.6 Peso da casca Baixo Médio 52,4 Alto 15,6 6.7Aderência da casca à polpa Fraca Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6		Laranja	2,9
Laranja e vermelha 15,4 Vermelha 11,6 Laranja e roxa 0 Vermelha e roxa 0 Roxa 1,9 6.2 Distribuição da coloração da casca Uniforme 18,3 Desuniforme 81,7 6.3 Densidade das lenticelas Baixa 23,8 Média 57,4 Alta 18,8 6.4Tamanho das lenticelas Pequena 47,6 Média 43,7 Grande 8,7 6.5 Espessura da casca Fina 9,7 Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarela 39,8 Laranja pálida 14,6		Rósea	3
Vermelha		Amarelo e vermelha	15,4
Laranja e roxa 0 Vermelha e roxa 0 Roxa 1,9 6.2 Distribuição da coloração da casca Uniforme 18,3 Desuniforme 81,7 6.3 Densidade das lenticelas Baixa 23,8 Média 57,4 Alta 18,8 6.4 Tamanho das lenticelas Pequena 47,6 Média 43,7 Grande 8,7 6.5 Espessura da casca Fina 9,7 Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarela 39,8 Laranja pálida 14,6		Laranja e vermelha	15,4
Vermelha e roxa 0 Roxa 1,9 6.2 Distribuição da coloração da casca Uniforme 18,3 Desuniforme 81,7 6.3 Densidade das lenticelas Baixa 23,8 Média 57,4 Alta 18,8 6.4Tamanho das lenticelas Pequena 47,6 Média 43,7 Grande 8,7 6.5 Espessura da casca Fina 9,7 Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6		Vermelha	11,6
Roxa 1,9 6.2 Distribuição da coloração da casca Uniforme 18,3 Desuniforme 81,7 6.3 Densidade das lenticelas Baixa 23,8 Média 57,4 Alta 18,8 6.4 Tamanho das lenticelas Pequena 47,6 Média 43,7 Grande 8,7 6.5 Espessura da casca Fina 9,7 Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7 Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6		Laranja e roxa	0
6.2 Distribuição da coloração da casca Uniforme Desuniforme 18,3 Desuniforme 6.3 Densidade das lenticelas Baixa Média 57,4 Alta 23,8 Média 57,4 Alta 6.4Tamanho das lenticelas Pequena Média 43,7 Grande 47,6 Média 70 Grande 6.5 Espessura da casca Fina Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 32 Média 54,4 Forte 6.7Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 9,7 Amarela 39,8 Laranja pálida 0,4 Amarela 39,8 Laranja pálida		Vermelha e roxa	0
Desuniforme 81,7		Roxa	1,9
Desuniforme 81,7	6.2 Distribuição da coloração da casca	Uniforme	18.3
Média 57,4 Alta 18,8 6.4Tamanho das lenticelas Pequena 47,6 Média 43,7 Grande 8,7 6.5 Espessura da casca Fina 9,7 Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6			
Média 57,4 Alta 18,8 6.4Tamanho das lenticelas Pequena 47,6 Média 43,7 Grande 8,7 6.5 Espessura da casca Fina 9,7 Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6	6.3 Densidade das lenticelas	Baixa	23,8
Alta 18,8 6.4 Tamanho das lenticelas Pequena 47,6		Média	
Média 43,7 Grande 8,7 6.5 Espessura da casca Fina 9,7 Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7 Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6			
6.5 Espessura da casca Fina Média 70 Média 70 Grossa 20,3 6.6 Peso da casca Baixo Médio 52,4 Alto 15,6 6.7 Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 9,7 Amarela 29,8 Laranja pálida 14,6	6.4Tamanho das lenticelas	Pequena	47,6
6.5 Espessura da casca		Média	43,7
Média 70 Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7 Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6		Grande	8,7
Grossa 20,3 6.6 Peso da casca Baixo 32 Médio 52,4 Alto 15,6 6.7 Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 9,7 Amarela 39,8 Laranja pálida 14,6	6.5 Espessura da casca	Fina	9,7
6.6 Peso da casca Baixo Médio 52,4 Alto 15,6 6.7 Aderência da casca à polpa Fraca Média Forte 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada Amarelo pálida 9,7 Amarela Laranja pálida 14,6		Média	70
Médio 52,4 Alto 15,6 6.7 Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6		Grossa	20,3
Alto 15,6 6.7Aderência da casca à polpa Fraca 22,3 Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6	6.6 Peso da casca	Baixo	32
6.7Aderência da casca à polpa Fraca Média Forte 22,3 Média Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada Amarelo pálida 9,7 Amarela Laranja pálida 14,6		Médio	
Média 54,4 Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6		Alto	15,6
Forte 23,3 6.8 Cor principal da polpa Amarelo esverdeada 0 Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6	6.7Aderência da casca à polpa	Fraca	
6.8 Cor principal da polpa Amarelo esverdeada Amarelo pálida 9,7 Amarela 139,8 Laranja pálida 14,6		Média	54,4
Amarelo pálida 9,7 Amarela 39,8 Laranja pálida 14,6		Forte	23,3
Amarela 39,8 Laranja pálida 14,6	6.8 Cor principal da polpa		
Laranja pálida 14,6		-	,
Laranja 34			14,6
		Laranja	34

	Laranja escura	1,9
6.9 Suculência	Baixa	6,8
	Média	42,8
	Alta	50,4
(10 P	D :	<i>c</i> 0 1
6.10. Peso da polpa	Baixo	62,1
	Médio	30,1
	Alto	7,8
6.11 Fibrosidade da polpa	Não fibrosa	7,7
	Pouco fibrosa	54,4
	Muito fibrosa	37,9
6.12 Quantidade de fibra (fiapos) aderida ao		
caroço	Muito baixa	2,9
	Baixa	32
	Média	31
	Alta	24,4
	Muito alta	9,7
6.13 Quantidade de fibra ligada à polpa	Baixa	10.6
abaixo da casca	Média	49,6
	Alta	25,2
	Alta	25,2
6.14 Firmeza da polpa	Baixa	68,9
	Média	22,3
	Alta	8,8
6.15 Sólidos solúveis	Baixo	1
0.10 20.1400 50.14 (0.15	Médio	3,9
	Alto	95,1
7. Caroço	Lisa	44,7
7.1 Relevo da superfície do endocarpo	Com fendas	39,8
1	Enrugada	15,5
7.2 D	D :	5 0
7.2 Peso	Baixo	5,8
	Médio	43,7
	Alto	50,5
7.3 Forma	Oblonga	16,7
	Levemente reniforme	43,1
	Reniforme	40,2
7.4 Embrionia	Monoembriônica	42,1
, Zinonomu	Predominantemente monoembriônica	14,7
	Predominantemente poliembriônica	21,6
	Poliembriônica	21,6

Figura 1. Detalhes do descritor reentrância (sinus): ausência no acesso Manga d'água (painel A) e presença no acesso Foice (painel B)

Figura 2. Detalhe do descritor profundidade da reentrância (sinus) no acesso Mastruz: reentrância muito fracamente notada.

CAPÍTULO II - DIVERSIDADE GENÉTICA ENTRE ACESSOS DE Mangifera indica COM BASE EM DESCRITORES AGRO-MORFOLÓGICOS

RESUMO

Estudos sobre a divergência genética entre indivíduos nas espécies vegetais têm sido de grande valor em programas de melhoramento. Neste trabalho foi avaliada a diversidade genética em mangueira, com base em descritores morfológicos, para permitir a seleção de genitores adequados para cruzamentos. Uma única pessoa fez a aplicação de todos os descritores em todos os acessos. Para alguns descritores métricos foi obtido o valor numérico antes de convertê-los numa determinada categoria. As ausências de uma dada categoria de um descritor foram convertidas para 'zero', enquanto as presenças foram convertidas para 'um'. O índice de similaridade de Jaccard foi adotado para estimar a distância para cada par individual dos acessos estudados. A matriz de similaridade foi usada para a construção do fenograma, de acordo com o Método de Agrupamento não Ponderado com base em Média Aritmética. Médias foram estimadas para cada descritor para os grupos formados. A correlação entre a matriz dos valores co-fenéticos e a matriz de similaridade foi de 0,48. Os acessos avaliados apresentaram similaridade superior a 24% evidenciando alta variabilidade. Com o ponto de corte de similaridade de 0,30 foram formados quatro principais grupos, onde os descritores do fruto apresentaram maior divergência. Os acessos foram agrupados no dendrograma independente da origem geográfica. Os acessos dos grupos um e três contrastaram no peso da polpa e cor da epiderme, podendo ser utilizados para o desenvolvimento de novas cultivares.

Palavras-chave: Mangueira, UPOV, similaridade

ABSTRACT

Studies about the genetic divergence among individuals in plant species have been of great value in breeding programs. In this work the genetic diversity of mango was evaluated, based on morphological descriptors, in order to permit a selection of adequate genitors for crossings. Only one person applied the descriptors to minimize the difference in personal judgment. For some metric descriptors a numeric value was obtained before converting them to a determined descriptor category. The absence of a given descriptor category was converted to 'zero', while the presence was converted to 'one'. The Jacquard index of similarity was adopted to estimate the distance for each individual pair of studied accessions. The matrix of similarity was used for the construction of the phenogram, according to the Unweighted Pair Group Method with Arithmetic Mean. Averages were estimated for each descriptor for the formed groups. The cophenetic correlation was 0.48. The accessions evaluated presented similarity superior to 24% showing high variability of the accessions. At 0.30 similarity cutoff point four principal groups were formed, where the descriptors of the fruit presented were the most divergent. The accessions were grouped in the dendrogram independently of their geographic origin. The accessions of groups one and three contrasted to pulp weight and skin color, being able to be used for the development of new cultivars.

Keywords: Mango, UPOV, Similarity.

INTRODUÇÃO

O conhecimento sobre a diversidade de germoplasma e as relações genéticas podem ser de preciosa ajuda em estratégias de melhoramento para isso utiliza-se métodos de análise da diversidade genética. Métodos estão disponíveis para análise da diversidade genética de acessos de germoplasma. Esses métodos têm se baseado em dados de pedigree, dados morfológicos, desempenho agronômico, dados bioquímicos e dados moleculares (Mohammadi & Prasanna, 2003).

Falconer (1981) ressalta que, no melhoramento genético, a diferença nas freqüências dos alelos das populações, tem importância fundamental na escolha de genótipos a serem utilizados como progenitores, já que a divergência genética entre os parentais é um indicativo da expressão heterótica nas progênies. O uso de genitores com insuficiente diversidade genética na formação de populações para hibridação pode reduzir a variabilidade genética (Fehr, 1987).

Em decorrência da crescente relevância da mangueira, a caracterização dos acessos nas coleções mantidas por instituições nacionais adquirem extrema importância, como o Banco Ativo de Germoplasma dessa espécie localizado na Embrapa Semiárido (Pinto et al., 2002a, 2002b). Holden & Williams (1984), estimaram que 80% dos bancos no mundo não dispõem de dados de caracterização. Para Cordeiro & Abadie (2007) o crescimento das coleções não foi, em geral, acompanhado por uma intensidade de uso equivalente, gerando descompasso entre a disponibilidade do germoplasma e o uso real desses materiais.

A análise de divergência genética tem sido usada pelos melhoristas, auxiliando-os na classificação de genótipos em grupos e facilitando a escolha de genitores com boas características para hibridação (Maluf & Ferreira, 1983). A seleção de genitores com base em características individuais não é tão interessante quanto à seleção baseada em um conjunto de características. Por isso o uso de técnicas multivariadas para quantificação da divergência genética tem sido verificado já que essas análises permitem considerar simultaneamente inúmeras características (Sudré et al., 2007).

Estudos de diversidade em mangueira têm sido realizado para cultivares da Flórida (Schnell et al. 2006), assim como análises genéticas de cultivares no México (Gálvez-Lópes et al., 2009), no entanto estes estudos foram realizados com o uso de marcadores moleculares. Poucos estudos têm sido reportados em mangueira com base em descritores morfológicos.

Subedi et al. (2004) reportaram estudos em germoplasma de mangueira crioula de seis distritos do Nepal considerando alguns descritores, entre os quais, forma do fruto, cor da epiderme, cor da polpa, fibrosidade e forma de semente. Jintanawong et. al (1992) reportaram a aplicação de descritores em 170 cultivares tailandesas de mangueira, separando-as em oito grupos distintos. Costa et. al (2003) reportaram análises de 57 acessos do banco de germoplasma de mangueira da Embrapa Semiárido com base em descritores qualitativos do fruto, com os grupos formados pelo método de Tocher a partir da matriz de distâncias de dissimilaridades de dados multicategóricos. Trabalhos que considerem o conjunto de descritores morfológicos da International Union for the Protection of New Varieties of Plants (UPOV) ou do Ministério da Agricultura, Pecuária e Abastecimento (Brasil, 2002) ainda não foram publicados para mangueira.

O objetivo deste trabalho foi avaliar a diversidade genética, com base em descritores morfológicos, dos acessos de mangueira do banco ativo de germoplasma da Embrapa Semiárido, de modo a permitir selecionar genitores apropriados para cruzamentos.

MATERIAL E MÉTODOS

Cento e três acessos do banco ativo de germoplasma de mangueira da Embrapa Semiárido (BAG) (Tabela 1, capitulo I) foram caracterizados para 48 dos 64 descritores de Brasil (2002). Esse BAG, localizado no Campo Experimental de Mandacaru, Juazeiro, BA, é formado por 150 acessos, originários de diferentes países (Silva et al. 2010).

Os descritores utilizados foram agrupados de acordo com o numero de categorias possíveis: 1) duas categorias (1 e 9) - Coloração pela antocianina da folha juvenil, simetria da folha desenvolvida, proeminência na base do pedicelo, reentrância, protuberância próxima a cicatriz pistilar, (1 e 2) distribuição da coloração da epiderme, 2) três categorias - (1, 2 e 3): forma predominante da folha, forma da base, ápice; (1, 3 e 5): hábito de crescimento da árvore, quantidade de látex no pedúnculo, fibrosidade da polpa, relevo da superfície do endocarpo, forma da amêndoa; (3, 5 e 7): comprimento do pecíolo, posição da folha em relação ao ramo, comprimento, largura, ondulação da borda do limbo, comprimento, largura, forma da inflorescência, forma da seção transversal profundidade da reentrância, forma da cicatriz pistilar, densidade das lenticelas, tamanho das lenticelas, espessura da casca, peso da casca, aderência da casca a polpa, suculência, peso da polpa, quantidade de fibra ligada a polpa abaixo da casca, firmeza da polpa, sólidos solúveis, peso

do caroço. 3) quatro categorias; (1,3,5,7): base do pedicelo. 4) cinco categorias - (1, 3, 5, 7 e 9): razão c/l da folha desenvolvida, comprimento do fruto na maturidade fisiológica, largura, razão c/l, profundidade da cavidade peduncular, forma da base ventral e dorsal, quantidade de fibras aderida ao caroço. 5) seis categorias - (1, 2, 3, 4, 5 e 6): cor da epiderme do fruto na maturidade fisiológica, cor principal da polpa do fruto maduro. 6) 13 categorias - (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 e 13) cor predominante da epiderme do fruto maduro.

A aplicação desses descritores foi realizada por uma única pessoa para tornar mínima a diferença no julgamento pessoal. Para descritores métricos, tais como comprimento, largura e razão comprimento / largura do limbo foliar, comprimento, largura, largura e razão comprimento / largura do fruto, um valor numérico foi obtido antes de convertê-los em um descritor de classe específica dada por Brasil (2002)

As anotações de ausência de uma dada categoria de um descritor foram convertidas para 'zero' para todos os acessos e as de presenças foram convertidas para 'um' para os acessos restantes. Esse procedimento foi adotado para todas as categorias para todos os descritores para possibilitar a aplicação do índice de similaridade de Jaccard. Acessos ou descritores que apresentaram mais de 10% de falhas foram excluídos das analises. O índice de similaridade de Jaccard foi adotado para estimar a distância para cada par individual dos acessos estudados. A matriz de similaridade foi usada para a construção do fenograma, de acordo com o Método de Agrupamento não Ponderado com base em Média Aritmética - UPGMA, disponível no software NTSYS (Rohlf, 1989). A correlação co-fenética entre a matriz de valores co-fenéticos e a matriz de similaridade foi estimada para inferir-se sobre a adequação do fenograma gerado.

Tomando-se como referência os grupos formados na análise do dendrograma UPGMA, estimou-se a média para cada descritor dentro de cada grupo, relacionando-se com a sua categoria em Brasil (2002), para identificar-se os descritores mais divergentes entre os grupos formados. Essas análises foram realizadas com apoio da planilha Excel.

RESULTADOS E DISCUSSÃO

Foram analisadas 161 categorias, convertidas para 'zero' ou 'um', com o menor número nos descritores de duas categorias, como coloração pela antocianina da folha juvenil e simetria da folha desenvolvida e o maior número no descritor de 13 categorias, cor predominante da epiderme do fruto maduro.

A correlação entre a matriz dos valores co-fenéticos e a matriz de similaridade foi de 0,48, indicando limitações do dendrograma produzido (Fig. 1). Correlação co-fenética de 0,55 foi reportada por Santos et al. (2010) para 131 acessos de *Psidium* coletados em 31 ecorregiões em 10 estados brasileiros e caracterizados com 35 descritores. Rodriguez et al. (2004) obteve uma correlação de 0,17 em goiabeira com descritores morfológicos. Para Mohammadi e Prasanna, (2003) uma baixa correlação co-fenética não significa que o dendrograma não tem utilidade, mas sim que alguma distorção na análise dos dados pode ter ocorrido.

O acesso Celebration foi excluído da análise porque apresentou mais do que 10% de falhas para o número total de descritores analisados, principalmente, para descritores relacionados ao fruto e semente. Warburton & Crossa (2000) sugeriram a remoção de indivíduos ou de marcadores quando o número de falhas for superior a 15%.

Todos os 103 acessos estudados, apesar das diferentes origens geográficas e do tipo de reprodução mono ou poliembriônico, apresentaram similaridade superior a 24% (Figura 1), refletindo a alta variabilidade genética da coleção de germoplasma de mangueira estudada (Tabela 1, Capítulo I). Santos et al. (2008) analisando 104 acessos dessa mesma coleção com marcadores AFLP reportaram similaridade superior a 51%, enquanto Viruel et al. (2005) observaram similaridade superior a 33% em coleção estudada na Espanha, sendo, portanto menor do que a reportada no presente trabalho com descritores morfológicos.

Adotando-se o ponto de corte em torno de 0,30 de similaridade observa-se a formação de quatro grupos principais (Fig. 1): grupo 1 – formado por 47 acessos, de Amrapali até Joa, grupo 2 – formado por 51 acessos, de Kensington até Carlotão, grupo 3 – formado por quatro acessos, de Rosari até Papo de Peru I, e grupo 4 – formado exclusivamente por Palmer.

O grupo 1 pode ser ainda subdividido em três subgrupos: subgrupo 1.1 – de Amrapali até Surpresa, formado predominantemente por acessos de origem de diferentes países, com inclusões de acessos brasileiros, como Calmon e China, subgrupo 1.2 – de Hilda até Umbu, formado exclusivamente por acessos brasileiros, e 1.3 – de Manga d'água até Espada 35, formado predominantemente por acessos de origem brasileira. (Figura 1).

O grupo 2 pode ser subdividido em três subgrupos: subgrupo 2.1 – de Kensington até Torbet, sendo formado predominantemente por acessos brasileiros, com algumas inclusões estrangeiras, 2.2 – de Edward até Duncan, formado por uma mescla de acessos

de diferentes origens, e 2.3 – de Pingo de Ouro até Carlotão, sendo todos os quatro acessos de origem brasileira.

No geral, os acessos foram agrupados independente da sua origem geográfica (Fig. 1). Dos 47 acessos do grupo I, 29 foram acessos com nomes brasileiros, enquanto no grupo II dos 49 acessos 22 têm nomes estrangeiros. Em alguns subgrupos foram observados a predominância de acessos de origem brasileira, como no subgrupo 1.3.

Ausência de relações entre distância genética e origem geográfica tem sido reportado por Santos et al. (2010) em goiabeira e por Jagadeesh et al., (2007) em jaqueira, como observado no presente estudo. Descritores são altamente herdáveis, podem ser facilmente observados, são igualmente expressos em todos os ambientes avaliados e podem discriminar rapidamente diferentes acessos de germoplasma de uma dada espécie vegetal (Brasil, 2002).

Os acessos Manilla e BRS Ômega apresentaram a maior similaridade entre os acessos avaliados, enquanto o acesso Palmer apresentou a maior dissimilaridade em relação ao conjunto dos acessos avaliados (Figura 1). Esse resultado para esse acesso foi inesperado, considerando que tem origem nos Estados Unidos, tendo como um dos prováveis parentais o acesso Haden (Schnell et al., 2006). Santos et al. (2008) reportaram a inclusão do acesso Palmer entre acessos brasileiros em estudo realizado com marcador AFLP. Os autores atribuíram essa inclusão da Palmer a recombinações genéticas espontâneas ou a introgressão de genes provenientes de genótipos crioulos na referida variedade americana.

Subedi et al. (2004) estimaram índices de diversidade variando de 0,592 a 0,865 em germoplasma de mangueira crioula de seis distritos do Nepal considerando alguns descritores, entre os quais, forma do fruto, cor da epiderme, cor da polpa, fibrosidade e forma de semente. Para os autores os distritos de Siraha e Dadeldhura apresentaram a maior diversidade para a mangueira.

Jintanawong et al. (1992) reportaram a aplicação de descritores em 170 cultivares tailandesas de mangueira, separando-as em oito grupos distintos. Para os autores alguns descritores de folha e fruto foram altamente herdáveis.

Costa & Sá (2003) observaram a formação de 37 grupos para 57 acessos de mangueira do BAG da Embrapa Semiárido, tomando como referência análises de descritores qualitativos do fruto pelo método Tocher, evidenciando a ampla variabilidade

entre os acessos avaliados. Grande variabilidade genética também foi observada no presente estudo com 48 descritores da árvore, folha, fruto e semente da mangueira.

Os descritores relacionados tanto ao fruto maduro, como no ponto de colheita foram os que apresentaram a maior divergência entre os quatro grupos formados, podendo ser considerados para diferenciar os acessos entre os grupos. De especial interesse é a cor predominante da epiderme que foi diferente para os grupos: grupo I amarela, grupo II rósea, grupo III amarelo vermelha e grupo IV verde (Tabela 1).

Parentais para hibridações controladas podem ser selecionados tomando como referência a divergência observada no presente estudo e associando a outros estudos tendo como base análises de marcadores de DNA, bem como agronômicos. Acessos do grupo 1 e 3 podem ser considerados para desenvolvimento de novas cultivares, pois apresentaram frutos contrastantes para peso da polpa e cor predominante da epiderme (Tabela 1), considerando que também sejam divergentes em estudos aplicando marcadores de DNA e que apresentem outras características agronômicas desejáveis. Outros cruzamentos podem ser ainda definidos tomando com referência a divergência observada no presente estudo (Figura1) e associando a informações disponíveis no anexo II, de acordo com o ideótipo definido no programa de melhoramento.

CONCLUSÕES

Cento e três acessos do BAG de mangueira foi avaliada. O descritor cerosidade do fruto maduro foi descartado da análise. O acesso Celebration foi excluído dessa análise de diversidade. Os principais resultados desse capitulo foram:

- Detecção de similaridade superior a 24% entre os acessos estudados, indicando a alta variabilidade genética
- Formação de quatro grupos principais;
- Agrupamentos independentemente da origem geográfica ou tipo de embrionia, indicando limitações dos descritores agro morfológicos;
- Distinguibilidade de todos os acessos analisados,
- Recomendação do cruzamento de acessos do grupo 1 e 3 para desenvolvimento de novas cultivares.

REFERÊNCIAS BIBLIOGRÁFICAS

BRASIL. Instruções normativas no 4, de 18 de setembro de 2002. Dispõe sobreinstruções para execução dos ensaios de distinguibilidade, homogeneidade e estabilidade de cultivares de mangueira (Mangifera indica L.). Diário Oficial [da] República Federativa do Brasil. Brasília, DF, 23 setembro 2002.

COSTA, J. G.; SÁ, P. G. **Divergência genética em germoplasma de mangueira baseada em caracteres qualitativos do fruto**. In: Congresso Brasileiro de Melhoramento de Plantas, 2003, Porto Seguro. Congresso Brasileiro de Melhoramento de Plantas, Viçosa : Sociedade Brasileira de Melhoramento de Plantas, 2003.

CORDEIRO, M. T. C.; ABADIE, T, **Coleções nucleares** In: NASS, L. L. Recursos genéticos vegetais. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, 2007. 858 p.

FALCONER, D. S. **Introdução à genética quantitativa**. Trad. SILVA, M. A.; SILVA, J. C., Viçosa, MG: UFV,Impr. Univ. 1981, 279p.

FEHR, W. R. Principles of cultivar development. New York: Macmillan, 1987. 536 p.

GÁLVEZ-LOPEZ, D.; HERNÁNDEZ-DELGADO, S.; GONZÁLEZ-PAZ, M.; BECERRA-LEOR, E.N.; SALVADOR-FIGUEROA, M. & MAYEKayek-PÉREZ, N. Genetic analysis of mango landraces from Mexico based on molecular markers. Plant Genetic Resources: Characterization and Utilization 7(3); 244–251, 2009.

HOLDEN, J.H.W; WILLIAMS, J.T. (Ed). Crop genetic resource: conservation and evaluation. London: G. Allen & Unwin, 1984.p. 180-190.

JAGADEESH, S.L.; REDDY, B.S.; BASAVARAJ, N.; SWAMY,G.S.K.; KIRANKUMAR, G.; AXMINARAYAN, H.; RAGHAVAN, G.S.V.; KAJJIDONI, S.T. Inter tree variability for fruit quality in jackfruit selections of Western Ghats of India. Science Horticulture, v.112, p.382-387, 2007.

JINTANAWONG, S., HIRANPRADIT, H., DUANGPIKUL, P. and POLPRASID, P. 1992. **Group characterization of Thai mango,** *Mangifera indica* **L**. Acta Hort. (ISHS) 321: 254-262.

MALUF, W.R.; FERREIRA, P.E. Análise multivariada da divergência genética em feijão-vagem (*Phaseolus vulgaris* L.). Horticultura Brasileira, v.1, p.31-34, 1983.

MOHAMMADI SA; PRASANNA BM. 2003. Analysis of genetic diversity in crop plants – salient statistical tools and considerations. Crop Science 43: 1235-1248.

PINTO, A.C. de Q.; COSTA, J.G.da; SANTOS, C.A.F. **Principais variedades**. In:GENU, P.J. de C.; PINTO, A.C. de Q.(Ed.). A cultura da mangueira. Brasília, DF:Embrapa Informação Tecnológica, 2002a.cap.5,p.93-116.

PINTO, A.C.de Q.; SOUZA, V.A.B.de; ROSSETO, C.J.; FERREIRA, F.R.; COSTA, J.G.da. **Melhoramento genético**. In: GENU, P.J. de C.; PINTO, A.C. de Q. (Ed.). A cultura da mangueira. Brasília, DF: Embrapa Informação Tecnológica, 2002b.cap.4, p.51-92.

ROPHLF, F.J. NTSYS-pc numerical taxonomy and multivariate analysis system, version 1.80. Setauket: Exeter Software. 1989.

RODRIGUEZ, N.N., VALDES- INFANTE, J.,BECKER, D., VELASQUEZ, B.,COTO, O.,RITTER, E. and ROHDE,W.2004. **Morphological, agronomic and molecular characterization of Cuban accessions of guava** (*Psidium guajava* L.).J. Genet. & Breed.58:79-90.

SANTOS, C. A. F.; LIMA NETO, F. P; RODRIGUES, M.A.; COSTA, J. G. da. Similaridade genética de acessos de mangueira de diferentes origens geográficas avaliadas por marcadores AFLP. Revista Brasileira de Fruticultura, v. 30, p. 736-740, 2008.

SANTOS, C. A. F.; Souza, F.F.; RODRIGUES, Marciene Amorim. Relationship between ecogeographic sampling and phenotypic diversity of Brazilian Psidium germplasm based on categorical descriptors. Acta Horticulturae, v. 849, p. 69-75, 2010.

SILVA, F.A; SANTOS, C.A.F; ARAÚJO, F.P; MOREIRA, J.N; FERREIRA, M.A.J.F; LEÃO, P.C.S; DIAS, R.C.S; ALBUQUERQUE, S.G. **Recursos genéticos vegetais conservados na Embrapa Semiárido**. In: SÁ, I.B; SILVA, P.C.G. (Ed.). Semiárido Brasileiro, Pesquisa, Desenvolvimento e inovação, Petrolina, PE: Embrapa Semiárido, 2010. Cap.8, p. 277-315.

SCHNELL, R.J.; BROWN, J.S.; OLANO, C.T.; MEEROW, A.W.; CAMPBELL, R.J.; KUHN, D.N. Mango genetic diversity analysis and pedigree inferences for Florida cultivars using microsatellite markers. Journal of the American Society for Horticultural Science, Athens, v. 131, n. 2, p. 214- 224, 2006.

SUBEDI A, BARJRACHARYA, J, JOSHI BK, REGMI HN, GUPTA SR, H KC. Characterisation and genetic diversity of mango (Magnifera indica L.) in Nepal. In: BR Sthapit, MP Upadhyay, PK Shrestha and DI Jarvis (editors). Proceedings of the Second National Workshop of In situ Conservation of Agrobiodiversity On-farm. 25–27 August 2004, Nagarkot, Nepal. Volume I. NARC/LI-BIRD and IPGRI.

SUDRÉ, C.P. et al. Genetic resources of vegetable crops: a survey in the Brazilian germplasm collections pictured through papers published in the journals of the Brazilian. Society for Horticultural Science. Horticultura Brasileira, v.25, n.4, p.496-503, 2007.

WARBURTON, M.; CROSSA, J. Data Analysis in the CIMMYT Applied Biotechnology Center: For Fingerprinting and Genetic Diversity Studies. Mexico, D.F.: CIMMYT. 2000. 23p.

VIRUEL, M.A.; ESCRIBANO, P.; BARBIERI, M.; FERRI, M.; HORMAZA, J.I. Fingerprinting, embryo type and geographic differentiation in mango (*Mangifera*

indica L., Anacardiaceae) with microsatélites. Molecular Breeding, Dordrecht, v. 15, p. 383-393. 2005.

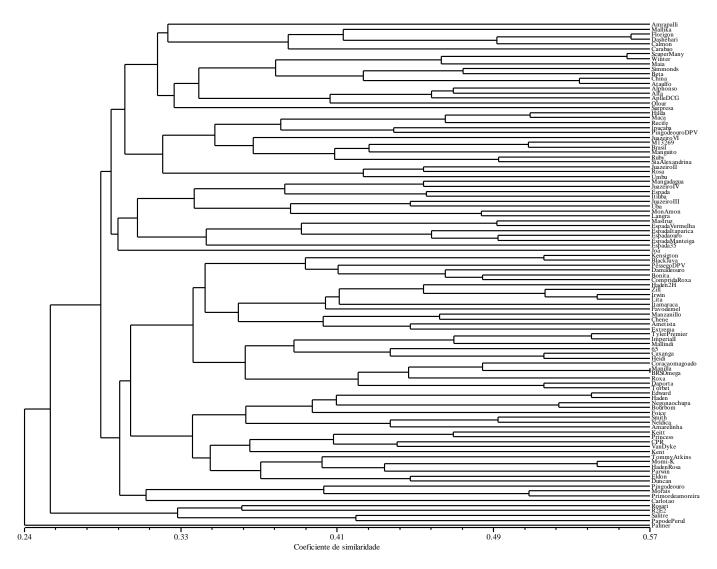


Figura 1. Dendrograma do coeficiente de Jaccard para 103 acessos de mangueira caraterizados para 161 categorias de 48 descritores do MAPA. Correlação co fenética 0,48.

Tabela 1. Descritores de maior divergência entre os quatro observados no corte de 30% de similaridade no dendrograma UPGMA construído com índice de similaridade de Jaccard para 161 categorias de 103 acessos de mangueira. Petrolina, 2011.

Grupo	Fruto maduro: largura (seção transversal)	Fruto maduro: profundidade da cavidade peduncular	Fruto maduro: forma da base ventral	Fruto maduro: cor predominante da epiderme	Fruto maduro: peso da polpa
1	Média	Ausente	Inclinada para baixo	Amarela	Baixa
2	Larga	Baixa	Arredonda plana	Róseo	Médio
3	Muito Larga	Média	Arredondada para cima	Amarelo Vermelha	Alto
4	Larga	Ausente	Inclinada para baixo	Verde	Médio

CAPÍTULO III - CARACTERIZAÇÃO MOLECULAR DE ACESSOS DE Mangifera indica COM BASE EM MARCADORES MICROSSATÉLITES

RESUMO

O objetivo deste trabalho foi estabelecer padrões alélicos e estimar as distâncias genéticas baseadas em marcador microssatélites para 103 acessos de mangueira, de forma a gerar um banco de dados de referência de apoio à proteção de cultivares, bem como nortear programas de melhoramento e recursos genéticos da espécie. Para visualização da similaridade genética, utilizou-se o dendrograma UPGMA gerado da matriz de distâncias do coeficiente de Jaccard, com base em 50 alelos de 12 locos microssatélites. O DNA total foi extraído pelo método CTAB 2x, e os produtos de PCR foram analisados em géis de poliacrilamida desnaturante 6% e corados com nitrato de prata. O número de pares de bases foi estimado pelo método da mobilidade inversa, com base na regressão de produtos de tamanho conhecido. A média da heterozigosidade e PIC dos 12 locos microssatélites foi 0,45 e 0,45, respectivamente, com os locos MiSHRS-1 e mMiCIR030 apresentando os maiores valores. A correlação cofenética foi de 0,7. Os acessos apresentaram coeficiente de similaridade entre 30 e 100%, o que reflete a alta variabilidade genética. Observou-se a formação de três grupos no dendrograma confeccionado pelo método de agrupamento UPGMA. O grupo I foi formado por acessos predominantemente estrangeiros ou resultado de cruzamentos entre esses acessos, enquanto o grupo II foi formado por acessos brasileiros. Dashehari foi o acesso de maior dissimilaridade, ficando isolado dos demais. Os 50 alelos de microssatélites não separaram os 103 acessos, indicando duplicatas para acessos: Haden Rosa e Haden, Kensington e Black Java, Nego não Chupa e Bourbon, Espada e Espada35, Papo de Peru I, Salitre e CPR e Santa Alexandrina e Itamaracá.

Palavras-chave: Mangueira, dendrograma, genotipagem, proteção.

ABSTRACT

The goal of this work was to establish allelic patterns and estimate the genetic distances based on microsatellite markers for 103 mango accessions, in order to generate a reference database of support for the protection of cultivars, as well as to guide improvement programs and genetic resources of the species. For visualization of the genetic similarity, the dendrogram UPGMA generated by the matrix of distances of the coefficient of Jacquard was used, based on 50 alleles of 12 microsatellite loci. The total DNA was extracted by the CTAB 2x method, and PCR products were analyzed in denaturing polyacrylamide 6% gels and stained with silver nitrate. The number of base pairs was estimated by the method of inverse mobility, based on regression of products of known size. The average of the heterozygosity and PIC of the 12 microsatellite loci was 0.45 and 0.45, respectively, with MiSHRS-1 and mMiCIR030 presenting the highest values. The cophenetic correlation was 0.7. The accessions presented a coefficient of similarity between 30 and 100%, which reflected the high genetic variability. The formation of three groups was observed in the dendrogram made by the grouping method UPGMA. Group I was formed predominantly by foreign accessions or the result of crossings between these accessions, while group II was formed by Brazilian accessions. Dashehari was the accession of greatest dissimilarity, remaining isolated from the others. The 50 microsatellites alleles did not separate the 103 accessions, indicating duplications for accessions: Haden Rosa and Haden, Kensington and Black Java, Nego não Chupa and Bourbon, Espada and Espada35, Papo de Peru I, Salitre, and CPR, and Santa Alexandrina and Itamaracá.

Keywords: Mango, Dendrogram, Genotype, Protection.

INTRODUÇÃO

A produção total de mangueira é da ordem de 26 milhões de toneladas, estando entre as mais importantes frutas no mundo, junto com banana, laranja, uvas e maçã. Países como Índia, China, Tailândia, México, Paquistão e Indonésia são responsáveis por mais de 75% da produção mundial dessa cultura, com a Índia isoladamente respondendo por 40% dessa produção (Viruel et al. 2005) Segundo Wyzykowsky et al. (2002), México, Brasil, Paquistão, Filipinas, Índia e Holanda são responsáveis por quase 70% das exportações mundiais de manga, sendo o México o principal exportador.

É provável que o cultivo da mangueira tenha se iniciado na Índia, onde mais de 1000 variedades já foram encontradas, resultantes de seleções dentro de populações de polinização cruzada, que estão catalogadas no Instituto de Pesquisa Hortícola daquele país (Pinto et al., 2005). Comerciantes espalharam o cultivo do centro de origem e domesticação para outras regiões tropicais e subtropicais. Portugueses introduziram a cultura no oeste e no leste da África e no Brasil. Do Brasil, provavelmente foi levada para as ilhas do Caribe, de onde os espanhóis a introduziram no México e nas Filipinas. No século XIX, a mangueira foi introduzida na Flórida, EUA, primeiro do Caribe e depois da Índia (Viruel et al., 2005).

Segundo Neto & Bered (1998) a escolha adequada de genitores pode ser baseada em informações fornecidas por marcadores moleculares assim como a organização de bancos de germoplasma reduzindo a quantidade de material genético duplicado e possibilitando a classificação do germoplasma em grupos de interesse para os diferentes programas de melhoramento. Souza (2001) menciona que os marcadores microssatélites podem ser utilizados como marcadores genotípicos para estudo da diversidade genética, construção de mapas genéticos e caracterização de germoplasma.

Segundo Donadio & Ferreira (2002), foi somente a partir do século XX que foi então iniciado o melhoramento genético da mangueira fora de seu centro de origem e diversidade, considerando três fases: a primeira se deu com a obtenção dos antigos cultivares nos centros de origem, a segunda com a realização de programas de hibridação controlada e a última com a utilização da biologia molecular.

Marcadores de DNA têm sido aplicados em mangueira principalmente para a identificação de cultivares e relacionamento entre diversas cultivares (Krishna & Singh, 2007), com, provavelmente, uma única aplicação potencial na seleção de tipos poliembriônicos assistida por marcador RAPD (López-Valenzuela et al., 1997).

Microssatélites em adição a sua utilidade para o melhoramento e mapeamento tem sido o melhor marcador para estudos de 'fingerprinting' devido o seu alto polimorfismo, codominância e reprodutibilidade. Viruel et al. (2005), Duval et al. (2005), Schnell et al. (2006), e Honsho et al. (2005) desenvolveram e publicaram em torno de 65 microssatélites para mangueira.

Singh & Bhat (2009) analisaram 241 acessos de mangueira de 15 diferentes regiões da Índia, identificando a existência de alta variabilidade entre os acessos estudados, bem como substancial fluxo gênico entre os acessos de diferentes regiões. Gálvez-López et al. (2009) encontraram dois grupos específicos de mangueiras nativas de diferentes estados mexicanos, entre 112 acessos de 16 diferentes estados e analisados com marcadores microssatélites e AFLP. Outros estudos de diversidade em mangueira com microssatélites foram reportados por Viruel et al. (2005), Duval et al. (2005), Schnell et al. (2006) e Olano et al. (2005).

No Brasil ainda não foram realizados estudos com microssatélites em mangueira. Santos et al. (2008) reportaram estudos com 157 marcas AFLP em 104 acessos de mangueira, reportando a existência de alta variabilidade genética entre os acessos. Faleiro et al. (2010) reportaram a aplicação de RAPD em onze cultivares de mangueira, com similaridade genética variando de 0,73 a 0,98.

Apesar da disponibilidade de marcadores microssatélites ainda não foi proposto para mangueira o número mínimo desse tipo de marcador para auxiliar na proteção de cultivares e dirimir disputas comerciais. This et al. (2004) propuseram sete microssatélites como o mínimo para análises de cultivares de videira, estabelecendo alelos de referências. Leão et al. (2009) empregaram esse conjunto de microssatélites para caracterizar a coleção de videira da Embrapa Semiárido. Outro exemplo do uso de microssatélites na identificação de cultivares foi estabelecido por Priolli et al. (2002) em soja.

O objetivo deste trabalho foi estabelecer padrões alélicos e estimar as distâncias genéticas baseadas em marcador microssatélites para 103 acessos de mangueira, de forma a gerar um banco de dados de referência de apoio à proteção de cultivares e a eventuais disputas comerciais, bem como orientar a programas de melhoramento e recursos genéticos da espécie.

MATERIAL E MÉTODOS

Material das plantas: Foram coletadas folhas sadias de 103 acessos do banco ativo de germoplasma (BAG) de mangueira da Embrapa Semi-Árido (Tabela 1, Capítulo I), instalado na Estação Experimental de Mandacaru, Juazeiro, BA. Folhas jovens foram coletadas no campo e colocadas em sacos de papel, devidamente identificadas, e acondicionadas em freezer -80°C até o momento da extração de DNA.

Extração e Quantificação do DNA: foi adotado o protocolo do CTAB 2x com pequenas modificações: 1) a maceração mecânica foi realizada na presença de nitrogênio líquido, até a obtenção de um pó muito fino; 2) O macerado vegetal de cada amostra foi transferido para tubos duplicados de eppendorf 2 mL contendo cada um 950 μL de tampão CTAB 2x; 3) Após a maceração e transferência para tubos individuais de eppendorf as amostras foram colocadas em banho Maria a 60°C por 30 min; 4) Após esses 30 min foi adicionado 950 μL de clorofórmio:álcool isoamil (24:1), seguida de centrifugação a 6000 rpm, por 10 min; 5) 700 μL do sobrenadante foi transferido para um novo tubo de eppendorf; 6) Foi adicionado 470 μL de álcool isopropílico 'gelado', seguido de suaves inversões do tubo; 7) a solução foi centrifugada a 10000 rpm para deposição do 'pellet' no fundo do tubo, descartando-se o sobrenadante em béquer em capela de exaustão de gases; 8) o 'pellet' foi ressuspendido em 30 μL Tris-Edta, permanecendo a 6°C por 24h em geladeira para completa dissolução do 'pellet; 9) a remoção de RNAs coextraídas foi realizada com 10% de RNAse por 45 min em banho Maria a 37°C.

A quantificação do DNA foi realizada em gel de agarose a 0,8%, corado com brometo de etídio. A quantificação foi realizada pela comparação visual da intensidade das bandas do DNA extraído com bandas do DNA do fago Lambda, de concentrações conhecidas e carregadas no mesmo gel das amostras. A integridade das amostras de DNA foi avaliada pela presença ou ausência de 'rastro' de DNA. As amostras DNA foram diluídas para 10 ng/μL e armazenadas a -20°C.

Reação, amplificação do DNA e resolução em géis de poliacrilamida: foram avaliados 28 microssatélites publicados por Duval et al. (2005) e 15 outros publicados por Schnell et al. (2005) em cinco acessos do BAG para seleção daqueles de melhor resolução polimórfica em géis de poliacrilamida. As reações de amplificação de PCR foram realizadas para um volume final de 20 μL contendo 20 ng de DNA, 0,2 μM de cada 'primer', 200 μM de cada dNTP, 1,5 mM de MgCl², 1x tampão de PCR e 0,75 unidades da enzima Taq DNA polimerase. A programação do termociclador para as amplificações

consistiu de: a) um ciclo inicial de 94°C durante 4min, seguido 32 ciclos a 94°C durante 45s, de 56°C durante 60s e 72°C durante 60s e um ciclo final a 72°C por 4min.

À solução da reação de PCR foi adicionado metade do volume do tampão desnaturante de formamida 98% (EDTA pH 8,0 10mM, 1mg/mL de Xilene Cyanol e 1 mg/mL de Bromofhenol blue), seguido da completa desnaturação a 94°C por 5 min em termociclador. As amostras foram mantidas em gelo até a aplicação no gel de poliacrilamida.

Os produtos de amplificação foram separados em gel de poliacrilamida 6% [acrilamida/bisacrilamida (19:1), 7,5 M de uréia e tampão TBE 5x], preparado em placa de vidro tipo sanduíche com capacidade para 60 poços. As placas de vidro foram limpas com o auxílio de um lenço de papel embebido com etanol. A placa grande (de adesão do gel) foi tratada com 1,1 mL de uma solução contendo 95% de Etanol + 0,5% de Ácido Acético e 1 µL de Bind silane (Bioscience). Essa solução foi espalhada em toda a superfície da placa com um auxílio de um lenço de papel, o excesso foi retirado com um lenço umedecido com álcool etílico. A placa pequena (repulsão do gel) foi tratada de acordo como descrito anteriormente, porém, substituindo-se a solução contendo Bind silane por um produto usado para a limpeza de vidros de automóveis com nome comercial de Waterlux (Luxcar).

Uma pré-corrida de 30 minutos a 40 W foi realizada antes da aplicação das amostras de PCR. Foi aplicado 2,5µL da reação de PCR desnaturada no gel de poliacrilamida 6%, sendo a corrida de eletroforese realizada por um período de aproximadamente 3h, com potência constante de 40 W. Marcador de peso molecular Ladder 50pb (Fermentas) foi carregado nas extremidades laterais de cada gel.

Os géis foram corados com nitrato de prata, conforme procedimento descrito por Creste et al, (2001), com algumas modificações: 1) a placa contendo o gel foi imersa em solução de fixação contendo etanol absoluto 10% e ácido acético 1% por 20 min sob leve agitação, desaparecendo a marca azul do tampão desnaturante de carregamento, 2) lavagem com água destilada sob agitação por 1min, 3) Pré-tratamento foi realizado em solução de ácido nítrico 0,2 mol.L⁻¹ por 3 min, seguida de nova lavagem do gel com água destilada por 1 min, sob lenta agitação, 4) A impregnação do gel foi realizada com solução de nitrato de prata 0,2% por 20 min, seguida de duas lavagens de 30 s com água destilada sob leve agitação, 5) o gel foi imerso em solução de revelação contendo carbonato de sódio 2,4% e formaldeído 37%, sendo utilizado metade da solução reveladora na primeira lavagem, até o início do aparecimento das bandas, 6) a placa com gel foi transferido para

uma segunda bandeja contendo o restante da solução e corado até o aparecimento do padrão das bandas desejado, 7) uma nova lavagem do gel foi realizada com ácido acético 5% por 3 min. seguida de uma lavagem final com água por 1 min, sob agitação lenta. A placa com o gel corado foi colocado em posição vertical até a secagem em temperatura ambiente para posterior análise dos fragmentos e digitalização em scanner Epson GT-15000.

Os 103 acessos foram genotipados em duas placas de géis de poliacrilamida, uma placa com 56 acessos e outra os acessos restantes. Na primeira placa foram identificados pelo menos um acesso representante de um genótipo ou combinação alélica, para serem usados como alelo de referência na segunda placa do gel de poliacrilamida para cada microssatélite.

Anotação e análise dos dados de microssatélites: os locos dos microssatélites que apresentaram polimorfismo de fácil interpretação foram selecionados para genotipagem dos 103 acessos de mangueira. A estimativa do tamanho em pares de base (pb) para cada alelo, para a construção do padrão alélico de cada acesso, foi obtida pelo método da mobilidade inversa baseada em regressão de produtos de tamanho conhecido do marcador molecular de 50bp da Fermentas (EUA), aplicado em um poço extra do gel de poliacrilamida.

Os microssatélites foram anotados para a presença (1) versus ausência (0) de alelos, para construir uma matriz de similaridade do índice de Jaccard. O dendrograma com as distâncias das cultivares foi confeccionado pelo método de agrupamento UPGMA (Método de Agrupamento não Ponderado com base na Média Aritmética), disponível no programa NTSYS (Rohlf, 1989). A avaliação do ajuste do fenograma foi realizada pela correlação co-fenética, ou seja, a correlação entre as distâncias reais e as representadas graficamente.

Estimativas para frequência dos principais alelos, número de genótipos, diversidade do gene, heterozigosidade e conteúdo de informação polimórfica (PIC) para microssatélite foram realizadas com o programa PowerMarker (Liu & Muse, 2005).

RESULTADOS E DISCUSSÃO

Foram obtidas amplificações polimórficas de fácil interpretação em apenas sete dos 28 locos microssatélites desenvolvidos por Duval et al. (2005), a saber, mMiCIR001, mMiCIR003, mMiCIR010, mMiCIR027, mMiCIR028, mMiCIR030 e mMiCIR036, e

cinco dos 15 microssatélites desenvolvidos por Schnell et al. (2005), a saber, MiSHRS-1, MiSHRS-4, MiSHRS-29, MiSHRS-32 e MiSHRS-39 (Figura 1).

Foram detectados 50 alelos nos 12 microssatélites analisados, em que o número de alelos por loco variou de dois a nove, com média de 4,17 alelos por microssatélite nos 103 acessos de mangueira genotipadas. O tamanho dos alelos variou de 192 pb no MiSHRS-4 a 1141 pb no MiSHRS-39 (Tabela 1). O maior número de genótipos observados foi com o microssatélite mMiCIR030, enquanto a maior diversidade de genes observada foi também com esse microssátelite (Tabela 2).

A média da heterozigosidade e PIC dos 12 locos microssatélites foi 0,45 e 0,45, respectivamente, com os locos MiSHRS-1 e mMiCIR030 apresentando os maiores valores (Tabela 2). Esses dois parâmetros representam a existência de variabilidade, pois cada indivíduo diplóide pode ter até dois alelos por loco (Weir, 1996), em que a variabilidade é maior com a maior frequência de heterozigotos e PIC, sendo os microssatélites que se enquadrem nessa situação considerados como os mais indicados para estudos de diversidade.

A identificação de acessos com alelos de referência para cada microssatélite e a sua inclusão na segunda placa do gel de poliacrilamida possibilitou a comparação e a correta identificação alélica do restante dos acessos (Tabela 2). Na caracterização do banco de germoplasma de videira Leão et al. (2009) comparou o padrão alélico de estudos anteriores e três bancos de dados de microssatélites existentes para a espécie.

A correlação entre a matriz de valores cofenéticos e a matriz das distâncias de similaridade foi 0,7, o que indica que o dendrograma produzido (Figura 2) apresenta algumas inconsistências nos agrupamentos dos 103 acessos de mangueira com os 50 alelos dos 12 locos de microssatélites. Essa baixa correlação cofenética pode ter sido provocada pela presença de empates na matriz de similaridade, como comentado por Santos et al. (2010) em cebola.

Os acessos apresentaram coeficiente de similaridade entre 30 e 100%, o que reflete a alta variabilidade genética da coleção de germoplasma de mangueira estudada (Figura 1). Similaridade entre 35 e 97% foi reportada por Santos et al. (2010) para essa mesma coleção de mangueira 157 bandas polimórficas de AFLP. Schnell et al. (1995), analisando 25 acessos de cultivares majoritariamente Floridiana (EUA), encontraram similaridade superior a 64%, enquanto Viruel et al. (2005) observaram similaridade superior a 33% em

28 acessos de mangueira de diversas origens, o que também evidencia a alta variabilidade genética da mangueira.

Foram observados três grupos no dendrograma (Figura 1): grupo I – indo de Scuper Many até Beta, grupo II – indo de Rosari até Espada Manteiga, e grupo III – formado exclusivamente por Dashehari. O grupo I foi formado por acessos predominantemente estrangeiros ou resultado de cruzamentos entre esses acessos, como o acesso Beta e Alfa, com inclusões de seis acessos brasileiros: Maça, Surpresa, Juazeiro II, Umbu, Ipuçaba e Pingo de Ouro DPV. O grupo II foi formado por acessos que devem a sua origem a longa adaptação, desde a introdução da mangueira no Brasil. Outros estudos devem ser realizados para elucidar a posição isolada do acesso Dashehari, originado da Índia, bem como dos seis acessos de origem notadamente brasileira no grupo dos acessos introduzidos recentemente de outros países.

Os acessos Carabao e Manilla, considerados como geneticamente idênticos por Santos et al. (2008), por apresentaram similaridade de 97,0% e analisados com marcador AFLP, e por López-Valenzuela et al. (1997), analisando com RAPD, apesar de apresentaram alta similaridade no presente estudo (96%) não devem ser considerados como tal, pois foram diferenciados pelo microssatélite MiSHRS-29 (Tabela 2).

Os 50 alelos dos 12 locos SSR não foram suficientes para separar todos os 103 acessos de mangueira, sugerindo a existência de duplicatas na coleção para os seguintes acessos: Haden Rosa e Haden, Kensington e Black Java, Nego não Chupa e Bourbon, Espada e Espada35, Papo de Peru I e Salitre e CPR, e por último, Santa Alexandrina e Itamaracá (Tabela 2 e Fig. 2). Santos et al. (2010) diferenciaram 44 acessos de cebola com 13 locos de microssatélites, o mesmo reportado por Priolli et al. (2002) para 184 cultivares de soja com a aplicação de apenas 12 marcadores microssatélites SSR. Leão et al. (2009) dividiu uma coleção de 221 acessos de videira em quatro grupos tendo com referência sete locos microssatélites.

Em algumas situações, os marcadores moleculares tipo SSR podem apresentar informações adicionais quando descritores morfológicos são insuficientes para distinguir cultivares de uma espécie que apresenta base genética estreita (Priolli et al., 2002). Nas situações em que não for possível distinguir acessos de uma dada espécie com um conjunto de marcadores preestabelecidos, Jakse et al. (2005) sugerem que marcadores adicionais sejam utilizados para revelar polimorfismos. Iniciadores adicionais, além dos testados neste trabalho, podem ser obtidos em Viruel et al. (2005), ou mesmo ajustes na

temperatura de anelamento do protocolo PCR de alguns dos microssatélites testados no presente trabalho.

O padrão alélico e as estimativas de pares de bases para os 50 alelos revelados em 12 locos microssatélites neste trabalho é um primeiro esforço para o emprego de marcadores microssatélites em situações de proteção de cultivares para o agronegócio da mangueira no Brasil, podendo também ser utilizados em situações de disputas comerciais referentes a certificação ou não das principais cultivares de mangueira usadas no país.

Gálvez-Lopez et. al (2009) num estudo feito em mangueira no México relatou que os microssatélites produziram 151 alelos. Ambas as análises de AFLP e SSR indicaram alta similaridade genética, sendo que o germoplasma analisado foi submetido a seleção constante e propagação clonal, que pode ter reduzido diversidade genética. Singh & Bhat (2009) analisaram 18 SSRs em 241 genótipos de mangueira detectando um total de 103 alelos, com uma média de 5,78 alelos por loco, variando 3-9 alelos por loco. Os valores de similaridade de Jaccard entre os diferentes genótipos variou 0,024-0,808 com uma média de 0,258 indicando a presença de diversidade genética elevada no germoplasma analisado.

Como destacado por Santos et al. (2010) para cebola, laboratórios que empregam sistemas que utilizam iniciadores fluorescentes e anotação automática de bandas, podem estimar diferentes número de pares de bases para os alelos identificados no presente estudo, esperando-se, contudo, que o padrão alélico seja mantido se adotado o mesmo protocolo para as reações e amplificações PCR.

Santos et al. (2008) destacou que estudos com marcadores de DNA em mangueira podem ser importantes como referências para trabalhos de manejo de germoplasma, hibridações controladas, e até mesmo para escolha de outras polinizadoras de cultivares que apresentem problema de abortamento floral. Marcadores microssatélites que possibilitam a genotipagem de indivíduos são considerados superiores aos marcadores dominantes como AFLP reportado por Santos et al. (2008) em mangueira, sendo esperado uma maior contribuição ao melhoramento e manejo de recursos genéticos com o presente estudo, para essa importante cultura, pois são codominantes, multialélicos, altamente reprodutíveis, com ampla resolução e são baseados na reação em cadeia da DNA polimerase (PCR) (Oliveira et al., 2006).

CONCLUSÕES

Foi estabelecido padrões alélicos e estimativas das distâncias genéticas baseadas em marcador microssatélites para 103 acessos de mangueira. Os principais resultados foram:

- Detecção de similaridade entre 30 e 100%.
- Formação de dois grupos no dendrograma, indicando a eficiência dos marcadores microssatélites para separar acessos de diferentes origem geográficas. Dashehari foi a que apresentou a maior variabilidade em relação aos acessos analisados;
- Os 50 alelos dos 12 locos microssatélites não foram suficientes para separar todos os 103 acessos de mangueira, sugerindo a existência de duplicatas.
- Estabelecimento pioneiro de padrões alélicos para 103 acessos de mangueira que poderão ser usados adicionalmente para proteção de cultivares ou para dirimir eventuais disputas comerciais sobre a origem de mudas comercializadas.

Os resultados obtidos com microssatélites são mais significativos e confiáveis, pois marcadores são multialélicos, altamente reprodutíveis, com ampla resolução e não são influenciados pelo ambiente.

Estudos adicionais devem ser realizados para elucidar a indicação das duplicatas e triplicatas identificadas na análise com microssatélites, bem como para complementar a descrição dos acessos para o restante dos descritores do MAPA, entre os quais os relacionados com inflorescência e maturação do fruto.

REFERÊNCIAS BIBLIOGRÁFICAS

CRESTE, S.; TULMANN NETO, A.; FIGUEIRA, A. Detection of Single Sequence Repeat Polymorphisms in Denaturing Polyacrylamide Sequencing Gels by Silver Staining. Plant Molecular Biology Reporter, New York, v. 9, p. 299-306. 2001.

DONADIO, L. C.; FERREIRA, F. R. Mangueira. In: Bruckner, C. H. **Melhoramento de Fruteiras Tropicais.** Capítulo 12. Editora da Universidade Federal de Viçosa. Viçosa - MG. 2002. p. 351-372.

DUVAL MF, BUNEL J, SITBON C and RISTERUCCI M (2005) **Development of microsatellite markers for mango (Mangifera indica L.)**. Molecular Ecology Notes 5: 824–826

FALEIRO, F.G., CORDEIRO, M.C.R., PINTO, A.C.Q.C.J., ROSSETO, C.J., BELLON, G., ANDRADE, S.R.M., FRAGA, L.M.S. and SOUZA, T.L.P.O. Fingerprinting analysis of mango (Mangifera Indica L.) cultivars introduced in Brazil using rapd markers. Acta Hort. (ISHS) 864:127.2010

GÁLVEZ-LÓPEZ, D.; HERNANDÉZ-DELGADO, S.; GONZALÉZ-PAZ, M.; BECERRA-LEOR, E.N.; SALVADOR-FIGUEROA, M. & MAYEK-PÉREZ, N. Genetic analysis of mango landraces from Mexico based on molecular markers. Plant Genetic Resources: Characterization and Utilization 7(3); 244–251, 2009.

HONSHO, C, NISHIYAMA, K., EIADTHONG, W., and YONEMORI, K. 2005. **Isolation and characterization of new microsatellite markers in mango Mangifera indica.** Mol. Ecol. Notes, 5(1): 152-154.

JAKSE, J.; MARTIN, W.; MCCALLUM, J.; HAVEY, M.J. Single nucleotide polymorphisms, indels, and simple sequence repeats for onion cultivar identification. Journal of the American Society for Horticultural Science, v.130, p.912-917, 2005.

KRISHNA, H & SINGH, S.K. Biotechnological advances in mango (Mangifera indica L.) and their future implication in crop improvement — A review. Biotechnology Advances, 25: 223-243, 2007

LEÃO, P. C. de S.; Riaz, S.; GRAZIANI, R.; DANGL, G. S.; MOTOIKE, S. Y.; WALKER, M. A. Characterization of a brazilian grape germplasm collection using microsatellite markers. American Journal of Enology and Viticulture, v. 60, p. 517-524, 2009.

LIU, K. & MUSE, S.V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, v. 21, p. 2128-2129, 2005.

LÓPEZ-VALENZUELA JA, MARTINEZ O and PAREDES-LÓPEZ O (1997) Geographic differentiation and embryo type identification in Mangifera indica L. cultivars using RAPD markers. HortScience 32: 1105–1108.

NETO,J.F.B; BERED, F. Marcadores moleculares e diversidade genética no melhoramento de plantas, In: Milach, S.C.K (ed) Marcadores moleculares em plantas, Porto Alegre (1998),141p.

OLANO, C.T.; SCHNELL, R.J.; QUINTANILLA, R.J. & CAMPBELL, R.J. **Pedigree** analysis of Florida mango cultivars. Proceedings of Florida. State Horticulture. Sociecty 118:192-197. 2005

OLIVEIRA, E.J.; PÁDUA, J.G.; ZUCCHI, M.I.; VENCOVSKY, R.; VIEIRA, M.L.C. **Origin, evolution and genome distribution of microsatellites**. Genetics and Molecular Biology, v.29, p.294-307, 2006.

PINTO, A.C. de Q.; ROSSETTO, G.J.; FALEIRO, F.G. Melhoramento genético da manga: métodos, resultados, limitações e estratégias. In: Simpósio de Manga do Vale do São Francisco,1, 2005, Juazeiro. Palestras. Petrolina: Embrapa Semi-Árido, 2005 (Embrapa Semi-Árido. Documentos, 189). 1 CD-ROM.

PRIOLLI, R.H.G.; MENDES-JUNIOR, C.T.; ARANTES, N.E.; CONTEL, E.P.B. Characterization of Brazilian soybean cultivars using microsatellite markers. Genetics and Molecular Biology, v.25, p.185-193, 2002.

ROPHLF, F.J. NTSYS-pc numerical taxonomy and multivariate analysis system, version 1.80. Setauket: Exeter Software. 1989.

SANTOS, C. A. F.; OLIVEIRA, V. R. de; RODRIGUES, M. A; Ribeiro, H.L.C. . Caracterização molecular de cultivares de cebola com marcadores microssatélites. Pesquisa Agropecuária Brasileira (1977. Impressa), v. 45, p. 49-55, 2010.

SANTOS, C. A. F.; LIMA FILHO, J. M. P.; LIMA NETO, F. P. Estratégias para o desenvolvimento de novas cultivares de mangueira no semiárido brasileiro. Revista Brasileira de Fruticultura (Impresso), v. 32, p. 493-497, 2010.

SANTOS, C. A. F.; LIMA NETO, F. P; RODRIGUES, M.A.; COSTA, J. G. da. Similaridade genética de acessos de mangueira de diferentes origens geográficas avaliadas por marcadores AFLP. Revista Brasileira de Fruticultura, v. 30, p. 736-740, 2008.

SCHNELL, R.J.; OLANO, C.T.; QUINTANILLA, W.E.; MEEROW, A.W. Isolation and characterization of 15 microsatellite loci from mango (*Mangifera indicaL.*) and cross-species amplification in closely related taxa. Molecular Ecology Notes, Oxford,v. 5, p. 625–627. 2005.

SCHNELL R.J., RONNING C.M. and KNIGHT R.J. 1995. **Identification of cultivars and validation of genetic relationships in Mangifera indica L. using RAPD markers.** Theor. Appl. Genet. 90: 269–274.

SCHNELL, R.J.; BROWN, J.S.; OLANO, C.T.; MEEROW, A.W.; CAMPBELL, R.J.; KUHN, D.N. Mango genetic diversity analysis and pedigree inferences for Florida cultivars using microsatellite markers. Journal of the American Society for Horticultural Science, Athens, v. 131, n. 2, p. 214-224, 2006.

SINGH S. and BHAT, K.V. Molecular Characterization and Analysis of Geographical Differentiation of Indian Mango (Mangifera indica L.) Germplasm. National Research Centre on DNA Fingerprinting National Bureau of Plant Genetic Resources, Pusa Campus, Proc. 1st IS on Biotechnol. of Fruit Species Eds.: M.-V. Hanke et al. Acta Hort. 839, 2009.

SOUZA, A.P. **Biologia molecular aplicada ao melhoramento**, In: Luciano Lourenço Nass, Afonso Celso Candeias Valois, Itamar Soares de Melo, Maria Cléria Valadares-Inglis (ed) Recursos Genéticos e melhoramento – plantas, Rondonópolis:Fundação MT (2001),1183p.

THIS, P., JUNG, A., BOCACCI, P., BORREGO, J. BOTTA, R., CONSTANTINI, L., et al. 2004. **Development of a standard set of microsatellite reference alleles for identification of grape cultivars**. Theor. Appl. Genet. 109: 1448–1458.

VIRUEL, M.A.; ESCRIBANO, P.; BARBIERI, M.; FERRI, M.; HORMAZA, J.I. Fingerprinting, embryo type and geographic differentiation in mango (*Mangifera indica L.*, Anacardiaceae) with microsatélites. Molecular Breeding, Dordrecht, v. 15, p. 383-393. 2005.

WEIR, B.S. 1996. Genetic Data Analysis II - Methods for Discrete Population Genetic Data. Sinauer Associates, Sunderland.

WYZYKOWSKY, J.; ARAÚJO, J.L.P.; ALMEIDA, C.O. de. 2002. **Mercado e comercialização.** In: GENU P.J. de C.; PINTO, A.C. de Q. (eds.). A cultura da mangueira. Brasília: Embrapa Informação Tecnológica. pp. 433-452.

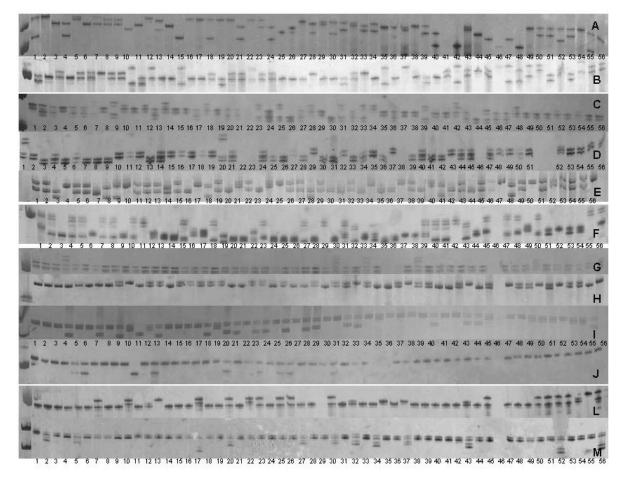


Figura 1. Padrão de bandas para 12 locos microssatélites avaliados 103 acessos de mangueira: 1. Locos MiSHRS-1 painel (A); MiSHRS-4 painel (B), MiSHRS-29 painel (C), MiSHRS-32 painel (D) e MiSHRS-39 painel (E); 2) Locos mMiCIR-030 painel (F), mMiCIR-001 painel (G), mMiCIR-003 painel (H), mMiCIR-010 painel (I), mMiCIR-027 painel (J), mMiCIR-028 painel (L) e mMiCIR-036 painel (M). Acessos: 1=Scuper Many, 2=Kensington, 3=Rosari, 4=Manga d'água, 5=JuazeiroII, 6=Mastruz, 7=JuazeiroVI, 8=Nego não chupa, 9=Espada Itaparica,10=Manzanillo, 11=Tyler Premier, 12=Haden, 13=65, 14=Ubá, 15=Winter, 16= Irwin, 17=Tommy Atkins, 18=Papo de PeruI, 19=M13269, 20= Coração magoado, 21=Espada, 22=Ruby, 23= Espada ouro, 24=Espada 35, 25=Ametista, 26=Rosa, 27=Black java, 28=Dama de ouro, 30=Manguito, 31=Sta Alexandrina, 32=Eldon, 33=Da porta, 34=Carlotão, 35=Florigon, 36=Primor de amoreira, 37=Dashehari, 38=Alphonso, 39=Itamaracá, 40=Imperial I, 41=Bourbon, 42=Langra, 43=Duncan, 44=Calmon, 45=Palmer, 46=Torbet, 47=Parwin, 48=Itiúba, 49=Heidi, 50=Chené, 51=Celebration, 52=Espada vermelha, 53=R2E2, 54=Haden Rosa, 55=Ataulfo, 56=Lita

Tabela 1. Acesso de referência* e padrão alélico, em pares de bases, estimado para 103 acessos de mangueira, genotipadas com 12 marcadores microssatélites. Petrolina, 2011.

Acesso	Locos MiSHRS						Locos mMiCIR					
	1	4	29	32	39	030	001	003	010	027	028	036
65	492/539	197/197	330/356*	554/554	1108/1130	295/301	412/412	1023/1008	749/783	218/243	694/694*	* 751/751
Alfa	492/548	197/212	356/362	581/581	1130/1130*	308/308	412/412	1023/1008	776/783	243/243	659/694	693/751
Alphonso	548/548	197/197	343/356	595/595	1108/1130	256/308	412/412	1023/1008	783/783	243/243	659/659	751/751
Amarelinha	492/492	197/197	343/356	554/554	1108/1108	295/301	412/412	1023/1008	749/783	218/243	659/659	751/751
Ametista	492/492	197/197	330/375	554/554	1130/1130	295/301	412/412	1023/1008	783/783	218/243	659/694	751/751
Amrapali	492/548	204/212	356/362	554/595	1119/1130	301/318	412/412	1023/1008	783/783	243/243	659/694	693/751
Apple DCG	539/548	197/197	356/356	581/581	1108/1130	318/318	412/428	1023/1023	755/783	243/243	659/659	751/751
Ataulfo	384/539	197/204	356/356	581/581	1108/1130	256/328	412/412	1023/1023	755/783	243/243	694/694	751/751
Beta	384/539	192/204	356/356	595/595	1130/1130	295/328	412/412	1023/1008	783/783	243/243	659/694	693/751
Black Java	548/548	197/197	330/356	581/581	1108/1130*	295/328	412/412	1023/1023	783/783	243/243	659/659	728/751*
Bonita	492/492	192/197	356/375	554/554	1059/1130	301/328	412/412	1023/1008	783/783	218/218	659/694	751/751
Bourbon	510/539	197/204	343/356	554/554	1059/1119	295/328	412/412	1023/1023	783/783	243/243	659/659	751/751
Brasil	492/510	197/204	343/356	554/581	1130/1130	301/308	412/412	1023/1023	783/783	218/218	659/694	714/751
Calmon	510/510	204/204	330/330	554/581	1108/1108	308/311	412/412	1023/1023*	* 749/783	243/243	659/659	751/751
Carabao	539/548	197/197	343/356	595/595*	1108/1130	256/328	412/412	1023/1023	755/783	243/243	659/694	751/751
Carlotão	510/548	197/197	375/375	554/581	1130/1130	295/308	412/428	1023/1023	783/783	243/243	659/659	751/751
Caxangá	510/510	197/204	343/356	554/554	1059/1108	295/295	412/412	1023/1023	783/783	243/243	659/659	751/751
Chené	510/548	204/212	356/356	554/581	1130/1130	301/328	412/423*	1008/1008	776/783	243/243	659/694	751/751
China	510/539	197/204	343/356	581/581	1108/1130	295/301	412/412	1023/1023	755/783	243/243	659/694	751/751
Comprida Roxa	539/539	204/204	356/375	554/554	1059/1108	295/301	412/412	1023/1008	749/783	243/243	659/659	751/751
Coração magoado	548/548	197/204	330/356	554/640*	1130/1130	295/301	412/412	1023/1023	755/783*	* 218/243	659/694	714/751*
CPR	384/548	197/204	356/375	581/581	1059/1119	295/328	412/412	1023/1008	749/783	243/243	659/659	751/751
Da porta	510/539	204/204	330/375	554/554	1108/1108	301/308	412/412	1023/1008	749/783	243/243	659/659	714/751
Dama de ouro	492/539	204/204	356/375	554/554	1059/1108	295/301	412/412	1023/1008	749/783	243/243	659/659	751/751

Dashehari	529/539* 212/212	2 343/356 595/595	5 1130/1130 308/308	3 412/412 1008/1008	3 783/783 243/243	670/670 728/751
Duncan	539/548 197/204	330/356 581/581	1108/1130 295/318	3 412/412 1008/1008	3* 749/783 243/243	659/670 714/751
Edward	548/548 197/197	356/362 581/581	1108/1130 308/308	3 412/412 1023/1008	3 755/783 243/243	659/659 751/751
Eldon	539/548 197/204	330/356 581/581	1108/1130 295/318	3 412/412 1008/1008	3 755/783 243/243	659/670 728/751*
Espada	384/510 197/204	330/356 554/581	1119/1130* 295/30	412/412 1023/1023	3 749/783* 243/243	659/659 751/751
Espada 35	384/510 197/204	330/356 554/581	1119/1130* 295/30	412/412 1023/1023	3 749/783 243/243	659/659 751/751
Espada Itaparica	510/539 197/204	330/375 554/554	1059/1130 295/303	412/412 1023/1008	3* 749/783 243/243	659/659 751/751
Espada Manteiga	492/510 204/212	2 356/356 554/554	1059/1130 301/308	3 412/412 1023/1008	3 783/783 243/243	670/694 751/751
Espada ouro	510/548 197/204	330/375 554/554	1108/1108 301/328	3 412/412 1023/1008	3 749/783 218/243	659/694 751/751
Espada vermelha	492/548 197/204	356/356 581/581	1119/1130 308/308	3 412/412 1008/1008	3 783/783 243/243	659/694 693/751
Extrema	510/548 197/197	362/375 554/581	1130/1130 295/295	5 412/428 1023/1023	3 783/783 .	659/659 714/751
Favo de mel	492/510 204/204	356/356 581/581	1059/1119 295/302	412/412 1023/1008	3 783/783 243/243	659/659 751/751
Florigon	539/539 192/212	2 343/356 581/581	1108/1108 295/295	5 412/412 1023/1023	3 776/783 243/243	670/670 751/751
Foice	384/384 197/204	343/356 554/581	1130/1130 295/303	412/412 1023/1023	3 749/749 243/243	659/659 751/751
Haden	548/548 197/212	2* 356/362* 581/581	1108/1130 295/308	3 412/412 1023/1008	3 776/783 243/243	659/670 751/751
Haden 2h	539/548 197/212	2 356/362 581/581	1108/1130 295/308	3 412/412 1023/1008	3 776/783 243/243	659/659 751/751
Haden Rosa	548/548 197/212	2 356/362 581/581	1108/1130 295/308	3 412/412 1023/1008	3 776/783 243/243	659/670 751/751
Heidi	548/548 197/212	2 356/356 581/581	1108/1130 308/31	412/412 1023/1008	3 776/783 243/243	659/659 751/751
Hilda	510/510 197/204	343/356 581/581	1108/1130 295/295	5 412/412 1023/1023	3 755/783 243/243	659/659 751/751
Imperial I	384/510 197/197	343/356 554/581	1119/1130 295/328	3 412/412 1023/1023	3 749/783 243/243	659/659 751/751
Ipuçaba	548/548 192/197	343/356 554/581	1108/1130 295/328	3 412/412 1023/1023	3 749/749 218/218	659/659 751/751
Irwin	548/548 197/197	343/356 581/581	1108/1108 308/31	412/412 1023/1008	3 783/783 243/243	659/659 751/751
Itamaracá	510/548 192/197	330/375 554/554	1108/1108 308/328	3 412/428* 1023/1008	3 783/783 243/243	659/659 751/751
Itiúba	384/384 192/204	356/375 581/581	1059/1119 301/328	3 412/412 1023/1008	3 783/783 243/243	659/659 751/751
Joa	492/492 204/212	2 356/362 581/640	1108/1108 308/328	3 412/412 1023/1008	3 749/776 218/243	659/694 714/751
Juazeiro II	539/548* 197/204	330/356 554/554	1108/1130 295/328	3 412/412 1023/1023	3 783/783 218/243	659/659 728/751
Juazeiro III	384/548 197/204	356/375 581/581	1108/1119 301/308	3 412/412 1023/1008	3 783/783 243/243	659/659 751/751
Juazeiro IV	510/510 197/204	356/375 554/554	1108/1130 295/303	412/412 1023/1023	3 755/783 243/243	659/659 751/751
Juazeiro VI	510/510 204/204	330/375 554/554	1130/1130 295/328	3 412/412 1023/1023	3 755/783 243/243	659/694 751/751
Keitt	510/548 192/212	2 356/362 554/581	1108/1130 295/328	3 412/412 1023/1008	3 776/783 243/243	659/659 751/751

Kensington	548/548	197/197	330/356	581/581	1108/1130	295/328	412/412	1023/1023	783/783	243/243	659/659	728/751
Kent	510/510	192/197	356/356	554/581	1108/1130	308/328	412/412	1008/1008	776/776	243/243	659/694	751/751
Langra	384/384	192/212	356/375	554/554	1108/1108	256/328	412/412	1023/1008	783/783	243/243	659/659	751/751
Lita	539/539	197/204	356/356	581/581	1130/1130	308/328	412/412	1008/1008	783/783	243/243	659/694	693/751*
M13269	548/548	192/197	343/356	581/581	1108/1130	292/308	412/412	1023/1008	776/783*	243/243	659/659	751/751
Maçã	510/510	197/197	356/362	581/581	1108/1130	308/328	412/412	1023/1023	783/783		659/659	714/751
Mallika	492/539	204/212	356/362	581/595	1119/1130	301/328	412/412	1023/1008	783/783	243/243	659/670	693/728
Mallindi	539/539	197/197	356/356	581/581	1130/1130	318/328	412/428	1023/1008	783/783	243/243	659/694	751/751
Manga d'água	384/510*	197/197	343/356	554/581	1130/1130	295/328	412/428	1023/1023	749/783*	243/243	659/659	751/751
Manguito	492/548	197/197	330/330	554/554	1108/1108	295/301	412/412	1023/1008	783/783	218/243	659/694*	5751/751
Manilla	539/548	197/197	356/356	595/595	1108/1130	256/328	412/412	1023/1023	755/783	243/243	659/694	751/751
Manzanillo	492/492	192/212*	356/362	581/581	1130/1130	295/328	412/412	1008/1008	776/783	243/243*	670/694*	5751/751
Mastruz	510/510	197/204*	330/356	554/581	1108/1130	301/301	412/412	1023/1023	783/783	218/243*	659/659	751/751
Maya	384/548	192/197	356/356	581/640	1108/1130	308/328	412/412	1023/1023	783/783	243/243	659/659	751/751
Momi k	492/492	197/197	343/362	581/581	1108/1108	308/328	412/412	1023/1008	783/783	243/243	659/659	728/728
Mon Amon	539/600	197/212	356/356	581/581	1108/1130	318/318	412/428	1008/1008	783/783	243/243	659/659	693/751
Moraes	384/384	204/204	356/356	581/581	1108/1119	295/301	412/412	1023/1008	749/783	243/243	659/659	751/751
Néldica	548/548	197/212	343/356	554/581	1108/1130	295/328	412/428	1023/1023	783/783	218/218	659/694	751/751
Nego não chupa	510/539	197/204	343/356	554/554	1059/1119	295/328	412/412	1023/1023	783/783	243/243	659/659	751/751
Olour	539/548	197/197	356/356	581/581	1108/1108	295/295*	[*] 412/412	1023/1023	783/783	243/243	659/694	728/751
Ômega	492/548	197/204	356/362	581/595	1119/1130	308/308	412/412	1008/1008	783/783	243/243	659/659	693/751
Palmer	492/492	197/204	330/362	554/581	1108/1130	308/328	412/412	1023/1008	776/783	243/243	659/694	751/751
Papo de Peru I	384/548	197/204	356/375	581/581	1059/1119	295/328	412/412	1023/1008	749/783	243/243	659/659	751/751
Parwin	492/492	192/212	330/356	554/581	1130/1130	301/328	412/412	1008/1008	783/783	243/243	659/659	751/751
Pessego DPV	510/539	197/204	343/343	554/554	1059/1108	295/301	412/412	1023/1008	749/783	218/243	659/659	751/751
Pingo de ouro	539/539	197/197	343/356	554/554	1108/1108	295/308	412/412	1023/1008	783/783	243/243	659/659	751/751
Pingo de ouro dpv	510/548	192/204	343/356	554/581	1108/1130	328/328	428/428	1023/1023	783/783	243/243	659/659	751/751
Primor de amoreira	492/539	197/197	330/356	554/554	1108/1108	295/301	412/412	1023/1008	783/783	243/243	659/659	751/751
Princesa	510/510	197/197	343/362	554/554	1108/1130	295/301	412/412	1023/1023	749/783	243/243	659/659	751/751
R2E2	510/548	192/197	356/356	581/581	1108/1130	295/308	412/412	1023/1008	776/783	243/243	659/694	751/751

Recife	510/510 197/2)4 343/356 554/5	81 1130/1130	295/308	412/412	1023/1023	749/783	243/243	659/694	751/751
Rosa	492/510* 197/1	97 330/330 554/5	54 1108/1130	295/301	412/412	1023/1023	749/783	218/243	659/694	751/751
Rosari	510/510 197/2	04 330/356 554/5	54 1108/1059*	* 295/295	412/412	1023/1023	783/783	243/243	659/659	751/751
Roxa	492/548 197/2	04 356/362 581/5	95 1119/1130	308/308	412/412	1008/1008	783/783	243/243	659/694	693/751
Ruby	548/548 197/2	2 343/356 581/6	40 1108/1130	295/311	412/412	1023/1008	783/783	243/243	670/694	751/751
Salitre	384/548 197/2	04 356/375 581/5	81 1059/1119	295/328	412/412	1023/1008	749/783	243/243	659/659	751/751
Scuper many	384/548 192/1	97* 343/356 581/6	40* 1108/1130	308/308	412/412	1023/1023	783/783	243/243	659/659	751/751
Simmonds	548/548 197/2	2 356/362 581/5	81 1108/1130	295/308	412/412	1023/1008	783/783	243/243	659/659	751/751
Smith	492/492 192/2	2 356/356 581/5	81 1108/1130	295/328	412/412	1023/1008	783/783	243/243	670/670	751/751
Sta Alexandrina	510/548 192/1	97 330/375 554/5	54 1108/1108	308/328	412/428	1023/1008	783/783	243/243	659/659	751/751
Surpresa	548/548 197/1	97 356/356 595/5	95 1108/1130	301/256	412/412	1023/1008	783/783	243/243	659/659	751/751
Tommy Atkins	548/548 197/1	97 330/356 581/5	81 1130/1130	308/311	412/412	1023/1008	783/783	243/243	670/694	693/751
Torbet	384/384 212/2	12 330/356 581/5	81 1108/1130	295/328	412/412	1008/1008	755/776	243/243	659/659	751/751
Tyler Premier	510/510 192/1	97 343/356 581/5	81 1108/1130	318/328	412/412	1023/1023	755/755	218/218*	659/659	751/751
Ubá	510/510 197/1	97 356/375* 554/5	81* 1108/1119	295/301	412/412	1023/1023	783/783	243/243	659/659	751/751
Umbu	539/548 197/2)4 343/356 554/5	54 1108/1130	295/328	412/412	1023/1023	783/783	218/243	659/659	728/751
Van Dyke	539/548 197/1	97 356/362 581/5	81 1108/1130	308/311	412/412	1008/1008	776/783	243/243	670/694	751/751
Winter	384/384 192/2	2 356/356* 581/5	81 1108/1130	295/328	412/412*	1023/1008	783/783	243/243	659/659	751/751
Zill	548/548 197/1	7 356/356 581/5	81 1108/1108	308/308	412/412	1023/1008	783/783	243/243	659/659	751/751

Tabela 2. Parâmetros genéticos estimados para 12 microssatélites em 103 acessos de mangueira. Petrolina, 2011

Microssatélite Maior frequência	Número de	Número de Número de		Diversidade H	eterozigosidade Conteúdo de infor	rmação	
Alélica	Genótipos		Acessos	Alelos	gênica	polimórfica (PIC)	
MiSHRS-1),3155	16,0000	103,0000	7,0000	0,7789	0,5146	0,7446
MiSHRS-4),5243	9,0000	103,0000	4,0000	0,6348	0,6311	0,5816
MiSHRS-29),5243	12,0000	103,0000	5,0000	0,6666	0,7476	0,6320
MiSHRS-32),5291	8,0000	103,0000	4,0000	0,5773	0,2816	0,4956
MiSHRS-39),4369	8,0000	103,0000	4,0000	0,6338	0,6699	0,5627
mMiCIR030),3058	20,0000	103,0000	8,0000	0,7864	0,8252	0,7543
mMiCIR001),9417	4,0000	103,0000	3,0000	0,1102	0,0971	0,1051
mMiCIR003),6262	3,0000	103,0000	2,0000	0,4681	0,4757	0,3586
mMiCIR010),7233	9,0000	103,0000	4,0000	0,4495	0,4563	0,4204
mMiCIR027),8911	3,0000	101,0000	2,0000	0,1941	0,1188	0,1753
mMiCIR028),7524	6,0000	103,0000	3,0000	0,3990	0,3495	0,3591
mMiCIR036),8689	6,0000	103,0000	4,0000	0,2391	0,2330	0,2302
Média (0,6200	8,6667	102,8333	4,1667	0,4948	0,4500	0,4516

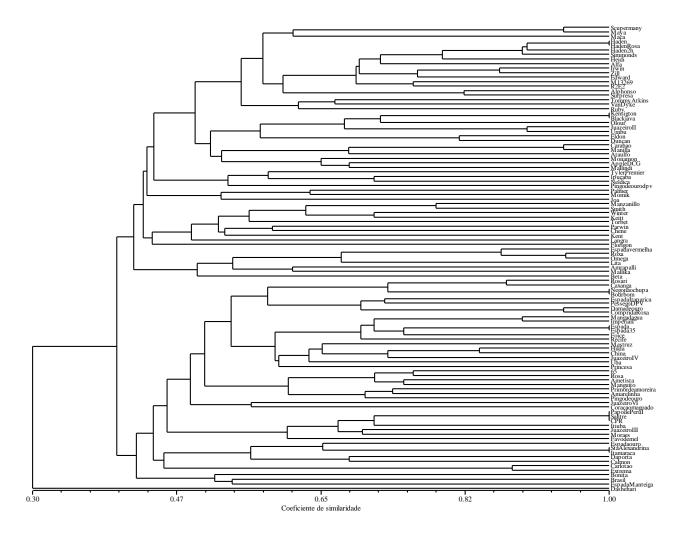


Figura 2. Dendrograma UPGMA do coeficiente de similaridade de Jaccard de 103 acessos de mangueira genotipados para 50 alelos de 12 locos microssatélites. Correlação cofenética = 0,7. Petrolina, 2011.

CONCLUSÕES GERAIS

O Banco Ativo de Germoplasma (BAG) de mangueira da Embrapa Semiárido, localizado na Estação Experimental de Mandacaru, Juazeiro, BA, é constituído por 150 acessos, sendo provavelmente a maior coleção brasileira da espécie, sendo composto por variedades crioulas, como também de variedades introduzidas de outros países tais como Estados Unidos, México, Israel, Índia, Tailândia, África do Sul, Austrália e Filipinas.

Apesar da sua importância, esse BAG ainda não tinha sido caracterizado para descritores agromorfológicos oficiais publicados pelo Ministério da Agricultura, Pecuária e Abastecimento (MAPA) e nem genotipado com marcadores microssatélites. Uma ampla caracterização agro morfológica e molecular é necessária para tornar os acessos desse BAG disponíveis para o melhoramento ou até mesmo como opção de novas cultivares na região Nordeste do Brasil.

O presente trabalho teve como principal objetivo a caracterização agro morfológica e a genotipagem com marcadores microssatélites de 103 dos 150 acessos do BAG de mangueira da Embrapa Semiárido de forma a gerar um banco de dados de referência de apoio à proteção de cultivares e a ocasionais disputas comerciais, bem como nortear programas de melhoramento e recursos genéticos da espécie.

No capitulo I foram aplicados 50 descritores dos 64 publicados pelo MAPA para fins de proteção de cultivares de mangueira no Brasil, tendo como referência os descritores publicados pelo International Union for the Protection of New Varieties of Plants (UPOV). Os principais resultados do capitulo I foram:

- Geração de ampla base dados com 50 descritores para 102 acessos do BAG de mangueira (Anexo I), bem como de fotos de frutos para 85 acessos dessa coleção;
- Adaptações para classificação em uma determinada categoria de um descritor, como classificação prévia de acordo com comprimento ou peso e distribuição em classes de acordo com as categorias dos descritores do MAPA ou adaptações para coleta e mensuração do látex dos frutos;
- Descritores como simetria da folha juvenil e cerosidade do fruto maduro foram invariantes, pois foram observados quase que exclusivamente uma única categoria, sugerindo que não existe variabilidade para esses caracteres no germoplasma estudado;
- Detecção de grande variabilidade para cor da epiderme do fruto no ponto de colheita e de consumo que podem atender a diferentes mercados consumidores. Os acessos

Amrapali e Salitre apresentaram polpa laranja escura, variedades brasileiras que podem ser de interesse para o melhoramento, pois essa coloração está associada a altos teores de carotenóides totais.

- Oito acessos entre os 102 avaliados apresentaram polpa não fibrosa e também podem ser de interesse para os melhoristas. Nove acessos apresentaram alta firmeza da polpa o que pode ser indicativo de alta resistência ao transporte e a maior tempo de prateleira, podendo, portanto serem também de interesse para os melhoristas.
- As informações morfológicas obtidas no capitulo I são as mais abrangentes para uma das principais coleções de germoplasma de mangueira do Brasil, que poderão auxiliar em diferentes programas de melhoramento da cultura.

No capitulo II, cento e dois acessos do BAG de mangueira foi avaliada a diversidade genética em mangueira, com base em 48 descritores agro morfológicos do MAPA, para auxiliar na identificação de genitores adequados para cruzamentos. O descritor cerosidade do fruto maduro não apresentou variabilidade e foi descartado da presente análise desse capitulo. O acesso Celebration foi excluído dessa análise de diversidade pois não foi caracterizado para mais de 10% dos descritores do MAPA. Os principais resultados desse capitulo foram:

- Detecção de similaridade superior a 24% entre os 102 acessos estudados, indicando a alta variabilidade genética da coleção de germoplasma de mangueira estudada;
- Formação de quatro grupos principais adotando-se o ponto de corte de 30% no dendrograma formado com 48 descritores;
- Os acessos foram agrupados independentemente da sua origem geográfica ou tipo de embrionia, indicando limitações dos descritores agro morfológicos;
- Distinguibilidade de todos os 102 acessos analisados, que é um requisito necessário para proteção de cultivares no Brasil, pois nenhum acesso apresentou 100% de similaridade com outro acesso;
- Recomendação do cruzamento de acessos do grupo 1 e 3 para desenvolvimento de novas cultivares, pois apresentaram frutos contrastantes para peso da polpa e cor predominante da epiderme, duas características importantes para mangueira. Deve-se ainda levar em consideração a divergência em estudos com marcadores de DNA, bem como outras características agronômicas desejáveis.

No capitulo III foi estabelecido padrões alélicos e estimativas das distâncias genéticas baseadas em marcador microssatélites para 103 acessos de mangueira, de forma

a gerar um banco de dados de referência de apoio à proteção de cultivares e a eventuais disputas comerciais, bem como orientar a programas de melhoramento e recursos genéticos da espécie. Os principais resultados foram:

- Detecção de similaridade entre 30 e 100%, indicando também a alta variabilidade genética da coleção de germoplasma de mangueira estudada;
- Formação de dois grupos no dendrograma, sendo esses grupos formados por acessos brasileiros ou de origem estrangeira recente na sua maioria, indicando a eficiência dos marcadores microssatélites para separar acessos de diferentes origem geográficas.
 Dashehari foi a que apresentou a maior variabilidade em relação aos acessos analisados;
- Os 50 alelos dos 12 locos microssatélites não foram suficientes para separar todos os 103 acessos de mangueira, sugerindo a existência de duplicatas na coleção para os seguintes acessos: Haden Rosa e Haden, Kensington e Black Java, Nego não Chupa e Bourbon, Espada e Espada35, Papo de Peru I e Salitre e CPR, e por último, Santa Alexandrina e Itamaracá;
- Estabelecimento pioneiro de padrões alélicos para 103 acessos de mangueira que poderão ser usados adicionalmente para proteção de cultivares ou para dirimir eventuais disputas comerciais sobre a origem de mudas comercializadas.

Os resultados obtidos com microssatélites são mais significativos e confiáveis, pois marcadores são multialélicos, altamente reprodutíveis, com ampla resolução e não são influenciados pelo ambiente, podendo serem aplicados em qualquer fase do desenvolvimento da planta, sendo, portanto, esperado uma maior contribuição ao melhoramento e manejo de recursos genéticos com o atual estudo de microssatélites para a mangueira.

Estudos adicionais devem ser realizados para elucidar a indicação das duplicatas e triplicatas identificadas na análise com microssatélites, bem como para complementar a descrição dos acessos para o restante dos descritores do MAPA, entre os quais os relacionados com inflorescência e maturação do fruto.

Outros dados para a qual os acessos do presente BAG já foram analisados, como caracteres bioquímicos e de conservação pós-colheita deveriam ser incorporados para a formação de uma base dados mais extensa, que possibilite outras análises e a identificação de parentais tendo como referência um conjunto mais abrangente de variáveis.

De especial interesse poderá ser o desenvolvimento de 'árvores do conhecimento', onde as informações de cada acesso serão disponibilizadas em ambiente de hipertexto na Internet para ampla consulta aos interessados no agronegócio da mangueira.

RIBEIRO, I.C.N.S. Análise da divergência genética em acessos de *Mangifera indica* com base em descritores agro-morfológicos e marcadores microssatélites. 2011 114p.Tese (Mestrado)- UEFS- Universidade Estadual de Feira de Santana.

Orientador: Dr. Carlos Antônio Fernandes Santos

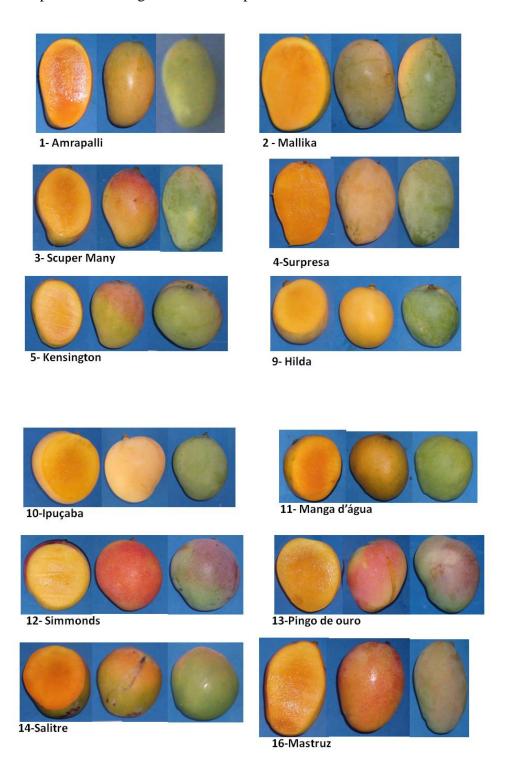
RESUMO: Este trabalho teve como objetivos a caracterização e análises da divergência fenotípica e genética de acessos de mangueira com base em descritores agromorfológicos e marcadores microssatélites, de forma a gerar um banco de dados de apoio à proteção de cultivares, bem como orientar programas de melhoramento e recursos genéticos da espécie. Foram avaliados 103 acessos de mangueira do BAG da Embrapa Semiárido, adotando-se descritores estabelecidos pelo Ministério da Agricultura, Pecuária e Abastecimento (MAPA) e genotipagem com 12 marcadores microssatélites. Para visualização da similaridade genética, dendrogramas UPGMAs foram gerados da matriz de distâncias do coeficiente de Jaccard, com base nos dados dos descritores ou dos dados moleculares. Descritores simetria da folha e cerosidade do fruto não apresentaram variabilidade entre os acessos. Oito acessos não apresentaram frutos fibrosos e nove outros apresentaram alta firmeza da polpa. O teor de sólidos solúveis foi alto para 95% dos acessos. A similaridade fenotípica foi superior a 24% com base nos descritores do MAPA, com os acessos sendo agrupados independente da sua origem geográfica. Na análise molecular, a similaridade genética foi superior a 30%, também evidenciado a alta variabilidade genética da coleção, com acessos sendo agrupados em dois grupos principais, de acordo com a sua origem geográfica. O padrão alélico estabelecido com 50 alelos dos 12 locos microssatélites para os 103 acessos indicou a existência de duplicatas e triplicatas na coleção.

Palavras-chave: *Mangifera indica*, banco germoplasma, UPOV, similaridade, dendrograma, genotipagem.

RIBEIRO, I.C.N.S. Analysis of the genetic divergence in Mangifera indica accessions based on agro-morphological descriptors and microsatellite markers. 2011. 114p.

Thesis (Masters) – UEFS - Universidade Estadual de Feira de Santana.

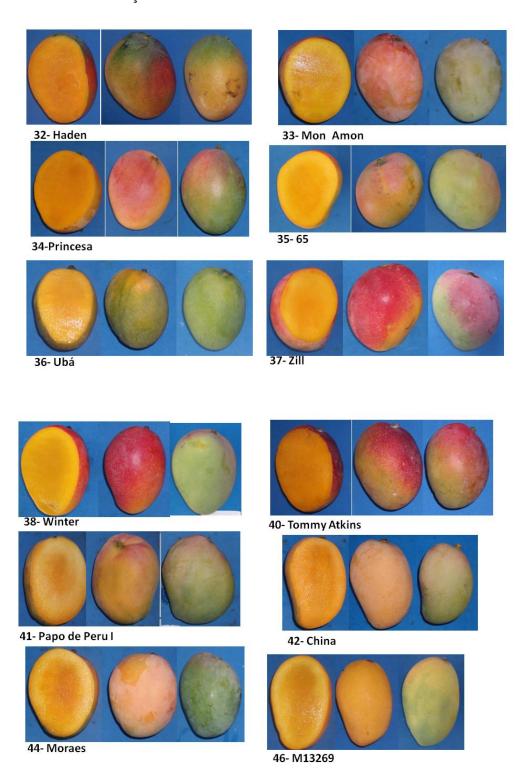
Counselor: Dr. Carlos Antônio Fernandes Santos

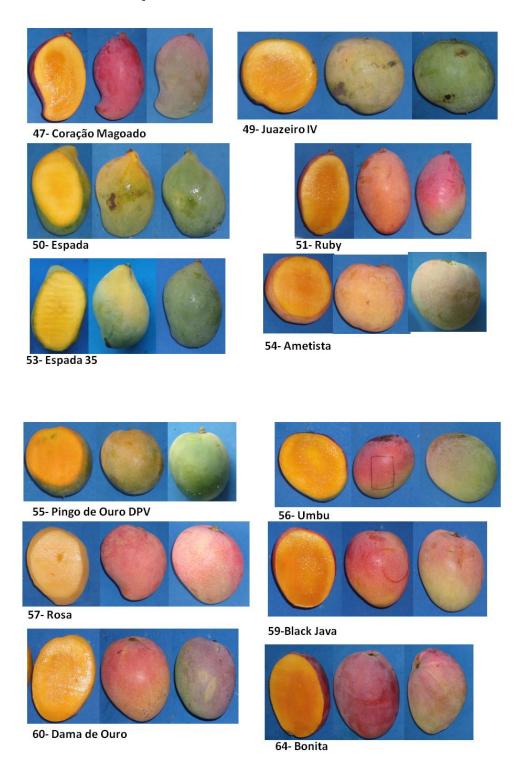

ABSTRACT

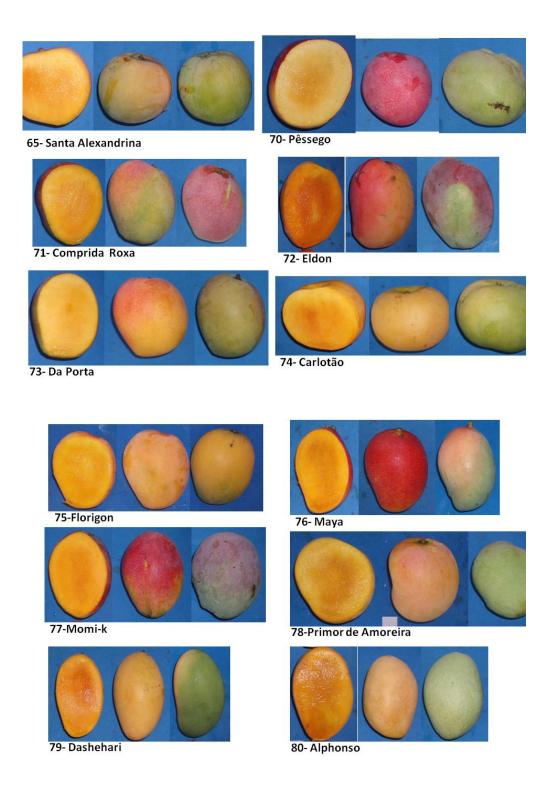
The goal of this work was the characterization and analyses of the phenotypic and genetic divergence of mango accessions based on morphological descriptors and microsatellite markers, in order to generate a database of support for the protection of cultivars, as well as guide in breeding programs and genetic resources of the species. Evaluations were done on 103 mango accessions of the Field Germplasm Bank (BAG) of the Embrapa Semi arid, adopting descriptors established by the Ministry of Agriculture, Livestock and Supply (MAPA) and genotyping with 12 microsatellite markers. For visualization of the genetic similarity, dendrogram UPGMAs were generated from the matrix of distances of the Jacquard coefficient, based on data of the descriptors or on the molecular data. Descriptors symmetry of the leaf and waxiness of the fruit did not present variability among the accessions. Eight accessions did not present fibrous fruits and nine others presented high fruit firmness. The content of soluble solids was high for 95% of the accessions. The phenotypic similarity was superior to 24% based on descriptors of the MAPA, with the accessions being grouped independently of their geographic origin. In the molecular analysis, the genetic similarity was superior to 30%, also showing the high genetic variability of the collection, with accessions being grouped in two principal groups, according to their geographic origin. The allelic pattern established with 50 alleles of the 12 microsatellite locations for the 103 accessions indicated the existence of duplicates and triplicates in the collection.

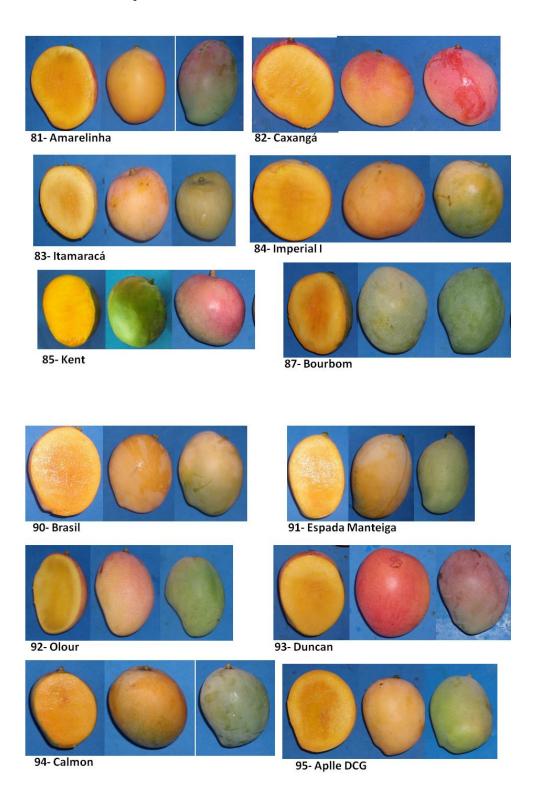
Keywords: Characterization. Mangífera indica, germplasm bank, UPOV, similarity, dendrogram, genotyping.

ANEXO

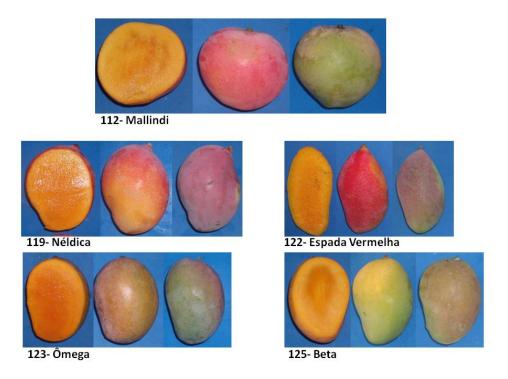

Anexo I – Fotografias de fruto em ponto de consumo em corte transversal, de fruto em ponto de consumo e de fruto em ponto de colheita para 85 acessos do Banco de Germoplasma de Mangueira da Embrapa Semiárido.


Anexo I – Continuação


Anexo I – continuação


Anexo I – Continuação

Anexo I - Continuação



Anexo I - Continuação

Anexo I - Continuação

Anexo I - Continuação

128- Lita

Anexo II - Descritores avaliados em 103 acessos de mangueira do Banco Ativo de Germoplasma da Embrapa Semiárido.

		D1	D2	D3	D4	D5	D6	D7	D8
	Acesso	Hábito de Crescimento	Antocianina	Comprimento	Posição Folha	Simetria	Razão C/L	Forma folha	Ondulação
				pecíolo					limbo
1	Amrapali	semi-vertical a aberto	ausente	3,5	horizontal	presente	média	lanceolada	média
2	Mallika	semi-vertical a aberto	presente	3,6	semi-pendente	presente	média	lanceolada	fraca
3	Scuper Many	aberto	presente	3,5	horizontal	presente	baixa	lanceolada	fraca
4	Surpresa	semi-vertical a aberto	presente	3,0	horizontal	presente	baixa	elíptica lanceolada	fraca
5	Kensington	aberto	presente	3,4	horizontal	presente	baixa	elíptica lanceolada	fraca
7	Rosari	vertical a semi-vertical	presente	3,9	horizontal	presente	média	elíptica lanceolada	fraca
8	Edward	semi-vertical a aberto	presente	2,9	horizontal	presente	baixa	elíptica lanceolada	média
9	Hilda	semi-vertical a aberto	presente	2,7	semi-ereta	presente	média	lanceolada	fraca
10	Ipuçaba	vertical a semi-vertical		3,0	horizontal	presente	alta	lanceolada	fraca
11	Manga d'água	vertical a semi-vertical	presente	3,5	horizontal	presente	média	lanceolada	média
12	Simmonds	semi-vertical a aberto	ausente	3,1	semi-ereta	ausente	média	elíptica lanceolada	fraca
13	Pingo de ouro	vertical a semi-vertical	ausente	3,7	semi-ereta	presente	média	lanceolada	fraca
14	Salitre	semi-vertical a aberto	presente	3,5	horizontal	presente	baixa	elíptica lanceolada	fraca
15	Juazeiro II	semi-vertical a aberto	presente	3,7	horizontal	presente	média	elíptica lanceolada	fraca
16	Mastruz	semi-vertical	presente	3,5	horizontal	presente	média	elíptica lanceolada	média
17	Juazeiro III	semi-vertical	presente	4,7	horizontal	presente	baixa	elíptica lanceolada	fraca
18	Keitt	semi-vertical	ausente	3,0	semi-ereta	presente	baixa	elíptica lanceolada	fraca
19	Foice	semi-vertical	presente	3,6	semi-ereta	presente	baixa	elíptica lanceolada	média
20	Juazeiro VI	aberto	presente	2,8	semi-ereta	presente	média	elíptica lanceolada	fraca
21	Recife	semi-vertical	presente	3,3	horizontal	presente	média	lanceolada	fraca
22	Smith	semi-vertical	ausente	2,0	horizontal	presente	baixa	elíptica lanceolada	fraca
23	Haden 2H	semi-vertical	ausente	4,7	semi-ereta	presente	média	lanceolada	média
24	Nego não chupa	semi-vertical	presente	3,8	semi-ereta	presente	média	elíptica lanceolada	média
25	Espada Itaparica	semi-vertical	presente	4,7	semi-ereta	presente	média	lanceolada	média
28	Manzanillo	semi-vertical	presente	3,8	semi-ereta	presente	baixa	elíptica lanceolada	fraca

Anexo II – Continuação

		D1	D2	D3	D4	D5	D6	D7	D8
	Acesso	Hábito de Crescimento	Antocianina	Comprimento	Posição Folha	Simetria	Razão C/L	Forma folha	Ondulação
	1100550	riabito de Crescimento	7 Mitocianna	pecíolo	1 osição 1 oma	Simetria	C/ L	Toma Toma	limbo
29	CPR	semi-vertical	presente	3,4	semi-ereta	presente	média	elíptica lanceolada	fraca
30	Pêssego DPV	semi-vertical	presente	3,4	semi-ereta	presente	baixa	lanceolada	fraca
31	Tyler Premier	semi-vertical	presente	3,4	horizontal	presente	baixa	lanceolada	média
32	Haden	semi-vertical	presente	3,1	semi-ereta	presente	baixa	elíptica lanceolada	média
33	Mon Amon	semi-vertical	presente	4,3	semi-ereta	presente	média	elíptica lanceolada	média
34	Princesa	semi-vertical	ausente	2,8	semi-ereta	presente	média	lanceolada	fraca
35	65	semi-vertical	presente	4,1	semi-ereta	presente	baixa	elíptica lanceolada	média
36	Ubá	semi-vertical	presente	5,5	semi-ereta	presente	média	lanceolada	fraca
37	Zill	semi-vertical	ausente	5,3	semi-ereta	presente	média	lanceolada	média
38	Winter	aberto	presente	3,5	semi-ereta	presente	média	lanceolada	média
39	Irwin	aberto	presente	3,3	horizontal	presente	média	lanceolada	média
40	Tommy Atkins	aberto	presente	3,6	semi-ereta	presente	baixa	lanceolada	fraca
41	Papo de Peru I	semi-vertical a aberto	presente	4,3	semi-ereta	presente	baixa	lanceolada	fraca
42	China	aberto	presente	2,7	semi-ereta	presente	média	elíptica lanceolada	média
43	Favo de mel	aberto	presente	3,9	semi-ereta	presente	baixa	lanceolada	média
44	Morais	aberto	presente	4,1	semi-ereta	presente	média	lanceolada	fraca
46	M-13269	semi-vertical	presente	4,8	semi-ereta	presente	média	lanceolada	média
47	Coração magoado	semi-vertical	presente	2,8	semi-ereta	presente	baixa	lanceolada	fraca
49	Juazeiro IV	aberto	presente	3,1	semi-ereta	presente	baixa	elíptica lanceolada	fraca
50	Espada	aberto	presente	4,0	semi-ereta	presente	baixa	lanceolada	fraca
51	Ruby	semi-vertical	presente	3,4	semi-ereta	presente	média	lanceolada	fraca
52	Espada ouro	aberto	presente	3,8	horizontal	presente	baixa	lanceolada	fraca
53	Espada 35	aberto	ausente	4,7	semi-ereta	presente	média	elíptica lanceolada	fraca
54	Ametista	semi-vertical	presente	3,1	horizontal	presente	média	lanceolada	média
55	Pingo de ouro DPV	semi-vertical	ausente	3,3	semi-ereta	presente	baixa	lanceolada	média

Anexo II – Continuação

	D1		D2	D3	D4	D5	D6	D7	D8
Acesso	Hábi	to de Crescimento	Antocianina	Comprimento pecíolo	Posição Folha	Simetria	Razão C/L	Forma folha	Ondulação limbo
56 Umbu	verti	cal	presente	3,2	horizontal	presente	média	lanceolada	média
57 Rosa	verti	cal	presente	4,0	semi-ereta	presente	baixa	lanceolada	média
59 Black Jav	a abert	to	presente	4,4	horizontal	presente	baixa	lanceolada	fraca
60 Dama de	ouro semi	-vertical	ausente	2,6	horizontal	presente	baixa	elíptica lanceolada	fraca
61 Carabao	abert	to	ausente	3,4	semi-ereta	presente	média	lanceolada	fraca
62 Manguito	semi	-vertical	presente	3,4	semi-ereta	presente	baixa	lanceolada	média
64 Bonita	semi	-vertical	presente	2,9	horizontal	presente	média muito	elíptica lanceolada	fraca
65 Sta Alexa	andrina semi	-vertical	presente	3,2	semi-ereta	presente	baixa	lanceolada	fraca
66 Manilla	semi	-vertical	presente	2,9	semi-ereta	presente	baixa	elíptica lanceolada	média
69 Maçã	semi	-vertical	ausente	2,3	semi-ereta	presente	média	lanceolada	fraca
71 Comprid	a Roxa semi	-vertical	presente	3,6	horizontal	presente	média	elíptica lanceolada	fraca
72 Eldon	semi	-vertical	presente	3,7	semi-ereta	presente	baixa	lanceolada	fraca
73 Da porta	semi	-vertical	presente	2,9	semi-ereta	presente	baixa	elíptica lanceolada	fraca
74 Carlotão	semi	-vertical	ausente	4,3	semi-ereta	presente	média	lanceolada	fraca
75 Florigon	semi	-vertical a aberto	presente	5,1	semi-ereta	presente	baixa	lanceolada	média
76 Maia	semi	-vertical a aberto	ausente	3,5	semi-ereta	presente	média	elíptica lanceolada	média
77 Momi-K	semi	-vertical a aberto	presente	3,2	horizontal	presente	média	lanceolada	média
78 Primor d	e amoreira semi	-vertical a aberto	ausente	3,5	semi-ereta	presente	média	lanceolada	média
79 Dashehar	ri semi	-vertical	ausente	3,5	semi-ereta	presente	baixa	lanceolada	fraca
80 Alphonso	semi	-vertical	presente	2,3	semi-ereta	presente	média	elíptica lanceolada	média
81 Amarelin	ha semi	-vertical	ausente	3,9	semi-ereta	presente	média	lanceolada	média
82 Caxangá	semi	-vertical	presente	4,4	semi-ereta	presente	média	elíptica lanceolada	média
83 Itamaraca	á abert	to	presente	2,7	semi-ereta	presente	média	lanceolada	média
84 Imperial	I semi	-vertical	presente	3,4	semi-ereta	presente	baixa	lanceolada	média
85 Kent	verti	cal	ausente	2,5	semi-ereta	presente	média	elíptica lanceolada	fraca

Anexo II – Continuação

		_D1	D2	D3	D4	D5	D6	D7	D8
	Acesso	Hábito de Crescimento	Antocianina	Comprimento pecíolo	Posição Folha	Simetria	Razão C/L	Forma folha	Ondulação limbo
86	Extrema	semi-vertical	ausente	3,8	semi-ereta	presente	média	lanceolada	média
87	Bourbon	semi-vertical	presente	3,4	semi-ereta	presente	baixa	elíptica lanceolada	média
88	Langra	semi-vertical a aberto	presente	3,7	semi-ereta	presente	baixa	elíptica lanceolada	fraca
89	Van Dyke	semi-vertical	ausente	2,5	semi-ereta	presente	média	elíptica lanceolada	fraca
90	Brasil	semi-vertical	presente	2,8	semi-ereta	presente	média	lanceolada	média
91	Espada Manteiga	semi-vertical	presente	4,2	semi-ereta	presente	média	elíptica lanceolada	forte
92	Olour	semi-vertical	presente	2,8	semi-ereta	presente	média	lanceolada	forte
93	Duncan	semi-vertical	presente	3,4	semi-ereta	presente	média	lanceolada	média
94	Calmon	semi-vertical	presente	2,5	semi-ereta	presente	baixa	lanceolada	fraca
95	Aplle DCG	semi-vertical	presente	3,7	semi-ereta	presente	baixa	elíptica lanceolada	média
96	Roxa	semi-vertical	presente	4,4	horizontal	presente	baixa	lanceolada	média
97	Alfa	semi-vertical	presente	2,7	semi-ereta	presente	baixa	lanceolada	média
98	Palmer	vertical	ausente	3,1	semi-ereta	presente	média	elíptica lanceolada	média
99	Torbet	semi-vertical	presente	2,5	semi-ereta	presente	baixa	elíptica lanceolada	média
100	Parwin	semi-vertical	ausente	2,2	semi-ereta	presente	média	lanceolada	fraca
105	Itiúba	semi-vertical	presente	3,1	semi-ereta	presente	média	lanceolada	média
109	Heidi	semi-vertical	presente	2,5	semi-ereta	presente	média	elíptica lanceolada	média
110	Chené	semi-vertical	ausente	4,5	semi-ereta	presente	média	lanceolada	média
111	Joa	semi-vertical	ausente	3,3	semi-ereta	presente	baixa	lanceolada	fraca
112	Mallindi	semi-vertical	presente	4,0	semi-ereta	presente	baixa	elíptica lanceolada	fraca
119	Néldica	semi-vertical	ausente	2,7	semi-ereta	presente	média	elíptica lanceolada	média
122	Espada Vermelha	semi-vertical	presente	4,2	semi-ereta	presente	média	elíptica lanceolada	média
123	BRS Õmega	semi-vertical	presente	3,3	semi-ereta	presente	média	elíptica lanceolada	média
124	R2 E2	vertical a semi-vertical	presente	4,3	semi-ereta	presente	baixa	elíptica lanceolada	média

Anexo II – Continuação

-		D1	D2	D3	D4	D5	D6	D7	D8
	Acesso	Hábito de Crescimento	Antocianina	Comprimento	Posição Folha	Simetria	Razão C/L	Forma folha	Ondulação
				pecíolo					limbo
125	Beta	semi-vertical	ausente	3,7	semi-ereta	presente	média	elíptica lanceolada	média
126	Haden Rosa	semi-vertical	presente	3,7	semi-ereta	presente	baixa	lanceolada	média
127	Ataulfo	vertical a semi-vertical	presente	2,8	semi-ereta	presente	média	elíptica lanceolada	fraca
128	Lita	semi-vertical	presente	3,9	semi-ereta	presente	média	lanceolada	média

Anexo II – Continuação

		D9	D10	D11	D12	D13	D14	D15	D16	D17
	Acesso	Base	Ápice	Comprimento inflorescência	Largura	Forma	Comprimento fruto	Largura	Razão C/L	Largura seção transversal
1	Amrapali	aguda	aguda	39,4	24,4	cônica a piramidal	10,3	5,9	alta	elíptico estreita
2	Mallika	aguda	aguda	24,5	17,5	piramidal	9,7	7,3	média	elíptico larga
3	Scuper Many	obtusa	aguda	22,9	17,6	piramidal	10,5	7,2	média	elíptico larga
4	Surpresa	obtusa	cuspidada	29,8	16,1	cônica	10,7	7,8	média	circular
5	Kensington	obtusa	acuminada	23,1	19,8	piramidal larga	9,4	9	baixao	elíptico larga
7	Rosari	obtusa	aguda	33,6	20,2	piramidal	10,6	11,3	baixa	elíptico larga
8	Edward	obtusa	acuminada	26,6	13,8	cônica	11,2	8,1	média	elíptico larga
9	Hilda	obtusa	aguda			•	6,8	6,4	baixa	elíptico larga
10	Ipuçaba	aguda	acuminada	28	12,6	cônica	8,4	7,6	baixa	elíptico larga
11	Manga d'água	aguda	cuspidada	26,1	13,8	cônica a piramidal	8,5	8,1	baixa	elíptico estreita
12	Simmonds	obtusa	aguda	25,2	15,9	piramidal	10,2	8,1	média	circular
13	Pingo de ouro	aguda	acuminada	32,1	20,6	cônica	10,9	9,7	baixa	elíptico larga
14	Salitre	obtusa	aguda	20,9	15,4	piramidal	11	10	baixa	circular
15	Juazeiro II	obtusa	acuminada	27,1	17,4	cônica a piramidal	7	6,6	baixa	elíptico larga
16	Mastruz	aguda	acuminada	18,3	11,9	cônica	10,7	7,2	média	elíptico estreita
17	Juazeiro III	obtusa	aguda	26,1	17,8	piramidal	8,4	7	média	circular
18	Keitt	obtusa	aguda	30,5	18,3	piramidal	12,2	9,2	média	circular
19	Foice	obtusa	aguda	22,8	19,1	cônica	12,6	8,1	média	elíptico larga
20	Juazeiro VI	obtusa	acuminada	20,3	16	piramidal	6,2	7,6	baixa	elíptico estreita
21	Recife	aguda	aguda	25,6	12,6	cônica	9,6	9,9	baixa	elíptico larga
22	Smith	arredondada	acuminada	23,5	15,1	cônica	12,8	8,7	média	circular
23	Haden 2H	aguda	acuminada	19,7	14,6	piramidal	9	7,1	média	elíptico larga
24	Nego não chupa	obtusa	aguda	25,6	16,7	piramidal	11,5	8,7	média	circular
25	Espada Itaparica	aguda	acuminada	35,6	23,5	piramidal larga	9,6	6,5	média	elíptico estreita
28	Manzanillo	obtusa	acuminada	30,5	19,5	cônica	11,3	9,3	baixa	elíptico larga

Anexo II- Continuação

		D9	D10	D11	D12	D13	D14	D15	D16	D17
	Acesso	Base	Ápice	Comprimento inflorescência	Largura	Forma	Comprimento fruto	Largura	Razão C/L	Largura seção transversal
29	CPR	obtusa	aguda	23,1	22,8	piramidal larga	11,7	9,2	média	circular
30	Pêssego DPV	aguda	acuminada	21,8	22,3	piramidal larga	7,9	7,5	baixa	elíptico estreita
31	Tyler Premier	obtusa	cuspidada	25,5	16	piramidal	7,9	8,7	baixa	elíptico larga
32	Haden	obtusa	acuminada	29	18,1	cônica	11,2	8,3	média	elíptico larga
33	Mon Amon	obtusa	aguda	21,8	18,9	piramidal	9,8	8,5	média	elíptico larga
34	Princesa	aguda	acuminada	36,4	24,1	piramidal	11,4	8,8	média	elíptico larga
35	65	obtusa	aguda	44,7	23,2	cônica	9,5	9,4	baixa	elíptico larga
36	Ubá	obtusa	aguda	18,4	12,5	piramidal	6,4	5,2	média	circular
37	Zill	aguda	acuminada	24,8	19,8	piramidal	9,1	8,2	baixa	elíptico larga
38	Winter	obtusa	aguda	27,2	19	piramidal	10,1	7,1	média	elíptico larga
39	Irwin	aguda	acuminada	23	18,1	piramidal	9,1	7,3	baixa	elíptico larga
40	Tommy Atkins	aguda	aguda	22,1	19,3	piramidal	11,9	9,2	média	elíptico larga
41	Papo de Peru I	obtusa	aguda	22,6	19,9	piramidal	12,9	10,2	média	circular
42	China	obtusa	aguda	16,1	11,1	cônica	7,9	5,5	média	elíptico estreita
43	Favo de mel	aguda	aguda	19,3	19,2	piramidal	8,5	8,2	baixa	circular
44	Morais	aguda	aguda	19,6	16,1	piramidal	9,7	8,6	baixa	circular
46	M-13269	obtusa	acuminada	20,4	28,2	piramidal larga	10,9	7	alta	elíptico larga
47	Coração magoado	obtusa	aguda	13,5	6,6	cônica	10,2	6,7	média	elíptico larga
49	Juazeiro IV	obtusa	aguda	18,8	13,3	piramidal	8,9	8,7	baixa	elíptico larga
50	Espada	obtusa	acuminada	14,3	11,7	piramidal	7,5	4,3	alta	elíptico larga
	Ruby	obtusa	aguda	18,5	11,4	cônica	10,2	6,4	alta	circular
52	Espada ouro	aguda	aguda	28	18,1	piramidal	12,1	7,7	alta	elíptico estreita
53	Espada 35	obtusa	acuminada	30,6	23	piramidal	10	6,5	média	elíptico estreita
54	Ametista	aguda	acuminada	29,1	20,1	piramidal	8,5	10	baixa	circular
55	Pingo de ouro DPV	aguda	acuminada	23	18,8	piramidal	6,9	7,3	baixa	elíptico larga

Anexo II- Continuação

		D9	D10	D11	D12	D13	D14	D15	D16	D17
									Razão	
	Acesso	Base	Ápice	Comprimento	Largura	Forma	Comprimento	Largura	C/L	Largura seção
				inflorescência			fruto			transversal
56	Umbu	obtusa	acuminada	18,5	12,3	cônica	7	7,1	baixa	elíptico larga
57	Rosa	aguda	acuminada	18,6	13,3	cônica	8,1	7,8	baixa	elíptico larga
59	Black Java	obtusa	acuminada	25,5	23,6	piramidal	8,4	7,6	baixa	elíptico larga
60	Dama de ouro	obtusa	acuminada	19,7	12,6	cônica	7,7	6,6	baixa	elíptico larga
61	Carabao	obtusa	aguda	28,8	17,3	piramidal	11	6,9	alta	elíptico estreita
62	Manguito	aguda	acuminada	16,1	10,6	piramidal	8,3	6	média	circular
64	Bonita	obtusa	aguda	24,5	14,2	cônica	11,2	9	média	elíptico larga
65	Sta Alexandrina	aguda	aguda	13,2	8,3	piramidal	5,6	7,4	baixa	elíptico estreita
66	Manilla	obtusa	cuspidada	15,1	7,8	piramidal	9,6	5,9	alta	elíptico larga
69	Maçã	aguda	aguda	14,9	11,1	piramidal	5,6	7	baixa	elíptico larga
71	Comprida Roxa	obtusa	acuminada	28,4	35	cônica	9,6	6,8	baixa	elíptico larga
72	Eldon	aguda	acuminada	18,7	8,3	cônica	12,2	9,4	média	elíptico larga
73	Da porta	obtusa	aguda	23,5	13,3	cônica	6,9	6,1	baixa	elíptico estreita
74	Carlotão	obtusa	acuminada	29	22,5	cônica	8,1	9,9	baixa	circular
75	Florigon	aguda	acuminada	23,3	17,5	cônica	9,8	7,7	média	elíptico estreita
76	Maia	obtusa	aguda	26,6	16	cônica	14,4	11,8	média	elíptico larga
77	Momi-K	obtusa	acuminada	33,6	27,7	piramidal	12,7	9,2	média	elíptico larga
78	Primor de amoreira	aguda	acuminada	40,3	19,4	piramidal	10,6	10,2	média	elíptico larga
79	Dashehari	aguda	acuminada				14,9	10,9	média	elíptico estreita
80	Alphonso	obtusa	aguda	27,3	15,9	cônica	18,1	13,8	média	circular
81	Amarelinha	obtusa	acuminada	23,8	17,6	cônica	11,6	8,9	média	elíptico estreita
82	Caxangá	obtusa	aguda	27,3	14,7	piramidal	9,5	9,7	baixa	elíptico larga
83	Itamaracá	aguda	acuminada	23,4	14,4	cônica	5,1	6,7	baixa	elíptico larga
84	Imperial I	aguda	acuminada	30,5	23,8	piramidal	8,4	8,6	baixa	circular
85	Kent	arredondada	aguda	30,6	19,5	piramidal	11,2	9,7	média	elíptico larga

Anexo II- Continuação

		D9	D10	D11	D12	D13	D14	D15	D16	D17
	Acesso	Base	Ápice	Comprimento inflorescência	Largura	Forma	Comprimento fruto	Largura	Razão C/L	Largura seção transversal
86	Extrema	aguda	acuminada	36,5	29,6	piramidal larga	8,7	10,7	baixa	elíptico larga
87	Bourbon	obtusa	aguda	34	27,2	cônica	11,3	8,6	média	elíptico larga
88	Langra	obtusa	aguda		-	•	8,7	6,9	média	elíptico larga
89	Van Dyke	obtusa	aguda	28,8	20,3	piramidal	10,2	8,4	baixa	elíptico larga
90	Brasil	obtusa	aguda	24	15,8	piramidal	8,1	7	média	elíptico larga
91	Espada Manteiga	obtusa	acuminada	24,4	14,6	piramidal	11,4	7,5	média	elíptico estreita
92	Olour	aguda	aguda	33	23,3	piramidal	10,1	7,4	média	elíptico estreita
93	Duncan	aguda	acuminada	28,5	21,5	cônica	11,4	9	média	elíptico larga
94	Calmon	aguda	aguda	23,3	19,7	piramidal	7,9	7,2	baixa	elíptico larga
95	Aplle DCG	obtusa	aguda	27,8	26	piramidal larga	10,1	8	média	elíptico larga
96	Roxa	obtusa	aguda	28,4	21,5	piramidal	9,6	6,8	média	elíptico estreita
97	Alfa	aguda	aguda	24,3	14	piramidal	13	8,3	alta	elíptico estreita
98	Palmer	obtusa	acuminada	31,3	23	piramidal	17	9,7	alta	elíptico larga
99	Torbet	obtusa	cuspidada	26,2	15	cônica	7,9	8,2	baixa	elíptico larga
100	Parwin	arredondada	aguda	22,9	17,4	cônica	11,1	8,1	média	elíptico larga
105	Itiúba	obtusa	acuminada	38,7	17,5	piramidal	13,8	9,2	alta	elíptico larga
109	Heidi	obtusa	aguda	23,1	17	piramidal	9,6	8,6	baixa	elíptico larga
110	Chené	aguda	acuminada	25,8	16,9	piramidal	11,2	10,1	baixa	elíptico larga
111	Joa	aguda	acuminada	30,8	22,5	piramidal larga	12,02	7,3	alta	elíptico larga
112	Mallindi	obtusa	aguda	30,3	21	piramidal	9,2	9,7	baixa	circular
119	Néldica	obtusa	aguda	25,6	20,8	cônica	11,4	9,4	média	elíptico larga
122	Espada Vermelha	obtusa	aguda			•	12,1	6,7	alta	elíptico estreita
123	BRS Õmega	obtusa	aguda			•	9,9	7,8	média	elíptico larga
124	R2 E2	obtusa	acuminada				11,9	10,9	baixa	circular

Anexo II- Continuação.

		D9	D10	D11	D12	D13	D14	D15	D16	D17
	Acesso	Base	Ápice	Comprimento inflorescência	Largura	Forma	Comprimento fruto	Largura	Razão C/L	Largura seção transversal
125	Beta	obtusa	aguda				9,6	7	média	elíptico larga
126	Haden Rosa	obtusa	acuminada				10,1	8	média	elíptico larga
127	Ataulfo	obtusa	aguda				9,5	6,1	média	elíptico larga
128	Lita	aguda	aguda				10,9	7,9	média	elíptico larga

Anexo II - Continuação.

		D18	D19	D20	D21	D22	D23
	Acesso	Cor epiderme	Cerosidade	Profundidade	Proeminência		
				cavidade peduncular	pedicelo	Base pedicelo	Base ventral
1	Amrapali	verde	presente	ausente	presente	muito fracamente notada	arredondada para baixo
2	Mallika	verde e laranja	presente	ausente	presente	fracamente notada	arredondada para baixo
3	Scuper Many	verde e rósea	presente	ausente	presente	fracamente notada	arredondada plana
4	Surpresa	verde	presente	média	ausente	muito fracamente notada	arredondada plana
5	Kensington	verde e rósea	presente	baixa	ausente	muito fracamente notada	arredondada plana
7	Rosari	verde e vermelha	presente	média	presente	fracamente notada	arredondada para cima
8	Edward	verde	presente	ausente	ausente	ausente	arredondada para baixo
9	Hilda	verde	presente	ausente	presente	fracamente notada	arredondada plana
10	Ipuçaba	verde	presente	baixa	presente	muito fracamente notada	arredondada plana
11	Manga d'água	verde	presente	ausente	presente	muito fracamente notada	arredondada para baixo
12	Simmonds	verde e roxa	presente	ausente	presente	muito fracamente notada	arredondada plana
13	Pingo de ouro	verde e rósea	presente	ausente	ausente	muito fracamente notada	arredondada para cima
14	Salitre	verde e rósea	presente	média	ausente	muito fracamente notada	arredondada para cima
15	Juazeiro II	verde	presente	baixa	presente	muito fracamente notada	arredondada plana
16	Mastruz	verde e rósea	presente	ausente	presente	fracamente notada	arredondada para baixo
17	Juazeiro III	verde e amarela	presente	ausente	presente	fracamente notada	arredondada para baixo
18	Keitt	verde e rósea	presente	ausente	presente	muito fracamente notada	arredondada para baixo
19	Foice	verde e amarela	presente	ausente	presente	fortemente notada	arredondada plana
20	Juazeiro VI	verde	presente	média	ausente	ausente	arredondada para cima
21	Recife	verde e amarela	presente	média	presente	fracamente notada	arredondada plana
22	Smith	verde e roxa	presente	ausente	presente	fracamente notada	arredondada para baixo
23	Haden 2H	verde e vermelha	presente	ausente	ausente	ausente	arredondada para baixo
24	Nego não chupa	verde	presente	ausente	presente	fracamente notada	arredondada para baixo
25	Espada Itaparica	verde	presente	ausente	presente	muito fracamente notada	arredondada para baixo
28	Manzanillo	verde e vermelha	presente	baixa	ausente	ausente	arredondada plana

Anexo II- Continuação.

		D18	D19	D20	D21	D22	D23
	Acesso	Cor epiderme	Cerosidade	Profundidade	Proeminência		
				cavidade peduncular	pedicelo	Base pedicelo	Base ventral
29	CPR	verde e vermelha	presente	baixa	ausente	ausente	arredondada para baixo
30	Pêssego DPV	verde e rósea	presente	ausente	ausente	muito fracamente notada	arredondada plana
31	Tyler Premier	verde e amarela	presente	baixa	ausente	ausente	arredondada plana
32	Haden	verde e roxa	presente	ausente	ausente	ausente	arredondada para baixo
33	Mon Amon	verde	presente	ausente	ausente	ausente	arredondada para baixo
34	Princesa	verde e rósea	presente	ausente	presente	muito fracamente notada	arredondada para baixo
35	65	verde e rósea	presente	média	presente	fracamente notada	arredondada plana
36	Ubá	verde	presente	ausente	presente	muito fracamente notada	arredondada plana
37	Zill	verde e roxa	presente	baixa	ausente	muito fracamente notada	arredondada para cima
38	Winter	verde e roxa	presente	ausente	ausente	muito fracamente notada	arredondada plana
39	Irwin	verde e vermelha	presente	ausente	ausente	ausente	arredondada plana
40	Tommy Atkins	verde e roxa	presente	baixa	ausente	ausente	arredondada plana
41	Papo de Peru I	verde e rósea	presente	média	ausente	ausente	arredondada para cima
42	China	verde e rósea	presente	ausente	presente	muito fracamente notada	arredondada plana
43	Favo de mel	verde	presente	baixa	ausente	muito fracamente notada	arredondada plana
44	Morais	verde e roxa	presente	baixa	presente	ausente	arredondada plana
46	M-13269	verde e amarela	presente	ausente	ausente	muito fracamente notada	arredondada para baixo
47	Coração magoado	verde e roxa	presente	ausente	presente	fortemente notada	arredondada para baixo
49	Juazeiro IV	verde	presente	ausente	presente	muito fracamente notada	arredondada plana
50	Espada	verde	presente	ausente	presente	fortemente notada	inclinada para baixo
51	Ruby	verde e roxa	presente	ausente	presente	fracamente notada	arredondada para baixo
52	Espada ouro	verde	presente	ausente	presente	muito fracamente notada	arredondada para baixo
53	Espada 35	verde	presente	ausente	presente	fortemente notada	inclinada para baixo
54	Ametista	verde e roxa	presente	média	ausente	muito fracamente notada	arredondada plana
55	Pingo de ouro DPV	verde	presente	baixa	presente	fracamente notada	arredondada plana

Anexo II- Continuação.

		D18	D19	D20	D21	D22	D23
A	Acesso	Cor epiderme	Cerosidade	Profundidade	Proeminência		
				cavidade peduncular	pedicelo	Base pedicelo	Base ventral
56 U	Umbu	verde e rósea	presente	baixa	ausente	ausente	arredondada plana
57 R	Rosa	verde e rósea	presente	baixa	presente	fracamente notada	arredondada plana
59 B	Black Java	verde e rósea	presente	baixa	ausente	ausente	arredondada plana
60 D	Dama de ouro	verde e rósea	presente	média	ausente	ausente	arredondada para cima
61 C	Carabao	verde e amarela	presente	ausente	ausente	ausente	arredondada para baixo
62 N	Manguito	verde	presente	ausente	presente	muito fracamente notada	arredondada para baixo
64 B	Bonita	verde e roxa	presente	média	ausente	muito fracamente notada	arredondada plana
65 S	Sta Alexandrina	verde	presente	ausente	ausente	ausente	arredondada plana
66 N	Manilla	verde	presente	ausente	ausente	ausente	inclinada para baixo
69 N	Maçã	verde e amarela	presente	média	presente	muito fracamente notada	arredondada plana
71 C	Comprida Roxa	verde e vermelha	presente	média	ausente	muito fracamente notada	arredondada para cima
72 E	Eldon	verde e roxa	presente	média	ausente	ausente	arredondada plana
73 D	Da porta	verde e roxa	presente	ausente	ausente	muito fracamente notada	arredondada plana
74 C	Carlotão	verde	presente	alta	presente	fracamente notada	arredondada plana
75 F	Florigon	verde e amarela	presente	ausente	ausente	ausente	arredondada para baixo
76 N	Maia	verde e vermelha	presente	ausente	presente	muito fracamente notada	arredondada para baixo
77 N	Momi-K	verde e roxa	presente	ausente	ausente	muito fracamente notada	arredondada para baixo
78 P	Primor de amoreira	verde e roxa	presente	baixa	ausente	ausente	arredondada plana
79 D	Dashehari	verde e amarela	presente	ausente	ausente	ausente	arredondada para baixo
80 A	Alphonso	verde	presente	baixa	ausente	ausente	arredondada para baixo
81 A	Amarelinha	verde e roxa	presente	ausente	presente	muito fracamente notada	arredondada plana
82 C	Caxangá	verde e vermelha	presente	média	presente	fracamente notada	arredondada plana
83 It	tamaracá	verde e rósea	presente	alta	ausente	ausente	arredondada plana
84 I	Imperial I	verde e amarela	presente	ausente	ausente	ausente	arredondada plana
85 K	Kent	verde e vermelha	presente	ausente	presente	fracamente notada	arredondada plana

Anexo II- Continuação.

		D18	D19	D20	D21	D22	D23
	Acesso	Cor epiderme	Cerosidade	Profundidade	Proeminência		
		_		cavidade peduncular	pedicelo	Base pedicelo	Base ventral
86	Extrema	verde	presente	média	presente	muito fracamente notada	arredondada plana
87	Bourbon	verde	presente	ausente	presente	fracamente notada	arredondada para baixo
88	Langra	verde	presente	ausente	ausente	ausente	arredondada para baixo
89	Van Dyke	verde e vermelha	presente	ausente	presente	ausente	arredondada plana
90	Brasil	verde e amarela	presente	ausente	presente	muito fracamente notada	arredondada para baixo
91	Espada Manteiga	verde e amarela	presente	ausente	presente	fortemente notada	arredondada para baixo
92	Olour	verde	presente	ausente	ausente	muito fracamente notada	arredondada para baixo
93	Duncan	verde e vermelha	presente	ausente	ausente	ausente	arredondada para baixo
94	Calmon	verde e amarela	presente	ausente	ausente	ausente	arredondada para baixo
95	Aplle DCG	verde	presente	ausente	ausente	ausente	arredondada para baixo
96	Roxa	verde e roxa	presente	média	ausente	ausente	arredondada plana
97	Alfa	verde	presente	ausente	ausente	ausente	arredondada para baixo
98	Palmer	verde e roxa	presente	ausente	ausente	ausente	arredondada para baixo
99	Torbet	verde e vermelha	presente	baixa	ausente	ausente	arredondada plana
100	Parwin	verde e roxa	presente	ausente	ausente	ausente	arredondada para baixo
105	Itiúba	verde e amarela	presente	ausente	ausente	ausente	inclinada para baixo
109	Heidi	verde e vermelha	presente	ausente	presente	muito fracamente notada	arredondada plana
110	Chené	verde e vermelha	presente	média	ausente	ausente	arredondada para cima
111	Joa	verde e roxa	presente	ausente	presente	fortemente notada	inclinada para baixo
112	Mallindi	verde e rósea	presente	baixa	ausente	ausente	arredondada plana
119	Néldica	verde e roxa	presente	ausente	presente	fracamente notada	arredondada plana
122	Espada Vermelha	verde e vermelha	presente	ausente	presente	fracamente notada	inclinada para baixo
123	BRS Õmega	verde e roxa	presente	ausente	ausente	ausente	arredondada plana
124	R2 E2	verde e vermelha	presente	média	ausente	ausente	arredondada plana

Anexo II – Continuação.

		D18	D19	D20	D21	D22	D23
	Acesso	Cor epiderme	Cerosidade	Profundidade	Proeminência		
				cavidade peduncular	pedicelo	Base pedicelo	Base ventral
125	Beta	verde e roxa	presente	ausente	presente	muito fracamente notada	arredondada plana
126	Haden Rosa	verde e roxa	presente	ausente	ausente	ausente	arredondada plana
127	Ataulfo	verde	presente	ausente	presente	muito fracamente notada	arredondada para cima
128	Lita	verde e roxa	presente	baixa	ausente	muito fracamente notada	arredondada plana

Anexo II- Continuação.

		D24	D25	D26	D27	D28	D29	D30
	Acesso			Profundidade	Protuberância	Forma	Quantidade	Cor
		Base dorsal	Reentrância.	da reentrância		cicatriz pistilar	de látex	epiderme
1	Amrapali	inclinação abrupta	presente	muito fracamente notada	ausente	no plano	0,1	verde amarelada
2	Mallika	inclinada para baixo	presente	muito fracamente notada	ausente	saliente	0,1	amarela e verde
3	Scuper Many	inclinada para baixo	ausente	ausente	presente	saliente		amarelo e vermelha
4	Surpresa	inclinada para baixo	presente	muito fracamente notada	ausente	no plano		amarela e verde
5	Kensington	arredondada plana	presente	muito fracamente notada	presente	saliente	0,5	verde amarelada
7	Rosari	arredondada para baixo	presente	fracamente notada	presente	no plano	1,6	amarelo e vermelha
8	Edward	inclinada para baixo	presente	fracamente notada	presente	saliente	0,9	amarela e verde
9	Hilda	arredondada para baixo	ausente	ausente	presente	saliente	0,1	amarela
10	Ipuçaba	inclinada para baixo	presente	muito fracamente notada	presente	no plano	1,2	amarela
11	Manga d'água	arredondada para baixo	ausente	ausente	ausente	saliente	1,3	verde amarelada
12	Simmonds	inclinada para baixo	ausente	ausente	presente	saliente	0,6	amarelo e vermelha
13	Pingo de ouro	arredondada para baixo	ausente	ausente	ausente	no plano	1,1	amarelo e vermelha
14	Salitre	inclinada para baixo	ausente	ausente	presente	no plano	1,7	laranja
15	Juazeiro II	arredondada para baixo	presente	muito fracamente notada	presente	saliente	0,3	amarela e laranja
16	Mastruz	inclinação abrupta	presente	muito fracamente notada	presente	no plano	0,7	laranja e vermelha
17	Juazeiro III	inclinada para baixo	ausente	ausente	ausente	saliente	1,0	verde amarelada
18	Keitt	inclinada para baixo	ausente	ausente	presente	reentrante	0,5	amarelo e vermelha
19	Foice	inclinação abrupta	presente	fracamente notada	ausente	no plano	0,7	amarela e laranja
20	Juazeiro VI	arredondada plana	presente	muito fracamente notada	ausente	saliente	0,5	verde
21	Recife	arredondada plana	ausente	ausente	presente	saliente	0,1	amarela e verde
22	Smith	inclinada para baixo	presente	muito fracamente notada	ausente	no plano	0,3	vermelha
23	Haden 2H	inclinada para baixo	ausente	ausente	presente	reentrante	0,3	vermelha
24	Nego não chupa	inclinada para baixo	presente	muito fracamente notada	ausente	no plano	1,0	amarela e verde
25	Espada Itaparica	inclinada para baixo	presente	muito fracamente notada	presente	no plano	0,6	amarela
28	Manzanillo	arredondada plana	ausente	ausente	presente	reentrante	0,1	vermelha

Anexo II – Continuação.

		D24	D25	D26	D27	D28	D29	D30
	Acesso			Profundidade	Protuberância	Forma	Quantidade	Cor
		Base dorsal	Reentrância.	da reentrância		cicatriz pistilar	de látex	epiderme
29	CPR	inclinada para baixo	ausente	ausente	presente	no plano	0,8	laranja e vermelha
30	Pêssego DPV	arredondada plana	ausente	ausente	ausente	no plano	0,1	amarelo e vermelha
31	Tyler Premier	arredondada plana	ausente	ausente	ausente	no plano	0,5	amarela
32	Haden	inclinada para baixo	presente	muito fracamente notada	presente	reentrante	0,8	amarelo e vermelha
33	Mon Amon	arredondada para baixo	ausente	ausente	presente	no plano	0,4	amarela e laranja
34	Princesa	inclinada para baixo	presente	muito fracamente notada	presente	no plano	0,7	amarelo e vermelha
35	65	arredondada para baixo	ausente	ausente	ausente	no plano	0,4	laranja e vermelha
36	Ubá	inclinada para baixo	ausente	ausente	ausente	reentrante	0,3875	amarela e verde
37	Zill	arredondada para baixo	ausente	ausente	ausente	no plano	0,1	vermelha
38	Winter	inclinada para baixo	presente	muito fracamente notada	presente	saliente	0,6	amarelo e vermelha
39	Irwin	arredondada para baixo	ausente	ausente	presente	saliente	0,45	laranja e vermelha
40	Tommy Atkins	inclinada para baixo	presente	muito fracamente notada	presente	reentrante		vermelha
41	Papo de Peru I	inclinada para baixo	presente	muito fracamente notada	presente	saliente	3,0	amarelo e vermelha
42	China	inclinada para baixo	presente	fracamente notada	presente	saliente	0,2	amarela
43	Favo de mel	arredondada para baixo	ausente	ausente	ausente	no plano	1,3	amarela e laranja
44	Morais	arredondada para baixo	presente	muito fracamente notada	presente	no plano	1,7	amarela e laranja
46	M-13269	inclinada para baixo	ausente	ausente	presente	no plano	0,5	amarela
47	Coração magoado	inclinada para baixo	presente	fracamente notada	ausente	no plano	0,3	vermelha
49	Juazeiro IV	arredondada para baixo	ausente	ausente	presente	no plano	0,6	amarela e verde
50	Espada	arredondada para baixo	presente	fracamente notada	presente	saliente	1,3	verde amarelada
51	Ruby	inclinação abrupta	ausente	ausente	presente	no plano	0,2	laranja
52	Espada ouro	inclinação abrupta	presente	fracamente notada	presente	no plano	1,5	amarela
53	Espada 35	inclinação abrupta	presente	fracamente notada	presente	reentrante	1,6	verde amarelada
54	Ametista	arredondada plana	ausente	ausente	presente	reentrante	0,3	laranja e vermelha
55	Pingo de ouro DPV	arredondada plana	ausente	ausente	ausente	no plano	0,4	verde

Anexo II – Continuação.

		D24	D25	D26	D27	D28	D29	D30
	Acesso			Profundidade	Protuberância	Forma	Quantidade	Cor
		Base dorsal	Reentrância.	da reentrância		cicatriz pistilar	de látex	epiderme
56	Umbu	arredondada para baixo	presente	muito fracamente notada	presente	saliente	0,8	verde
57	Rosa	arredondada para baixo	presente	muito fracamente notada	presente	no plano	0,3	rósea
59	Black Java	arredondada plana	ausente	ausente	presente	saliente	0,3	amarelo e vermelha
60	Dama de ouro	arredondada para cima	ausente	ausente	presente	no plano	0,1	laranja e vermelha
61	Carabao	inclinada para baixo	presente	fracamente notada	presente	saliente	0,0	amarela
62	Manguito	inclinada para baixo	presente	muito fracamente notada	presente	no plano	0,3	amarela
64	Bonita	arredondada plana	ausente	ausente	presente	saliente	0,1	amarela e verde
65	Sta Alexandrina	arredondada plana	ausente	ausente	presente	no plano	0,1	verde amarelada
66	Manilla	inclinação abrupta	presente	muito fracamente notada	ausente	no plano	0,1	amarela e verde
69	Maçã	arredondada plana	ausente	ausente	presente	no plano	0,1	amarela
71	Comprida Roxa	arredondada plana	ausente	ausente	ausente	saliente		amarela e verde
72	Eldon	arredondada plana	ausente	ausente	ausente	no plano	0,3	laranja e vermelha
73	Da porta	arredondada para baixo	ausente	ausente	presente	no plano	0,1	amarelo e vermelha
74	Carlotão	arredondada plana	ausente	ausente	presente	no plano	0,8	amarela
75	Florigon	inclinada para baixo	presente	muito fracamente notada	ausente	saliente	0,2	amarela e laranja
76	Maia	inclinada para baixo	presente	muito fracamente notada	presente	reentrante	0,3	amarelo e vermelha
77	Momi-K	inclinada para baixo	ausente	ausente	presente	reentrante	0,4	vermelha
78	Primor de amoreira	arredondada para baixo	presente	muito fracamente notada	presente	no plano	1,0	amarela
79	Dashehari	inclinada para baixo	presente	muito fracamente notada	ausente	no plano	0,2	amarela e verde
80	Alphonso	inclinada para baixo	ausente	ausente	presente	saliente	0,2	amarela e verde
81	Amarelinha	arredondada para baixo	presente	muito fracamente notada	ausente	no plano	0,4	amarela e laranja
82	Caxangá	arredondada plana	presente	muito fracamente notada	presente	no plano	0,8	vermelha
83	Itamaracá	arredondada plana	ausente	ausente	presente	no plano	0,1	amarela e laranja
84	Imperial I	arredondada para baixo	ausente	ausente	presente	no plano	0,6	amarela
85	Kent	arredondada para baixo	presente	muito fracamente notada	presente	saliente	0,5	laranja e vermelha

Anexo II- Continuação.

		D24	D25	D26	D27	D28	D29	D30
	Acesso			Profundidade	Protuberância	Forma	Quantidade	Cor
		Base dorsal	Reentrância.	da reentrância		cicatriz pistilar	de látex	epiderme
86	Extrema	arredondada plana	ausente	ausente	presente	reentrante	1,0	amarela e verde
87	Bourbon	inclinada para baixo	presente	muito fracamente notada	ausente	no plano	0,2	verde
88	Langra	arredondada para baixo	ausente	ausente	ausente	no plano	0,2	verde amarelada
89	Van Dyke	arredondada para baixo	ausente	ausente	presente	saliente	1,0	laranja e vermelha
90	Brasil	inclinada para baixo	ausente	ausente	presente	no plano	0,2	amarela
91	Espada Manteiga	inclinação abrupta	presente	muito fracamente notada	presente	saliente	0,9	amarela
92	Olour	inclinada para baixo	presente	fracamente notada	presente	no plano	0,2	rósea
93	Duncan	inclinada para baixo	presente	muito fracamente notada	presente	saliente	0,2	laranja e vermelha
94	Calmon	arredondada para baixo	ausente	ausente	ausente	saliente	0,2	amarela e verde
95	Aplle DCG	arredondada para baixo	presente	muito fracamente notada	presente	saliente	0,7	amarela
96	Roxa	inclinada para baixo	presente	ausente	ausente	no plano	0,4	laranja e vermelha
97	Alfa	inclinada para baixo	presente	muito fracamente notada	ausente	saliente	0,5	laranja
98	Palmer	inclinação abrupta	presente	fracamente notada	presente	reentrante		verde
99	Torbet	arredondada plana	ausente	ausente	ausente	no plano	0,0	laranja e vermelha
100	Parwin	inclinada para baixo	ausente	ausente	presente	no plano	0,6	vermelha
105	Itiúba	inclinação abrupta	presente	fracamente notada	presente	saliente	1,3	verde amarelada
109	Heidi	arredondada para baixo	ausente	ausente	presente	saliente	0,1	laranja e vermelha
110	Chené	arredondada para baixo	ausente	ausente	presente	reentrante	0,3	amarelo e vermelha
111	Joa	inclinação abrupta	ausente	ausente	ausente	saliente	0,2	laranja e vermelha
112	Mallindi	arredondada plana	ausente	ausente	presente	no plano	0,1	rósea
119	Néldica	inclinada para baixo	presente	muito fracamente notada	ausente	no plano	0,8	vermelha
122	Espada Vermelha	inclinada para baixo	presente	fracamente notada	ausente	no plano	0,6	vermelha
123	BRS Õmega	arredondada para baixo	presente	muito fracamente notada	ausente	no plano	0,1	laranja e vermelha
124	R2 E2	arredondada plana	ausente	ausente	ausente	no plano	0,2	amarelo e vermelha

Anexo II - Continuação.

		D24	D25	D26	D27	D28	D29	D30
	Acesso			Profundidade	Protuberância	Forma	Quantidade	Cor
		Base dorsal	Reentrância.	da reentrância		cicatriz pistilar	de látex	epiderme
125	Beta	inclinada para baixo	presente	muito fracamente notada	presente	saliente	0,6	amarelo e vermelha
126	Haden Rosa	arredondada para baixo	ausente	ausente	presente	reentrante	0,2	vermelha
127	Ataulfo	inclinada para baixo	presente	fracamente notada	ausente	saliente	0,2	amarela
128	Lita	arredondada plana	ausente	ausente	ausente	no plano	0,2	laranja e vermelha

Anexo II- Continuação.

	Acesso	D31	D32	D33	D34	D35	D36	D37	D38	D39
		Distribuição	Densidade	Tamanho	Espessura	Peso	Aderência	Cor	Suculência	Peso polpa
		coloração	lenticelas	lenticelas	casca	casca	casca	Polpa		
1	Amrapali	desuniforme	127,4	pequenas	0,9	36,9	média	laranja escura	alta	148,1
2	Mallika	desuniforme	261,5	pequenas	0,9	42,0	forte	laranja	média	168,6
3	Scuper Many	desuniforme	156,1	médias	0,4	54,3	média	laranja	alta	182,9
4	Surpresa	desuniforme	94,1	pequenas	0,4	44,8	fraca	laranja	alta	218,6
5	Kensington	desuniforme	87,5	médias	1,1	54,9	média	amarela	média	245,2
7	Rosari	desuniforme	90,5	grandes	0,8	56,2	média	amarela	média	449,7
8	Edward	desuniforme	228,5	médias	0,9	126,0	média	laranja	alta	538,1
9	Hilda	uniforme	192,8	pequenas	0,7	14,3	média	amarela	média	67,4
10	Ipuçaba	uniforme	79,5	pequenas	0,9	26,5	média	amarela	média	99,6
11	Manga d'água	desuniforme	72,0	médias	0,6	47,0	média	laranja	média	144,6
12	Simmonds	desuniforme	270,0	pequenas	0,7	37,6	média	amarela	alta	224,5
13	Pingo de ouro	desuniforme	112,5	médias	0,9	78,4	fraca	amarela	alta	376,1
14	Salitre	desuniforme	104,4	grandes	0,8	54,4	fraca	laranja escura	alta	485,6
15	Juazeiro II	desuniforme	117,0	médias	0,8	24,8	média	laranja	média	106,0
16	Mastruz	desuniforme	191,5	médias	0,8	43,1	média	laranja	alta	119,3
17	Juazeiro III	desuniforme	183,9	médias	0,6	21,9	média	amarelo pálida	alta	78,7
18	Keitt	desuniforme	152,4	médias	1,2	86,1	média	amarelo pálida	média	374,4
19	Foice	desuniforme	82,9	grandes	0,9	61,7	forte	laranja pálida	média	275,9
20	Juazeiro VI	uniforme	112,5	pequenas	0,7	20,4	média	amarela	média	95,8
21	Recife	desuniforme	66,0	pequenas	0,9	51,3	média	amarela	média	344,2
22	Smith	desuniforme	261,0	pequenas	0,6	51,9	média	amarela	média	271,0
23	Haden 2H	desuniforme	364,6	pequenas	0,8	49,5	média	laranja	alta	133,3
24	Nego não chupa	desuniforme	153,1	médias	0,8	74,6	fraca	amarela	alta	370,2
25	Espada Itaparica	uniforme	72,5	pequenas	0,8	45,3	forte	laranja	média	113,4
28	Manzanillo	desuniforme	122,1	médias	0,8	105,5	média	amarela	alta	544,9

Anexo II- Continuação.

	Acesso	D31	D32	D33	D34	D35	D36	D37	D38	D39
		Distribuição	Densidade	Tamanho	Espessura	Peso	Aderência	Cor	Suculência	Peso polpa
		coloração	lenticelas	lenticelas	casca	casca	casca	Polpa		
29	CPR	desuniforme	157,1	médias	0,7	81,1	média	laranja	alta	295,3
30	Pêssego DPV	desuniforme	145,5	médias	0,7	38,1	forte	amarelo pálida	média	149,8
31	Tyler Premier	uniforme	112,5	médias	0,8	55,2	forte	laranja	alta	271,0
32	Haden	desuniforme	156,6	grandes	1,4	91,2	média	laranja	alta	330,5
33	Mon Amon	desuniforme	163,3	grandes	1,0	50,3	forte	amarela	alta	253,1
34	Princesa	desuniforme	51,5	pequenas	0,7	69,4	média	laranja pálida	alta	274,9
35	65	desuniforme	151,1	pequenas	0,9	65,5	forte	amarela	alta	264,7
36	Ubá	desuniforme	87,8	médias	0,6	19,1	fraca	amarela	alta	46,99
37	Zill	desuniforme	149,5	pequenas	1,1	40,7	forte	amarela	alta	160,98
38	Winter	desuniforme	108,1	médias	0,7	48,2	média	laranja pálida	alta	199,38
39	Irwin	desuniforme	184,8	pequenas	0,9	61,3	fraca	laranja	alta	180,81
40	Tommy Atkins	desuniforme	225,5	médias	1,0	81,8	forte	laranja	média	258,40
41	Papo de Peru I	desuniforme	129,3	médias	0,8	115,8	forte	laranja pálida	baixa	485,86
42	China	desuniforme	217,1	pequenas	0,8	29,3	média	laranja pálida	média	93,28
43	Favo de mel	desuniforme	88,5	pequenas	1,3	53,5	média	amarelo pálida	alta	139,75
44	Morais	desuniforme	0,0	médias	0,8	42,2	média	amarela	alta	175,60
46	M-13269	uniforme	131,0	pequenas	0,8	49,0	média	amarela	alta	159,43
47	Coração magoado	uniforme	150,5	pequenas	0,7	31,4	forte	laranja	média	111,58
49	Juazeiro IV	desuniforme	113,0	médias	0,7	46,7	média	amarela	média	191,05
50	Espada	desuniforme	55,0	pequenas	0,6	35,5	média	amarela	alta	132,04
51	Ruby	desuniforme	210,3	pequenas	0,8	42,8	fraca	amarela	alta	176,58
52	Espada ouro	uniforme	168,1	pequenas	0,8	67,3	média	laranja pálida	média	189,48
53	Espada 35	desuniforme	138,0	pequenas	1,2	49,2	média	amarela	média	113,51
54	Ametista	desuniforme	103,0	grandes	0,5	47,6	média	amarela	alta	295,63
55	Pingo de ouro DPV	uniforme	92	médias	0,9	29,4	fraca	laranja	média	107,89

Anexo II- Continuação

Ace	cesso	D31	D32	D33	D34	D35	D36	D37	D38	D39
		Distribuição	Densidade	Tamanho	Espessura	Peso	Aderência	Cor	Suculência	Peso polpa
		coloração	lenticelas	lenticelas	casca	casca	casca	Polpa		
56 Um	nbu	desuniforme	103	médias	1,0	35,3	forte	laranja	média	110,90
57 Ros	osa	desuniforme	106	médias	0,8	27,6	média	amarelo pálida	baixa	103,26
59 Bla	ack Java	desuniforme	101,5	médias	0,9	64,7	média	laranja	baixa	206,01
60 Dar	ıma de ouro	desuniforme	119,9	pequenas	0,8	43,5	média	laranja	alta	131,80
61 Car	rabao	uniforme	72,9	médias	0,8	39,5	fraca	amarela	média	120,55
62 Mai	anguito	uniforme	149,6	pequenas	0,8	25,8	média	amarela	baixa	78,14
64 Bor	onita	desuniforme	178,8	médias	0,8	70,7	forte	laranja	média	234,38
65 Sta	a Alexandrina	desuniforme	90,4	pequenas	0,8	30,9	média	amarela	alta	105,75
66 Ma	anilla	desuniforme	135,4	médias	0,7	28,9	fraca	amarela	média	75,64
69 Ma	açã	uniforme	0	pequenas	0,9	24,8	média	amarela	média	91,19
71 Cor	omprida Roxa	desuniforme	77,6	médias	0,8	36,6	fraca	amarela	média	137,83
72 Eld	don	desuniforme	140,0	pequenas	1,0	82,9	forte	laranja	alta	330,94
73 Da	ı porta	desuniforme	178,8	pequenas	0,5	17,8	fraca	amarela	alta	77,90
74 Car	rlotão	uniforme	207,9	pequenas	0,7	78,0	fraca	laranja pálida	alta	323,36
75 Floa	origon	desuniforme	83,0	médias	0,9	39,7	média	amarela	média	131,21
76 Ma	aia	desuniforme	306,5	médias	0,8	43,0	média	laranja pálida	alta	130,05
77 Mo	omi-K	desuniforme	106,8	médias	0,8	79,0	forte	laranja	alta	394,95
78 Prin	imor de amoreira	desuniforme	100,3	médias	0,7	66,6	forte	amarela	alta	319,40
79 Das	ıshehari	desuniforme	225,5	médias	0,8	26,7	fraca	laranja pálida	média	88,61
80 Alp	phonso	desuniforme	127,4	pequenas	0,6	80,0	média	laranja pálida	alta	336,96
81 Am	narelinha	desuniforme	337,1	pequenas	0,6	46,9	fraca	amarela	média	266,61
82 Cax	xangá	desuniforme	154,5	médias	0,9	69,6	forte	amarelo pálida	alta	289,10
83 Itan	maracá	desuniforme	106,3	pequenas	0,8	21,4	média	amarelo pálida	média	81,03
84 Imp	perial I	uniforme	106,0	pequenas	0,8	48,9	forte	amarela	média	277,18
85 Ker	ent	desuniforme	224,0	grandes	0,9	137,1	fraca	laranja	alta	569,83

Anexo II- Continuação.

	Acesso	D31	D32	D33	D34	D35	D36	D37	D38	D39
		Distribuição	Densidade	Tamanho	Espessura	Peso	Aderência	Cor	Suculência	Peso polpa
		coloração	lenticelas	lenticelas	casca	casca	casca	Polpa		
86	Extrema	desuniforme	137,9	pequenas	0,6	89,0	média	laranja	alta	371,11
87	Bourbon	uniforme	84,8	grandes	0,8	94,2	média	amarela	alta	450,14
88	Langra	desuniforme	39,5	médias	0,7	47,6	fraca	amarela	alta	140,80
89	Van Dyke	desuniforme	143,8	pequenas	0,7	94,0	média	laranja	média	291,33
90	Brasil	uniforme	181,1	pequenas	0,6	27,6	fraca	laranja	média	138,69
91	Espada Manteiga	uniforme	43,6	pequenas	0,8	52,6	fraca	amarela	alta	202,09
92	Olour	desuniforme	176,3	médias	0,7	45,6	média	amarelo pálida	baixa	132,83
93	Duncan	desuniforme	137,8	pequenas	0,9	72,9	média	amarela	média	308,86
94	Calmon	desuniforme	266,3	médias	0,5	17,6	média	laranja pálida	média	75,49
95	Aplle DCG	uniforme	104,5	pequenas	0,7	52,8	média	laranja pálida	média	253,75
96	Roxa	desuniforme	80,3	pequenas	1,0	36,7	fraca	laranja	alta	173,60
97	Alfa	desuniforme	132,4	pequenas	0,8	46,4	média	laranja	alta	199,74
98	Palmer	desuniforme	237,8	pequenas	0,9	94,8	fraca	amarela	baixa	366,10
99	Torbet	desuniforme	101,4	pequenas	1,1	39,8	forte	amarela	baixa	165,80
100	Parwin	desuniforme	347,5	médias	0,8	48,1	forte	laranja pálida	média	225,78
105	Itiúba	desuniforme	182,9	médias	0,9	130,3	média	amarelo pálida	alta	252,50
109	Heidi	desuniforme	182,3	médias	1,0	66,0	forte	laranja pálida	alta	223,57
110	Chené	desuniforme	137,0	médias	0,9	84,0	média	amarelo pálida	alta	308,14
111	Joa	desuniforme	252,3	pequenas	0,7	53,2	média	amarela	média	166,51
112	Mallindi	desuniforme	93,4	médias	0,8	52,9	forte	laranja	alta	268,84
119	Néldica	desuniforme	195,4	médias	0,7	69,7	média	laranja	alta	310,61
122	Espada Vermelha	desuniforme	217,1	médias	0,8	45,0	média	laranja	alta	74,14
123	BRS Õmega	desuniforme	105,6	pequenas	0,9	39,9	forte	laranja	média	182,06
124	R2 E2	desuniforme	65,4	grandes	0,7	115,9	forte	amarela	média	783,14

Anexo II- Continuação.

	Acesso	D31	D32	D33	D34	D35	D36	D37	D38	D39
		Distribuição	Densidade	Tamanho	Espessura	Peso	Aderência	Cor	Suculência	Peso polpa
		coloração	lenticelas	lenticelas	casca	casca	casca	Polpa		
125	Beta	desuniforme	296,4	pequenas	1,3	31,3	fraca	laranja	média	134,05
126	Haden Rosa	desuniforme	187,6	médias	1,2	49,0	média	laranja	média	269,63
127	Ataulfo	uniforme	602,1	pequenas	1,0	30,1	média	laranja pálida	média	143,13
128	Lita	desuniforme	116,3	pequenas	0,9	51,4	fraca	laranja	alta	198,78

Anexo II- Continuação

		D40	D41	D42	D43	D44	D45	D46	D47	D48
							Relevo			
	Acesso	Fibrosidade	Quantidade de	Fibra aderida	Firmeza	°Brix	superfície	Peso	Forma	Embrionia
			fibra caroço	a casca			endocarpo	caroço		
1	Amrapali	pouco fibrosa	baixa	baixa	0,5	alto	lisa	28,2	oblonga	monoembriônica
									levemente	
2	Mallika	pouco fibrosa	baixa	baixa	0,2	alto	lisa	,		monoembriônica
3	Scuper Many	muito fibrosa	alta	alta	0,7	alto	lisa	36,1	reniforme	monoembriônica
4	Surpresa	não fibrosa	média	baixa	0,0	alto	com fendas	23,9	reniforme	poliembriônica
5	Kensington	pouco fibrosa	baixa	baixa	0,0	alto	com fendas	41,5	reniforme	poliembriônica
7	Rosari	pouco fibrosa	baixa	baixa	0,7	alto	lisa	40,8	reniforme	poliembriônica
									levemente	
8	Edward	não fibrosa	baixa	baixa	0,6	alto	com fendas	61,4	reniforme	monoembriônica
	*****					_			levemente	
9	Hilda	pouco fibrosa	média	baixa	0,8	alto	lisa	17,6	reniforme	predom. poliembriônica predom.
10	Ipuçaba	muito fibrosa	muito alta	alta	0	alto	lisa	36,5	reniforme	monoembriônica
11	Manga d'água	muito fibrosa	muito alta	alta	0,2	alto	com fendas	35,6	reniforme	poliembriônica
									levemente	predom.
12	Simmonds	pouco fibrosa	média	média	0,8	alto	lisa	35,9	reniforme	monoembriônica
13	Pingo de ouro	muito fibrosa	alta	média	0,1	alto	lisa	60,7	reniforme	poliembriônica
14	Salitre	pouco fibrosa	alta	baixa	0,2	alto	lisa	49,3	oblonga	predom. poliembriônica
									levemente	
15	Juazeiro II	pouco fibrosa	muito alta	média	0,7	alto	lisa	29,6	reniforme	poliembriônica
	3.6		1		0.0			44.0	levemente	
16	Mastruz	muito fibrosa	alta	alta	0,0	alto	enrugada	41,0		poliembriônica
17	Inogoino III	muita fibraca	mádia	haira	0.1	olto	ammi aa da	22.0	levemente	manaamhui âni aa
1 /	Juazeiro III	muito fibrosa	media	baixa	0,1	alto	enrugada	23,8	reniforme levemente	monoembriônica
18	Keitt	pouco fibrosa	haixa	média	0,0	alto	com fendas	55,7		monoembriônica
10	110111	pouco norosa	OuiAu	inouiu	0,0	ano	com rendus	55,1	levemente	monocinomon
19	Foice	pouco fibrosa	baixa	baixa	0,7	alto	com fendas	39,4	reniforme	poliembriônica

Anexo II- Continuação.

		D40	D41	D42	D43	D44	D45	D46	D47	D48
							Relevo			
	Acesso	Fibrosidade	Quantidade de	Fibra aderida	Firmeza	°Brix	superfície	Peso	Forma	Embrionia
			fibra caroço	a casca			endocarpo	caroço		
									levemente	
20	Juazeiro VI	muito fibrosa	alta	média	0,0	alto	com fendas		reniforme	monoembriônica
21	Recife	pouco fibrosa	muito baixa	baixa	1,4	alto	lisa	35,4	reniforme	monoembriônica
									levemente	predom.
22	Smith	pouco fibrosa	baixa	média	0,7	alto	lisa	31,1	reniforme	monoembriônica
22	II 1 OII		<i>(</i> 1)	1.	0.1	1.	C 1	22.5	levemente	predom.
23	Haden 2H	muito fibrosa	média	alta	0,1	alto	com fendas		reniforme	monoembriônica
24	Nego não chupa	muito fibrosa	alta	alta	0,0	alto	com fendas	64,0	•	monoembriônica
25	Espada Itaparica	muito fibrosa	alta	baixa	0,4	alto	com fendas	41,2		poliembriônica
20	M	C1	1	1	0.7	.14 .	1	47.6	levemente	predom.
28	Manzanillo	pouco fibrosa	baixa	baixa	0,7	alto	lisa	· · · · · · · · · · · · · · · · · · ·	reniforme	monoembriônica
29	CPR	pouco fibrosa	alta	média	0,0	alto	lisa		U	predom. poliembriônica
30	Pêssego DPV	pouco fibrosa	média	baixa	0,4	alto	lisa	46,2	reniforme	predom. poliembriônica
21	T. 1 D	C1	1	.1	0.2	.14 .	1	10.5	levemente	
31	Tyler Premier	pouco fibrosa	baixa	alta	0,2	alto	lisa	40,5	reniforme levemente	monoembriônica
32	Haden	muito fibrosa	alta	alta	3,05	médio	com fendas	52.0		monoembriônica
32	Haden	muno norosa	ana	ana	3,03	iliculo	com ichas	32,0	levemente	monocmonomea
33	Mon Amon	muito fibrosa	média	média	0,0	alto	enrugada	45.1	reniforme	predom. poliembriônica
					-,-			,-	levemente	F
34	Princesa	pouco fibrosa	média	média	0,3	alto	com fendas	52,3	reniforme	predom. poliembriônica
35	65	pouco fibrosa	média	média	0,4	alto	com fendas	49,8	reniforme	predom. poliembriônica
		1							levemente	1
36	Ubá	muito fibrosa	alta	alta	0,0	alto	com fendas	20,2	reniforme	predom. poliembriônica
									levemente	
37	Zill	pouco fibrosa	média	baixa	0,2	alto	com fendas	28,9	reniforme	monoembriônica
38	Winter	muito fibrosa	média	alta	0,0	alto	lisa	,	reniforme	monoembriônica
39	Irwin	pouco fibrosa	média	baixa	0,0	alto	com fendas	39,1	reniforme	monoembriônica

Anexo II- Continuação.

		D40	D41	D42	D43	D44	D45	D46	D47	D48
							Relevo			
	Acesso	Fibrosidade	Quantidade de	Fibra aderida	Firmeza	°Brix	superfície	Peso	Forma	Embrionia
			fibra caroço	a casca			endocarpo	caroço		
									levemente	
40	Tommy Atkins	pouco fibrosa	média	baixa	1,9	médio	lisa	58,4	reniforme	monoembriônica
4.1	D 1 D 1	. 61	<i>(</i> 1)		0.2	1.	1.	20.0	levemente	1. 1
41	Papo de Peru I	muito fibrosa	média	baixa	0,3	alto	lisa	,		poliembriônica
42	China	pouco fibrosa	baixa	baixa	0,9	alto	com fendas	31,3	oblonga	predom. poliembriônica
43	Favo de mel	pouco fibrosa		baixa	0,0	alto	lisa	29,9	oblonga	monoembriônica
44	Morais	muito fibrosa	alta	média	0,0	alto	com fendas	33,5	reniforme	predom. poliembriônica
46	M-13269	muito fibrosa	muito alta	média	0,2	alto	lisa	40,5	oblonga levemente	monoembriônica
47	Coração magoado	pouco fibrosa	baixa	baixa	0,2	alto	lisa	36,2	reniforme levemente	predom.poliembriônica
49	Juazeiro IV	muito fibrosa	muito alta	alta	0,5	alto	com fendas	58,2	reniforme	poliembriônica
50	Espada	muito fibrosa	muito alta	alta	0,1	alto	com fendas	40,9	oblonga	predom.poliembriônica
51	Ruby	muito fibrosa	alta	alta	0,0	alto	lisa	30,6	oblonga	monoembriônica
52	Espada ouro	muito fibrosa	alta	alta	0,2	alto	com fendas	47,5	reniforme	predom.poliembriônica
53	Espada 35	muito fibrosa	alta	alta	1,7	médio	com fendas	34,0	oblonga	poliembriônica
54	Ametista	muito fibrosa	média	alta	0,0	alto	lisa	46,3	reniforme levemente	predom.poliembriônica
55	Pingo de ouro DPV	muito fibrosa	muito alta	média	0,0	alto	lisa	27,8	reniforme	monoembriônica
56	Umbu	muito fibrosa	média	média	0,7	médio	enrugada	25,4	oblonga	monoembriônica
57	Rosa	muito fibrosa	muito alta	alta	1,4	alto	lisa	33,8	reniforme	poliembriônica
59	Black Java	não fibrosa	média	baixa	0,0	alto	com fendas	48,0	reniforme	poliembriônica
										predom.
60	Dama de ouro	pouco fibrosa	média	baixa	0,0	alto	com fendas	39,6	reniforme	monoembriônica
61	Carabao	não fibrosa	baixa	baixa	0,0	alto	lisa	23,4	reniforme	predom.poliembriônica
									levemente	
62	Manguito	muito fibrosa	alta	alta	0,8	alto	com fendas	27,6	reniforme	poliembriônica

Anexo II- Continuação.

		D40	D41	D42	D43	D44	D45	D46	D47	D48
							Relevo			
	Acesso	Fibrosidade	Quantidade de	Fibra aderida	Firmeza	°Brix	superfície	Peso	Forma	Embrionia
			fibra caroço	a casca			endocarpo	caroço		
										predom.
64	Bonita	pouco fibrosa	média	baixa	0,5	alto	com fendas	42,9	reniforme	monoembriônica
									levemente	
65	Sta Alexandrina	muito fibrosa	alta	alta	0,3	alto	com fendas	24,7	reniforme	monoembriônica
66	Manilla	pouco fibrosa	baixa	baixa	0,0	alto	lisa	14,2	reniforme	predom.poliembriônica
									levemente	1
69	Maçã	pouco fibrosa	baixa	baixa	0,3	alto	lisa	18,0		monoembriônica
									levemente	1
71	Comprida Roxa	pouco fibrosa	média	baixa	0,0	alto	lisa	37,1	reniforme	monoembriônica
72	Eldon	muito fibrosa	alta	alta	0,1	alto	enrugada	46,3	reniforme	monoembriônica
									levemente	
73	Da porta	pouco fibrosa	baixa	baixa	0,2	alto	lisa	21,6	reniforme	monoembriônica
	·					_			levemente	
74	Carlotão	média	média	média	0,2	alto	com fendas	,	reniforme	monoembriônica
75	Florigon	baixa	baixa	baixa	0,1	alto	com fendas	37,8	oblonga	monoembriônica
76	Maia	média	média	alta	0,0	alto	lisa	24,9	oblonga	monoembriônica
77	Momi-K	baixa	baixa	baixa	0,7	alto	com fendas	51,1	reniforme	monoembriônica
78	Primor de amoreira	média	média	média	0,0	alto	com fendas	44,4	reniforme	poliembriônica
									levemente	
79	Dashehari	baixa	baixa	baixa	0,0	alto	com fendas	19,0	reniforme	monoembriônica
80	Alphonso	média	média	média	0,0	alto	com fendas	33,2	reniforme	monoembriônica
	_									predom.
81	Amarelinha	alta	alta	baixa	0,1	alto	lisa	49,5	reniforme	monoembriônica
82	Caxangá	baixa	baixa	baixa	0,2	alto	com fendas	25,8	reniforme	poliembriônica
	-								levemente	
83	Itamaracá	baixa	baixa	média	0,8	alto	com fendas	19,7	reniforme	monoembriônica

Anexo II- Continuação.

		D40	D41	D42	D43	D44	D45	D46	D47	D48
							Relevo			
	Acesso	Fibrosidade	Quantidade de	Fibra aderida	Firmeza	°Brix	superfície	Peso	Forma	Embrionia
			fibra caroço	a casca			endocarpo	caroço		
									levemente	predom.
84	Imperial I	baixa	baixa	baixa	0,4	alto	lisa	32,7	reniforme	monoembriônica
0.5	V t	la a l'ann	haina	1	0.4	14		70.5	levemente	
85	Kent	baixa	baixa	baixa	0,4	alto	enrugada	79,5	reniforme levemente	monoembriônica predom.
86	Extrema	alta	alta	baixa	0,0	alto	com fendas	38,9	reniforme	monoembriônica
87	Bourbon	média	média	alta	0,0	alto	com fendas	57,4	oblonga	monoembriônica
88	Langra	média	média	baixa	0,0	alto	enrugada	40,2	C	monoembriônica
89	Van Dyke	alta	alta	média	1,6	alto	lisa	52,5	reniforme	monoembriônica
09	van Dyke	ana	ana	media	1,0	ano	118a	32,3	levemente	monoemonomea
90	Brasil	alta	alta	média	0,1	alto	lisa	24.8	reniforme	poliembriônica
91	Espada Manteiga	alta	alta	alta	0,0	alto	com fendas	· · · · · · · · · · · · · · · · · · ·	reniforme	predom.poliembriônica
71	Lispada Manteiga	urtu	uru	urtu	0,0	uno	com rendus	13,0	Telmonie	predom.
92	Olour	média	média	média	2,0	alto	lisa	32,8	reniforme	monoembriônica
					•			,		predom.
93	Duncan	alta	alta	média	0,2	alto	enrugada	48,7	reniforme	monoembriônica
									levemente	
94	Calmon	baixa	baixa	baixa	0,3	alto	lisa	,	reniforme	monoembriônica
95	Aplle DCG	média	média	média	0,0	alto	enrugada	,	reniforme	poliembriônica
96	Roxa	baixa	baixa	baixa	0,7	alto	lisa	29,9	reniforme	monoembriônica
97	Alfa	média	média	baixa	0,0	alto	enrugada	33,2	reniforme	monoembriônica
98	Palmer	baixa	baixa	baixa	1,6	alto	enrugada	62,3	reniforme	monoembriônica
									levemente	
99	Torbet	baixa	baixa	baixa	1,1	alto	enrugada		reniforme	predom.poliembriônica
100	Parwin	baixa	baixa	baixa	0,8	alto	lisa	30,9	reniforme	monoembriônica
105	Itiúba	muito alta	muito alta	alta	0,0	alto	com fendas	26,8	oblonga	poliembriônica
109	Heidi	baixa	baixa	baixa	0,3	alto	enrugada	33,6	reniforme	monoembriônica

Anexo II- Continuação.

		D40	D41	D42	D43	D44	D45	D46	D47	D48
							Relevo			
	Acesso	Fibrosidade	Quantidade de	Fibra aderida	Firmeza	°Brix	superfície	Peso	Forma	Embrionia
			fibra caroço	a casca			endocarpo	caroço		
110	Chené	baixa	baixa	média	0,3	alto	enrugada	40,4	oblonga	monoembriônica
									levemente	
111	Joa	média	média	média	0,3	alto	enrugada	26,8	reniforme	predom.poliembriônica
									levemente	
112	Mallindi	baixa	baixa	baixa	0,2	alto	lisa	27,1	reniforme	predom.poliembriônica
440	N 4 11		1.		0.5			24.425	levemente	
119	Néldica	alta	alta	baixa	0,7	alto	lisa	34,125		predom.poliembriônica
100	T 1 37 11	1.	1.	1.	0.2	1 .	1	50 60 0	levemente	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
122	Espada Vermelha	alta	alta	alta	0,3	baixo	enrugada	,	reniforme	predom.poliembriônica
123	BRS Õmega	baixa	baixa	baixa	0,9	alto	lisa	29,813	reniforme	predom.poliembriônica
124	R2 E2	muito baixa	muito baixa	baixa	1,0	alto	com fendas	63,013	reniforme	poliembriônica
125	Beta	muito alta	muito alta	alta	0,4	alto	com fendas	33,863		
126	Haden Rosa	média	média	média	0,5	alto	lisa	40,963	reniforme	monoembriônica
									levemente	
127	Ataulfo	média	média	baixa	0,1	alto	lisa	21,913	reniforme	poliembriônica
									levemente	
128	Lita	baixa	baixa	baixa	0,1	alto	lisa	38,425	reniforme	monoembriônica