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Abstract
Traditional techniques for tracking data provenance have difficulty adapting to the dynamics of the Web. This

paper proposes a scheme for provenance estimation, based on domain ontologies. This scheme is part of the

POESIA approach for multi-step integration of semi-structured data. The ontologies used for tracking provenance

also help to describe, discover, reuse and integrate data and services. In contrast to traditional techniques, this

scheme derives data provenance with fewer annotations at the extensional level and thus lower maintenance costs.

Additionally, it promotes the use of ontologies to categorize and correlate scopes of data sets, thereby capturing

the operational semantics of data integration processes.

1. Introduction

Data provenance (also called data genealogy or pedigree) is the description of the origins of
a piece of data and the process by which it was produced [1]. Consider information systems
involving data integration, such as data warehouses or the dissemination, collection and pro-
cessing of scientific data over the Web (e.g., climate or biological data). It is imperative to track
the gathering, processing and propagation of data across potentially distributed and autonomous
systems [2]. The knowledge about the data sources and subsequent processing history of a piece
of data is fundamental to assess the quality and usefulness of this data for a particular applica-
tion. Data provenance is also necessary to investigate the cause of erroneous values detected at
any point of the processing flow.

The problem of determining the data provenance of a data item or data set has been studied
in a variety of settings, e.g., for data warehouses using relational data sources or in the context
of cooperative processes with data exchange in several formats. The solutions proposed in the
literature usually involve some kind of annotation or the “inversion” of the functions/queries
used to transform data.

The Internet poses new challenges for provenance tracking. The autonomy of the com-
ponents and the multi-institutional nature of Web applications results in a profusion of data
contents, demanding self-describing data sets. Traditional approaches for tracking data prove-
nance, relying on detailed descriptions and tight control of the data transformation flow, cannot
be easily adapted to the Web. Detailed information about distributed data processing on the
Web, such as the queries/functions used to transform and move data across sites, are often



unavailable. A better solution in this context is to build a general framework for provenance
tracking, including when necessary detailed analysis of specific portions and emphasizing the
semantics of data and processes.

POESIA [3, 4] (Processes for Open-Ended Systems for Information Analysis) is an ap-
proach for multi-step integration of semi-structured data in an open and distributed environ-
ment. Inspired by the needs of scientific applications such as agricultural planning, POESIA
combines ontologies, workflows and activity models to provide novel facilities for data integra-
tion using cooperative services. This approach pursues the vision of the Semantic Web [5, 6]
and offers some concrete solutions for data integration and service composition on the Web.
[3] describes the POESIA approach for organizing and reusing data and processes. It presents
well-defined specialization and aggregation operators over activity patterns, allowing the adap-
tation of process frameworks for different situations. This approach also includes mechanisms
to check the semantic consistency of compositions of Web services implementing activities and
data repositories. [4] provides a more formal treatment of some aspects of the POESIA ap-
proach, such as structural and semantic properties of POESIA ontologies and implementation
issues.

This paper introduces the POESIA ontological method for estimating data provenance. Do-
main ontologies depict the semantic relationships among terms, grouped according to different
dimensions of one reality (e.g., geographic space or time). Tuples of terms, called ontological
coverages, express the scopes of data sets and granularities of data values in these dimensions
(e.g., the spatial extents and periods of time that a data set or value refers to). The semantic re-
lationships between these terms induce a partial order among ontological coverages. This order
is used to correlate scopes and granularities of data, enabling an estimation of data provenance.
The major contribution of this paper is a framework for tracking data provenance, using ontolo-
gies to express data contents and the effect of chains of data integration operations on data sets.
This framework can achieve efficient and fine grain provenance tracking.

The remainder of this paper is organized as follows. Section 2 presents an agricultural
application used as a running example throughout the paper. Section 3 outlines the fundamentals
of POESIA ontologies needed for provenance tracking. Section 4 describes the ontological
method for estimating data provenance of aggregated values. Section 5 shows, from a more
general perspective, how the ontological method for provenance estimation fits in the POESIA
approach. It analyzes the role of domain ontologies with respect to both data integration and
provenance tracking, in the context of inter-institutional workflows. Section 6 discusses related
work. Finally, Section 7 summarizes contributions and extensions.

2. Motivating Example

The problem investigated here is the following: given a data item, what were the original data
sources and the chain of data processing steps that produced it? Let us examine a real life
scenario concerning data integration in agricultural applications. Figure 1(a) illustrates the con-
solidation of weather data through a hierarchy of intra and inter-institutional repositories, for use
in agricultural planning. Each institution has a set of weather stations (data collecting devices),
scattered across its operational area, to collect measurements such as maximum, minimum and
average temperature and total rainfall per hour. These data are maintained in the repositories
of the institutions that collect them. The spatial and temporal scopes of the institutional data
sets (i.e., the land parcels and periods of time they cover) can overlap. For example, institution



Figure 1: Integrating data sets in many steps

I1 operates in a limited region, while institution I2 has a wider spatial scope. Institution I3
encompasses units I3a and I3b. The data warehouse of consortium C1 consolidates data from
I1 and I2, C2 from I2 and I3, and C3 from C1 and C2. This processing scheme produces
data sets with increasingly broader scopes and denser sampling. The data granularity in the
upper levels can be either the same or coarser than the granularity of the source data (e.g., from
an hourly to a daily basis). The data at the lower levels tend to be more detailed and precise (but
not necessarily accurate), while the data at the higher levels usually convey more abstraction,
since they refer to increasingly broader scopes. Typical operations to produce such aggregations
of the source data can be seen as variations of the basic data cube operations such as slice, dice,
roll-up, and drill down.

Figure 1(b) gives a general view of the step-wise integration of weather data. First, the raw
data collected by the weather stations of each institution are gathered, reviewed and stored as
temporal series. Then, aggregation of historical data from each weather station generates the
climate attributes for that particular point on the earth surface (e.g., average temperature and
rainfall per month). Data warehouses (such as those in C1, C2 and C3) offer unified access to
climate attributes originated from several sources, with aggregation and interpolation facilities
for recovering consolidated data – typically OLAP to select and aggregate data over time and
space, and interpolations to produce maps with estimations of the distribution of climate mea-
surements across the lands. Finally, applications such as agricultural zoning [3] integrate and
fuse data taken from these warehouses, among other sources, to derive other relevant informa-
tion. Most of these applications need to understand not only the semantics of the data used, but
also their provenance.

Figure 2 shows the star schema of the data warehouses used in the case studies throughout
this paper. The Climate data warehouse has a data table with the values of maximum, minimum
and average temperature and total rainfall, organized according to the dimensions of territorial
divisions, time, agricultural products and organizations. The Crops production warehouse main-
tains data about the planted area, production, unit and monetary value, for each county, month
and crop produced (minimum granularity this warehouse provides). These data warehouses can
answer queries involving selection on the data they maintain and aggregation of the selected
data to produce values of coarser granularities. For example, one can ask the Crop production
warehouse for the total production of fruits, during the year 2001, in the whole Brazil, aggre-



Figure 2: Agricultural data warehouses: (a) climate attributes; (b) crops production

gating the results for each fruit and state. Figure 3 presents an OLAP view of data provided by
the Crops production warehouse1. This view shows the planted area and production of some
fruits, detailing the granularity of the data about oranges for each Brazilian region and for each
state of the region South-East.

Notice the similarities between the respective dimensions (territorial divisions, time and
agricultural products), of the two data warehouses of Figure 2. The following sections show
how to represent these dimensions in an ontology and the use of such an ontology to help track
data provenance.

Figure 3: An OLAP view of the crops production data

3. POESIA Ontologies and Ontological Coverages

Figure 4 shows the organization of the space dimension as described in a POESIA ontology.
The directed acyclic graph on the left, called an arrangement of concepts, formalizes the seman-
tic relationships among the territorial subdivision concepts. The edges representing PART OF
relationships have a black circle close to the specific concept, and the edges representing IS A

1This data has been gently provided by the personnel of the project Fruits Production Database from Embrapa

Information Technology for Agriculture. The data for 2002 is an estimation, because the production assessment

was not complete by the time this view was produced.



relationships have a diamond close to the component concept. This graph denotes that a Coun-
try is composed of a set of States or, alternatively, a set of Country Regions. A
Country Region may be a Macro Region, an Official Region or another kind
of region. Macro and Official Regions are composed of States, but a region of type
Metro Area is composed of Counties. Eco Region and Macro Basin define other
partitions of space, based on ecological and hydrological issues, respectively. Arrangements
of concepts provide a general framework, being instantiated by arrangements of terms. The
middle part of Figure 4 illustrates a subgraph of the arrangement of territorial subdivision con-
cepts. An arrangement of terms instantiated from these concepts is represented by the directed
acyclic graph (in this case a hierarchy) on the right side. There are also SYNONYM relation-
ships not represented in the figure due to space limitations (e.g., BR can be used as a synonym to
Brazil). An instantiated term needs to be qualified with the corresponding concept, in order to
avoid ambiguity. Thus, State(RJ) refers to the state of Rio de Janeiro, while County(RJ)
refers to the county of the same name.

Figure 4: The space dimension of a POESIA ontology: (left) arrangement of concepts; (middle
and right) a compatible arrangement of terms

Similar structures describe concepts and instantiated terms for other dimensions (such as
time and products). The arrangements of concepts and terms for all the relevant dimensions
constitutes a POESIA ontology. A tuple of terms from a POESIA ontology, called an ontolog-
ical coverage, can describe the scope of a data set or the granularity of an aggregated value.
For example, the ontological coverage [State(RJ),Crop(orange),Year(2002)] re-
stricts the scope to the intersection of the spatial, crop and temporal scopes defined by the terms
State(RJ), Crop(orange) and Year(2002) in a multidimensional space. The onto-
logical coverage [State(RJ),State(SP)], on the other hand, denotes the union of the
spatial scopes expressed by the two terms, because both refer to the same dimension. To nar-
row the scope in a particular dimension one has to choose a more specific term (e.g., go from
State(SP) to County(Ubatuba)).

The semantic relationships represented in POESIA ontologies induce a partial order among
ontological coverages that we call semantic encompassing. For example, the country called
Brazil encompasses the state whose acronym is RJ (Rio de Janeiro), what is denoted by the
expression [Country(Brazil)] � � [State(RJ)]. Furthermore, [State(RJ)] � �
[State(RJ),Year(2002)] and [State(RJ),State(SP)] � � [State(SP)].



A data set can be associated with an ontological coverage expressing its application scope,
i.e., the scope it has data about (e.g., a particular state such as State(RJ)). A data value can be
associated with an ontological coverage expressing its granularity (e.g., [State(Brazil),
Year (2002)] to refer that a data value refers to the whole Brazil during 2002). The scope of
a data set must encompass the scopes of its components and the minimal granularities of the data
values contained in this data set. The scope of a data value is equivalent to its granularity. Two
ontological coverages are equivalent if they refer to the same scope (e.g., [Country(BR)]

� [Country(Brazil)]. We can show, for a limited set of semantic relationships between
terms, that the encompassing relationship is reflexive and transitive. The equivalence relation-
ship is also symmetric. A more complete and formal treatment of POESIA ontologies, with
demonstration of properties, definition of consistency rules and description of their multiple
applications can be found in [4].

4. Ontological Estimation of Data Provenance

Let us consider the union of data sets in data warehouses. The ontological coverages described
in the previous section can express the scope of the data sources and of the resulting data sets.
Figure 5(a) illustrates the data flow for the consolidation of crop production data, involving
cooperating institutions and consortia. The scopes of the data repositories are described by the
ontological coverages attached to the nodes. For instance, institution I1 maintains data about
the production of grains in the center-south region of Brazil during the year 2002, while I2
is concerned with the production of fruits in the whole of Brazil during the same year. The
information flow, indicated by the arrows, shows for example that the data set of consortium C1
consolidates data from I1 and I2, in a scope encompassing those of its sources: the production
of food in Brazil during 2002.

Figure 5: The use of POESIA ontologies: (a) scopes of cooperating services; (b) the level of
granularity of an aggregated value

The provenance of an aggregated value in a node can be estimated by analyzing the scopes
of the data sources of the node. The potential sources, for each dimension, are those whose on-
tological coverage overlaps (encompasses or is encompassed by) the coverage of the aggregated
value in that dimension. For example, consider the average production of oranges in São Paulo



State during 2002. Figure 5(b) shows how the ontological coverage expresses the granularity of
the aggregated value, by indicating specific terms in different dimensions of a POESIA ontol-
ogy. Each term whose semantics overlaps the ontological coverage of the aggregated value is
surrounded by a rectangle.

Figure 6 illustrates the identification of the potential data sources for different dimensions.
It shows the arrangements of concepts for the space and product dimensions, with pointers as-
sociating the data sources with the terms used to express their scopes (e.g., C3 is associated
with BR because its ontological coverage refers to Country(BR)). Then, provenance track-
ing in one dimension reduces to collecting the sources associated with all the ancestors and
descendants of the terms expressing the coverage of the aggregated value in that dimension.
Figure 6(a) highlights the potential sources in the space dimension. For instance, sources C3,
C1, C2 and I2 are candidates because their ontological coverages refer to Country(BR)
and Country(BR) � � State(SP). I4b is also a potential source because its ontological
coverage refers directly to State(SP). If there have been other sources associated with the
descendants of State(SP) they should also be taken into account. I3 and I4a are not poten-
tial sources because they refer to nodes outside of the closure of ancestors and descendants of
State(SP). Figure 6(b) shows the same method applied to the product dimension. A similar
analysis can be done for the time dimension.

Figure 6: Potential data sources for the production of oranges in São Paulo State

The potential sources for an aggregated value are those figuring as candidates in all dimen-
sions. Figure 7 illustrates the ontological scheme for the estimation of the data provenance.
The table on the left side shows that only C1, C3 and I2 figure as potential sources in all di-
mensions. We call the subgraph (or sub-workflow) obtained by considering only the potential
sources and the links between them the relevant flow for the data provenance of the given data
item. It shows all the possible flows of data from the potential sources to the data item. Fig-
ure 7(b) highlights the relevant flow for the aggregated value considered. The granularity of that
value, expressed by [State(SP),Crop(orange),Year(2002)], can be used to select
the specific data items which may have been used to calculate the aggregation. This method
gives only an estimation of the data provenance because the overlapping of the scopes of the
data sources can lead to alternative paths for supplying a particular data value.



Figure 7: Appraising data provenance: (a) contrasting dimensions; (b) estimated data flow

5. Ontological Nets for Data Integration

An ontological net for data integration is an infra-structure for consolidating and fusing data
through distributed cooperative processes, where the description, discovery and composition of
data sets and services are based on domain ontologies. In order to better explain this concept
and how the ontological method for provenance tracking fits in the POESIA approach, let us
analyze the basic operators for data integration in cooperative geographical applications and the
role of domain ontologies in this context, from a higher level perspective.

5.1. Data Integration Operators

The POESIA approach classifies the operators typically used for integrating data in cooperative
geographical applications in three categories: combination of data sets, filtering data and trans-
forming data values. Figure 8 presents some examples of the operators for combining data sets.
The union operator collects data items from two data sources into a composite data set, whose
schema matches those of the sources. In Figure 8(a), data about the production of fruits in Brazil
during 2002 is united with another data set about the production of fruits in the Center-South
region of the country between 1997 and 2001, generating a data set which covers the produc-
tion of fruits in Brazil from 1997 to 2002. The merge operator relaxes the semantics of the
union operator by allowing slightly different semi-structured data sources and user intervention
to solve conflicts. Figure 8(b) shows an example of merging two heterogeneous data sets, into
a semi-structured data set, whose schema is a composition of the source schemas. The union
and merge operators produce data sets whose scope encompasses those of the data sources.
The result may contain data with the granularities present in both sources. Additionally, POE-
SIA ontologies help to identify conflicts on merging data sets in the absence of a common key.
Data items from different sources, but with equivalent scopes, called semantically identifiable
matches, are converted into one item in the target, using heuristics and user intervention to
solve conflicts. For example, one can detect discrepant values between data items referring to
the same product, at the same place and time and put only the correct value in the target.

The intersection operator employs heuristics to produce data items in the target for



Figure 8: Combining data sets

each pair of matching items from the two data sources. The schema of the target can be the
union or the intersection of the source schemas, depending on the matching data items. Fig-
ure 8(c) shows the intersection of two heterogeneous data sets about crop production. The
matching operator is similar to the intersection, but allows user intervention to analyze
matches and define the target schema. For example, one can identify that Total rainfall
in Source 1 matches Precipitation in Source 2, define the corresponding target at-
tribute and choose the data values to put in the target. Figure 8(d) shows the matching of two
heterogeneous sources of weather data. For intersection and matching, the scope of
the target data set is the intersection of those of the data sources, and the minimum granularity
provided by the target is the maximum among the minimum granularities of the sources.

The difference and the subtraction operators return the data items of the first data
source which do not have a match in the second source. The resulting schema derives from
the schema of the first data source. The difference between these operators is that subtrac-



tion allows heterogeneous schemas and user intervention. Figures 8(e) and 8(f) illustrate the
application of these operators to climate data sets. For both operators the scope and the mini-
mum granularity of the target is given by subtracting the scope and minimum granularity of the
second source from those of the first one.

Figure 9: Data Filtering

Figure 9 illustrates the operators for filtering data sets: projection and selection.
These operators keep the semantics of the corresponding relational operators, i.e., projecting
attributes or selecting data items according to some predicate, respectively. Projection preserves
the scope of the source in the target (Figure 9(a)), while selection may not. If the selecting
predicate stipulates filtering on a term defined in a POESIA ontology, the restricted scope of the
target can be determined by that term (Figure 9(b)). However, this is not so straightforward for
filtering on values of the data table (Figure 9(c)).

Figure 10: Transforming values

Figure 10 presents the operators that transform data values. The aggregation calculates
coarse grain measurements from data in finer granularities. Figure 10(a) illustrates the aggre-
gation of crop production data for each month and county into the respective values for each
year and state. The interpolation estimates the continuous distribution of measurements
from discrete samples. Figure 10(b) illustrates the interpolation of average rainfall samples to



produce a map expressing the distribution of this measurement across the lands. The con-
version employs user defined functions to convert data (e.g., from one measurement unit
into another). Figure 10(c) illustrates the conversion of rainfall measurements from inches to
millimeters and measurements of average temperature, for the same scope, from Fahrenheit to
Celsius degrees. Finally, the fusion operator combines values from different data sources,
whose respective scopes match each other, into another meaningful measurement, according to
user defined functions. Figure 10(d) illustrates the synthesis of the freezing risk from the mini-
mum temperature and altitude. All these operators preserve the scopes of the data sets, though
only aggregation and interpolation impact the data granularity.

5.2. Data Reconciling through Articulation of Ontologies

POESIA ontologies help the integration process with respect to data scopes and granularities
as discussed in Section 5.1. General and application ontologies help to investigate the semantic
correspondences among heterogeneous data items and index libraries of data conversion func-
tions. Some decisions made when integrating data must be annotated, in order to explain the
relevant details of data provenance that cannot be captured by ontological coverages alone.

Let us consider the integration of two heterogeneous data sets of weather measurements
from distinct institutions, in a particular portion of a cooperative process. The schema for the
semi-structured data of each data set can be represented as a directed graph (e.g., using XML).
The POESIA approach enriches these graphs with metadata describing the data elements, and
uses ontologies to express the properties of these elements and interrelate them. These enriched
schemas are themselves specific ontologies. Thus, ontologies articulation [7] can be used as a
basis to integrate data sources. Figure 11 illustrates this approach. The two graphs at the bottom
of the figure describe the data sources, the graph at the top represents the target data set and the
dotted and dashed links between nodes of these graphs represent the articulation rules, i.e., the
data flows from the sources to the target. These articulations show, for example, that the values
of latitude and longitude from the source in the left-bottom corner of the figure, represented in
degrees, minutes and seconds, must be converted into degrees and decimals of degrees to be
inserted into the target.

Figure 11: Reconciling heterogeneous data sets by ontologies articulation



In summary, many kinds of ontologies are necessary for reconciling heterogeneous data
sets. Application ontologies, derived from heterogeneous schemas, describe the data sets to be
integrated. General ontologies, such as Wordnet and ontologies of measurement units, help to
establish the correspondences and conversion procedures among data items. Finally, domain
ontologies and ontological coverages help to identify correspondences according to scopes or
granularities of heterogeneous data in several dimensions, such as space, time and categories of
products. The correspondences among data items of different data sets can be seen as articula-
tions between application ontologies, as illustrated in figure 11.

5.3. Semantic Workflows

Semantic workflows are cooperative process running on ontological nets. These processes em-
ploy data integration operators, according to ontologies articulations. POESIA ontologies con-
tribute to render a general view of what is going on in these workflows, by expressing the
scopes and granularities of the data involved. Figure 12(a) illustrates the integration of weather
data from different institutions. Each service is characterized by its scope and the minimum
granularity it supports for data recovery. For example, the INMET (Instituto Nacional de Me-
teorologia – National Institute of Meteorology) collected weather data samples across Brazil
in the period between 1931 and 2002. The minimum time granularity for the data supplied by
INMET is month. The ultimate recipient of data in this cooperative process is the RNA Ware-
house (Rede Nacional de Agrometeorologia – National Agrometeorology Network), which
can provide weather and climate data about virtually any place in Brazil. The temporal scope
of the weather data supplied by the RNA Warehouse is 1892 to 2002 and the minimum gran-
ularity supported is day. The granularity for each data item depends on the sources of that item.
Figure 12(b) illustrates the role of the RNA Warehouse on supplying climate data to deter-
mine land suitability for different crops. The scope of the sub-processes for determining land
suitability for coffee and rice must be compatible with the coverages of the respective sub-sets
of climate attributes recovered from the RNA Warehouse (see [3] for details).

Figure 12: Ontologies as a framework for estimating data provenance: (a) scopes and minimum
granularities of cooperating services; (b) the use of the integrated data by different processes



6. Related Work

The traditional solutions for tracking data provenance, some of which consider general data
formats and processing, employ metadata to annotate the processing history [8, 9, 10, 11].
However, these solutions do not scale well to large data sets, long processing flows and fine
grained provenance. Many other studies on data provenance are limited to views defined by
query operations on databases, calling this restricted problem lineage tracing. Woodruff et
al. [12] introduce the concept of inverse query, which maps an output to the data items used
to produce that output. They define the class of functions admitting inversion and the concept
of weak inversion to estimate the lineage for a wider class of functions. However, they do not
show how to determine the inverse queries, but expect the data transformation definer to provide
them.

Cui et al. [13, 14] define the lineage of the result of a relational database query as the mini-
mal set of tuples necessary to produce that result. They present an algorithm for tracing lineage
over chains of aggregate-select-project-join views. Their approach is based on
the inversion of the view definition and requires materializations of original relations and inter-
mediate views. [15] generalizes their previous results for graphs of general transformations used
for loading data warehouses. Nevertheless, their methods are built upon some constraints and
specific information about the sources and transformations employed, and require considerable
storage for intermediate results.

Buneman [1] distinguishes between why provenance and where provenance. The former
refers to the data items which have some influence on the result (e.g., which determine the
logical value of a predicate used to select tuples). The latter refers to the items effectively
used to synthesize the result (e.g., multiple values summed up to obtain an aggregated value
like average). He provides a framework to track both kinds of data provenance for specific
classes of select-project-join-union queries in a data model generalizing relational
and hierarchical data representations such as XML. Galhardas et al. [16] present some data
lineage facilities coupled to a data cleansing scheme based in a graph of transformations with
exceptions management to support the refinement of the cleaning criteria. Fan [17] provides
algorithms to trace data lineage in automatically reversible sequences of schema conversions,
employing the hyper-graph based high level data model and the functional query language of
the Automed system.

Therefore, current approaches either support just coarse grain provenance tracking or rely on
detailed descriptions of the data sources and the data transformations applied (e.g., schemas and
query expressions), making them unfit in many situations for cooperative systems over the Web.
Furthermore, these approaches lack abstraction mechanisms to enable a general understanding
and exploration of the information flow. To the best of our knowledge, the notion of domain
ontologies [18, 19, 20] has not been yet exploited as a framework for tracking data provenance.
This paper has shown that such a solution can eliminate some of these shortcomings.

7. Conclusions

Data provenance tracking is becoming increasingly important as more on-line data sources be-
come available. This paper has shown how domain ontologies are used in POESIA as a basis for
tracking data provenance in cooperative processes involving data integration. POESIA employs
tuples of domain specific terms defined in multidimensional ontologies to correlate the scope



and granularities of the target data with those of the data sources, enabling the estimation of the
data provenance. Additionally, POESIA ontologies help to semantically identify matches on
heterogeneous data sources, i.e., data items from different sources referring to the same scope.
It helps to detect and solve conflicts among heterogeneous data sources, and allows tracking the
data transformation flow across chains of data integration operators.

The benefits of this ontological method for estimating data provenance are (1) a framework
for understanding data provenance based on domain specific concepts; (2) support for fine grain
provenance tracking; (3) precision and conciseness for expressing the scopes and granularities;
(4) coupling with an approach for data integration and services composition; (5) the cost for
maintaining the infra-structure for provenance tracking is shared with facilities for cataloging,
discovering and integrating data and services.

This research has been focused on the conceptual definition and formalization of the POE-
SIA approach. Ongoing work includes the implementation of prototypes to evaluate this ap-
proach on scientific applications in agriculture. We have developed an ontology for this appli-
cation domain, and a Java package for importing and using domain ontologies in application
programs. This package includes classes for coping with ontological coverages: selecting them
from the ontology and comparing them for encompassing and equivalence relationships. Now,
we are incorporating this package into the WOODSS system for decision support based on
scientific workflows [21].

The evaluation of the ontological method for tracking data provenance depends on the avail-
ability of case studies developed in accordance with the POESIA approach, i.e., a collection of
interconnected data sets with the associated ontological coverages. In addition, comparing the
ontological method with other approaches for provenance tracking will require the development
of new criteria for taking measures and comparing results, as the ontological method leads to a
different balance of costs and benefits, such as the cost for developing domain ontologies versus
the benefits of their use for data integration, data and processes reuse and provenance tracking.
Other extensions of this work are: developing optimal algorithms for provenance tracking by
the ontological method, making experiments to asses space and time complexity and the ef-
fectiveness of the ontological method in practice, and compare the results with those of the
traditional approaches.
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