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ABSTRACT

The use of geostatistics requires at least that the intrinsic hypothesis be satisfied. The presence of a trend in 
the data invalidates this hypothesis. One of the ways of solving this problem is by subtracting a function fitted to 
the original data and working with the residuals. This technique also represents a change to a smaller scale of the 
variability and surface roughness. This paper describes the detrending technique of subtracting a trend surface 
fitted by the least squares method and discusses the results using topographical data as examples. The objective 
is to show how the detrending technique works for different scales and degrees of trend and how to interpret the 
results. It is shown that the simplest the surfaces fitted that does the work of removing the trend the best are the 
results obtained. The use of jack knifing is proved useful to validate the resulting semivariograms. For most of 
the applications and depending upon the scale, a linear or a parabolic surface works reasonably well. The back 
transformation of the data afterwards is very easily done by adding back the subtracted trend surface.
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RESUMO

REMOÇÃO DE TENDÊNCIA DE DADOS NÃO ESTACIONáRIOS PARA APLICAÇÕES DE GEOESTATÍSTICA

O uso de geoestatistica exige que pelo menos a hipótese intrínseca seja satisfeita. A presença de tendência 
invalida esta hipótese. Uma das maneiras mais práticas de resolver esta questão é subtrair dos dados originais uma 
função ajustada por mínimos quadrados, trabalhando com a função residual resultante. Esta técnica representa uma 
mudança de escala da variabilidade e da rugosidade da superfície para uma escala menor. Este trabalho descreve 
a técnica da remoção da tendência pela subtração de uma superfície ajustada por mínimos quadrados e discute os 
resultados usando dados topográficos como exemplos. O objetivo é mostrar como usar esta técnica para remover 
tendências de superfícies de diferentes escalas e com diferentes graus de superfície e como interpretar os resultados. 
Foi mostrado que quanto mais simples for a superfície ajustada que resolve o problema de tendência, melhores são 
os resultados obtidos. O uso da validação cruzada provou ser útil para validar os semivariogramas resultantes. 
Para a maioria das aplicações e dependendo da escala, uma superfície linear ou parabólica funciona muito bem. A 
transformação de retorno nos dados é bastante fácil e é feita somando de volta a superfície subtraída.
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1. INTRODUCTION

The use of Geostatistics in the analysis of spatial 
variability has grown significantly during the last 
decades. It was introduced as a science by the French 
school of mathematics involved in mining industry in 
1963 (Matheron, 1963) based on some field observations 
in the South African mining reported by Krige (1951). 
The basic principles of Geostatistics were designed to 
mathematically handle the idea of spatial data sets that 
show regions of large values and other regions of smaller 
values as this was the common situation in mining. 
It was then given the name of Geostatistics and its 
foundations are in the Theory of Regionalized Variables 
(Matheron, 1963). From there on its application have 
evolved to many fields of crop and soil science (Burgess 
and WeBster, 1980; Vieira et al., 1981, Vieira et al., 1983, 
McBratney and WeBster, 1986; Vieira, 2000; Vieira et al., 
2002).

Because the Theory of Regionalized Variables 
(Matheron, 1963) is based on random functions and 
the measurements are assumed to be a realization 
of a particular random function for a given position, 
some restrictions have to be made on the data. These 
restrictions are called stationarity hypothesis (Journel 
and huigBregts, 1978). The order of the stationarity 
hypothesis will depend on the order of the statistical 
moments required to be stationary. Thus, when second 
order stationarity is required, at least the first and second 
order moments (mean, variance and covariance) must 
be stationary. Second order stationarity is too restrict 
and difficult to be verified in practice (Vieira, 2000). 
Alternatively a condition weaker, simpler and easier 
to verify was proposed by Matheron (1963) which he 
called the intrinsic hypothesis. Therefore, in order to 
make proper use of Geostatistics, at least the intrinsic 
hypothesis must be fulfilled (Journel and huigBregts, 
1978). The intrinsic hypothesis requires that the mean 
and the semivariance depend strictly on the separation 
distance between samples and not on the coordinate 
position of the data. When the intrinsic hypothesis 
can not be satisfied it is because the data has some 
trend which must be removed before the data can be 
adequately analyzed through Geostatistics (Vieira et 
al., 1983). One very simple way to remove a trend is by 
fitting a trend surface by least squares and subtracting it 
from the original data generating a new variable called 

residuals with the difference. The presence or not of a 
trend in the data can be easily verified by the existence 
of a sill in the semivariogram at approximately the a 
priori variance value (Vieira, 2000).

Reports on trend removal are more commonly 
found in time series analysis (Wu et al., 2007; sáfadi, 
2004). Some papers report on the presence a spatial trend 
in environmental pollution related problems but do not 
deal with trend removal (Bossi et al., 2005; Johannesson 
and cressie, 2004; fauss-Kessler at al., 1999). Few papers 
report on two dimensional trend removal (Vieira et al., 
1983; Vieira et al., 2002, BlacKMore et al., 2003) but did 
not do a thorough discussion on the interpretation of 
results for different scales and sampling density.

This paper describes the detrending technique 
of subtracting a trend surface fitted by the least squares 
method and discusses the results using topographical 
data as examples. The objective is to show how the 
detrending technique works for different scales and 
degrees of trend and how to interpret the results.

2. MATERIAL AND METHODS

Data

The five data sets used were topographical 
heights measured with a high precision optical 
engineering level from: a square field of 90m on each 
side named Wang sampled on a 2m grid with a total 
of 2500 points; a triangular field named Paddock of 
110m by 220m, sampled on a 10m square grid, with a 
total of 164 points; an approximately rectangular field 
named Recuperação measuring 90x250m, sampled on 
trapezoidal grid of 5m, with a total of 383 points; an 
approximately rectangular field named Variabilidade, 
measuring 120x160m sampled on a 10m square grid 
with 302 data points; a circular field named Planalto of 
77ha sampled on a square grid of 50m, at every one of 
the 322 points.

Table 1 shows a summary about the five fields with 
grid information. Topography was chosen as a variable 
to be analyzed because its form is easily verified in the 
field and its surface does not change with time allowing 
for the field validation of the results if necessary. These 
specific fields were chosen because they represent a very 
wide range of scales (from 0.81 to 77 hectares), of grid 

Site Location Area (ha) Grid (m) N N/ha Trend
Wang Ottawa 0.81 2 2500 3086.42 Parabolic
Recuperação Pindorama 2.25 5 383 170.22 Cubic
Paddock Ottawa 1.21 10 164 135.54 Parabolic
Variabilidade Campinas 3.00 10 301 100.33 Parabolic
Planalto Angatuba 77.00 50 322 4.18 Linear

Table 1. Area, grid, number, number of sample (N/ha) and kind of trend surface used for the five fields 
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sampling spacing (from 2 to 50m), of number of values 
(from 2500 to 164 values) and consequently of number 
of samples per hectare (from 3086.42 to 4.18). 

Intrinsic hypothesis

A set of N values Z (xi), where xi denotes a 
geographical position, will be intrinsic if it follows two 
conditions:

The expected value E{Z(xi)} exists and does not 
depend on the position xi. This is mathematically written 
as:

 (1)

The variance of the increment [Z(xi) –Z(xi+h)] is 
finite and does not depend on the position xi. This can 
be written as

 (2)

Notice that the presence of any kind of trend 
would not agree with any of the two above conditions 
because the mean value, m, would be dependent on 
the position xi, and the quantity VAR[Z(xi)–Z(xi+h)] can 
not be guaranteed to be finite and it would also depend 
on the position in the field. A field showing a trend is 
easily imagined in practice, as we can think that a trend 
would represent an increase in variable values in some 
direction. In this condition, the mean value, m, and also 
the variance of the increment [Z(xi)–Z(xi+h)] would not 
be independent of the position xi.

Semivariogram

The semivariogram is, by definition:

 (3)

And can be estimated by: 

 (4)

where N(h) is the number of pairs of measured 
values Z(xi), Z(xi+h), separated by a vector h (Journel 
and huiJBregts, 1978). The graph of γ*(h) versus the 
corresponding values of h, called semivariogram, is a 
function of the vector h, and therefore it depends on both 
magnitude and direction of h. When the semivariogram 
is the same for all directions it is called isotropic. Many 
variables show anisotropic semivariograms depending 
on the dimensions of the field and of the nature of 
the variability. There are ways of transforming an 
anisotropic semivariogram (Journel and huiJBregts, 
1978; Burgess and WeBster, 1980) in order to reflect the 
variability in different directions. Jack knifing procedure 
can also be used to verify the distance range over which 

a semivariogram can be used before anisotropic effects 
may affect the results (Vieira, 2000).

Notice that the equation of the definition of 
the semivariogram (equation 3) is nothing more than 
the right hand side of equation 2, multiplied by ½. 
Therefore, the maximum value that an experimental 
semivariogram of an intrinsic variable could reach is the 
a priori variance of that variable. When this condition 
fulfills, the semivariogram has a clearly defined and 
stable sill at the value of the a priori variance. Therefore, 
if the semivariogram does not stabilizes at the a priori 
variance value, this is a clear indication that the variable 
under study has a trend somewhere in the field which 
must be dealt with before further geostatistical analysis 
is done (Vieira, 2000).

Models

Experimental semivariograms contain a set of 
discrete data points of distance and semivariance. A 
model must be fit to the experimental data with the 
objective of having semivariances available for every 
distance needed (gotWay, 1991). In order to be used to 
properly describe the spatial variability of any variable, 
one of the requirements on the model is that the function 
used must be conditional positive definite (MacBratney 
and WeBster, 1986). This condition will guarantee that 
the variances calculated will be positive. The main 
models which satisfy that condition and are adequate 
for use in geostatistical calculations are the spherical, the 
exponential and the gaussian. On the equations bellow, 
C0, C1, and a represent the nugget effect, the structural 
variance and the range, respectively.

For the spherical model, usually symbolized as 
Sph(C0, C1, a), the equation is:

 (5)

The exponential model, symbolized as Exp(C0, 
C1, a), the equation is: 

 (6)

The gaussian model, symbolized as Gau(C0, C1, 
a), the equation is:

 (7)

With the parameters fitted to the semivariogram 
the dependence ratio (DR) can be calculated according 
with ZiMBacK (2001)
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 (8)

The dependence ratio (DR) represents the 
proportion of the semivariance which is structured. 
The smallest the DR value the weakest is the spatial 
dependence.

Detrending 

A very simple and practical way of removing a 
trend is done by fitting a trend surface to the original 
values by minimum least squares and then subtracting 
the value of the trend surface function from the original 
values thus constructing a new residual variable. Because 
the topographical data used in this study showed very 
strong trend for all fields as it was verified by the absence 
of a sill in the experimental semivariograms, the trend 
was removed with a trend surface according to Vieira 
(2000). The degree of the trend surface used in each case 
is listed in the last column of Table 1, with one surface 
linear, three parabolic and one cubic. The presence of 
a trend is detected when the semivariogram does not 
have a stable sill. This condition violates the intrinsic 
hypothesis (equations 1 and 2) as it represents a field for 
which the mean value and the variance of the increment 
[Z(xi)–Z(xi+h)] depend on the spatial position. The trend 
removal technique used as described in Vieira (2000) 
consists of fitting a three dimensional surface to the data 
by the least squares and subtracting its values from the 
originals. A parabolic trend surface is estimated by

 (9)

where Z*(x,y) is the estimated trend surface, X and Y 
are the coordinate positions and A0, A1, A2, A3, A4 and 
A5 are the regression parameters estimated by the least 
squares method. This surface is then subtracted from 
the originals generating a new variable which we are 
calling Residuals.

 (10)

The criteria for the choice of a degree for the 
detrending surface is the simplest surface that will 
produce a semivariogram with a stable sill. Thus, if a 
linear surface solves the starionarity problem producing 
a semivariogram with a sill, there is no need to look for 
any other degree of a surface. Usually it is advisable to 
start the detrending procedure with the smallest degree 
(linear), examining the coefficient of determination 
between the estimated and the original surfaces. If the 
coefficient is high and significant, as it can be tested 
with the available F value, then the semivariogram 
of the residuals should be calculated. If the resulting 
semivariogram shows a sill, then there is no need 
to seek any further degree of surface. If, on the other 
hand, the semivariogram produced did not show a sill, 

the degree of the surface should be increased and the 
procedure started over (Vieira et al., 2002). Notice that 
the objective is not to produce the highest coefficient of 
determination but rather to produce a residual surface 
whose semivariogram has a sill.

Notice that removing a trend by the method 
described above represents a change in the scale for the 
data. Because the trend surface describes the overall spatial 
variation for the variable, the operation written in equation 
(10) will produce a new surface which will contain simply 
the remaining surface roughness and its values will be a 
fluctuation above and below zero (0). If the degree of the 
trend surface is adequate, invariably the mean value for 
residuals is close to zero (0) (Vieira et al., 1983).

Detrending the variable and producing a residual 
variable is a requirement for non stationary variables 
in order to be under the intrinsic hypothesis. After 
detrending, the Geostatistical analysis follows its normal 
way with the residual variable with the calculation of 
the semivariogram, fitting a model to it, jack knifing in 
order to validate, and then do kriging estimation of the 
residual variable adding back the trend surface using 
the parameters fitted. 

3. RESULTS AND DISCUSSION

A summary information about the sampling from 
all five fields is shown in table 1. The last column shows 
the degrees of the trend surfaces used to remove the 
trend. Notice that the degrees of the surface show an 
increase as the sampling density increases. This is due 
to the detailed characterization of the field with samples 
close to one another for the higher density sampling, 
thus needing a higher degree surface in order to remove 
the trend. In other words, a field intensively sampled 
such as the Wang, shows a much higher resolution on 
the view of the surface roughness.

The descriptive statistics for the original data 
from all five fields is shown in table 2. Except for the 
field Planalto, all others approach a normal distribution 
as their coefficients of skewness and kurtosis are close 
to zero (0). The field Planalto was also the one for 
which the range of values was the largest (exceeded 
22m). The smallest range of values is for the Wang 
field, with only 68cm. Therefore, in terms of sampling 
and spatial resolution of the data, the examples used in 
this study represent the reverse of what it should have 
been, because the field Planalto had the largest range of 
elevations and also de lowest sampling density whereas 
the field Wang had the lowest elevation range and the 
highest sampling density. All of these surveys were 
done sometime ago and we did not have any influence 
on the choices of sampling spacing, except for fields 
Variabilidade and Recuperação for which we made 
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the choices of both sampling spacing and number of 
samples.

Table 3 shows the summary descriptive statistics 
for the residual values for the five fields. Because of what 
is left after the trend removal is simply a fluctuation under 
and above the fitted surface, the mean values are very 
small (less than 10-3). This is an indication that trend was 
effectively removed as the mean values would be higher 
if the surface underestimated them and would be lower 
if the surface overestimated them. Similar results have 
already been reported for other field scales (Vieira et al., 
2002). The ranges of values for the residuals are almost 
symmetrical with respect to zero and the frequency 
distributions all depart from normal distribution as seen 
by the coefficients of skewness and kurtosis.

The parameters for the models fitted to the 
semivariograms of residual data are shown in table 4. 
There were two spherical models, two Gaussian and one 
exponential, but all of them with very low nugget effects 
and very high Dependence Ratio (DR), which means the 
surface left after the trend removal is a very continuous 
one. Wollenhaupt et al., (1997) report on similar results 
for crop yield data. The ranges of spatial dependence 
are all small as compared to the field dimensions which 
means that the trend removal decreased the scale of the 
variability as reported by Vieira (2000).

Figures 1 to 5 show the graphs of the semivariograms 
for the original values along with the ones for the residuals 
on figures 1a to 5a. The graphs of the semivariograms for 
the residuals with the models fitted are in figures 1b to 

Name Unit N Mean Var. Min. Max. Skew. Kurt.
Wang cm 2500 42.06 87.74 0.00 68.00 -0.660 0.148
Recuperação m 340 93.98 18.19 84.94 104.70 0.071 -0.847
Paddock cm 164 77.13 651.10 0.00 122.00 -0.929 0.889
Variabilidade m 301 638.10 31.58 622.50 644.90 -1.168 0.097
Planalto m 322 656.20 26.06 638.10 664.10 -1.013 1.048

Table 2. Summary descriptive statistics for the original data

Name Unit N Mean Var. Min. Max. Skew. Kurt.
Wang cm 2500 0.000000535 40.38 -36.71 20.31 -0.582 1.935
Recuperação cm 340 0.00002962 0.02 -0.44 0.29 -0.722 0.812
Paddock cm 164 -0.0000107 272.40 -54.55 68.69 0.045 3.225
Variabilidade m 301 -0.0001931 6.40 -12.79 7.14 -0.780 3.950
Planalto m 322 -0.0001192 6.03 -9.41 3.31 -1.186 1.142

Table 3. Summary descriptive statistics for the residual data

Variable Model C0 C1 a r2 RMSE DR
Wang Spherical 0.39 39.61 15.29 0.8842 0.02632 99.03
Recuperação Exponential 0.00 0.016 26.13 0.9716 0.00015 100.0
Paddock Gaussian 8.24 224.34 48.80 0.8778 0.93938 96.46
Variabilidade Spherical 0.02 0.29 50.67 0.8672 0.00034 92.13
Planalto Gaussian 0.00 2.19 323.69 0.8908 0.00573 100.0

Table 4. Semivariogram parameters for the models fitted

Figure 1. Semivariograms for the Wang field: a) original values together with residuals; b) residuals with model fitted.
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Figure 2. Semivariograms for the Recuperação field: a) original values together with residuals; b) residuals with model fitted.

Figure 3. Semivariograms for the Paddock field: a) original values together with residuals; b) residuals with model fitted.

Figure 4. Semivariograms for the Variabilidade field: a) original values together with residuals; b) residuals with model fitted.

Figure 5. Semivariograms for the Planalto field: a) original values together with residuals; b) residuals with model fitted.
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5b. It is quite clear that before the removal of the trend 
(FIGURE 1a to 5a) all the semivariograms had no limits 
and did not stabilize in any sill values. In this situation the 
field was not large enough to encompass all the variability 
it expressed (Vieira et al., 2002). On the other hand, the 
semivariograms on figures 1b to 5b clearly show a sill 
value which means the trend removal technique worked 
well.

The topographical map of the Planalto field is 
shown in figure 6. It can be seen on this map the reason 
why the original data had such a strong trend as the 
field shows a very pronounced slope. A comparison 
between linear and parabolic trend surface removing 
was made for this field. Because the coefficient of 
determination did not increase significantly and because 
the semivariogram of the residuals for linear trend 
showed a clear sill (Figure 5b) the linear was chosen for 
its simplicity.

Figure 7 shows the topographical tridimensional 
map for the Wang field before the removal of the 
parabolic trend and figure 8 shows the same field after 
the removal of the trend. On figure 7, the presence of 
higher elevations across the diagonal of the field and 
lower regions on the left and right corners reveals the 
reason for the parabolic trend. On figure 8, on the other 
hand, it can be seen that the sizes of the regions of low 
and high values decreased with respect to the original 
values. That is the reason for the smaller value for the 
range of spatial dependence and it has been found by 
Vieira et al., (1983).

4. CONCLUSION

The trend surface was shown to efficiently 
removing the trend from surfaces of different scales 
and different sampling densities. The semivariograms 
produced showed a very clear sill at the variance value, 
which means they do follow the intrinsic hypothesis 
after the trend removal. Even after the trend removal, 
the residuals for topographical data showed very 
continuous semivariograms near the origin.
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